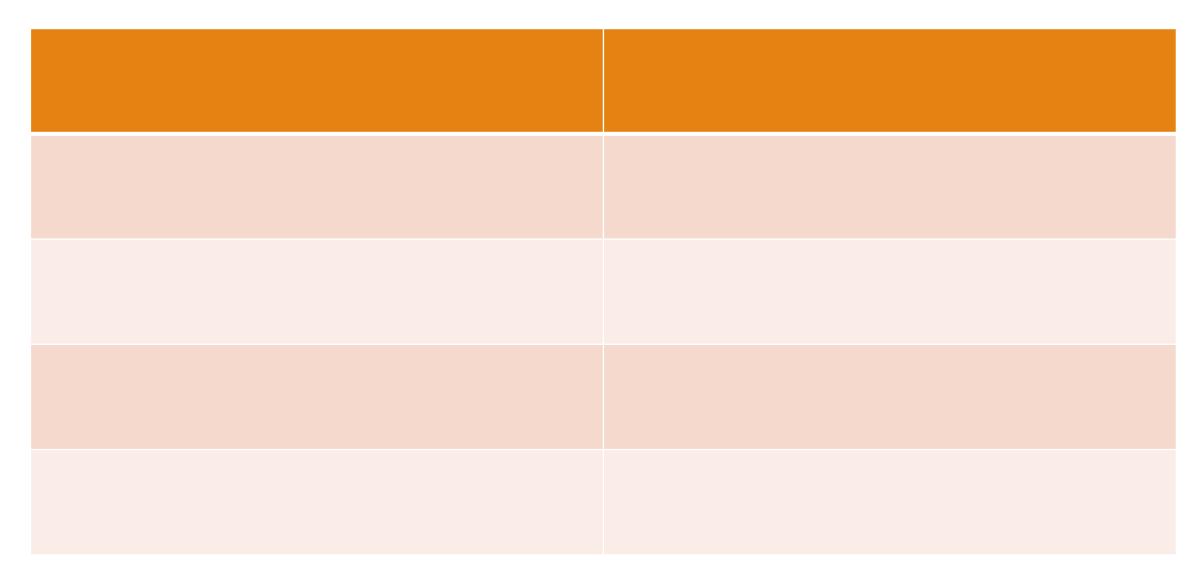
Discrete Structures Lec.1

Mathematical logical

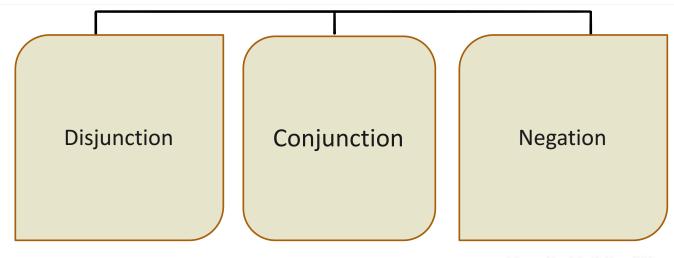
1. Statement (proposition)

A statement is a declarative sentence which is either true or false but not both. The statement is also known as proposition.

Proposition	Not proposition
Sun rises in the east.	X is a dog.
Two is less than five.	



2. Logical connectives



Truth Table (Disjunction)

P	Q	(P ∨ Q)
Т	T	T
T	F	T
F	T	T
F	F	F

Truth Table (Conjunction)

P	Q	(P ∧ Q)
Т	Т	Т
T	F	F
F	T	F
F	F	F

Truth Table (Negation)

P	¬ P
T	F
F	T

أ.م عهود سعدي الحسني

Logical connectives

Negation

Negation = $not = \neg p, \sim p, p'$

Consider the example of a statement.

P: London is the capital of Iraq.

¬p: London is not the capital of Iraq.

As we all know that Baghdad is the capital of Iraq, the truth value for the statements P is false (F) and ¬p is true (T).

Rule: If P is true, then $\neg p$ is false and if P is false, then $\neg p$ is true.

Truth Table (Negation)

P	¬ P
Т	F
F	${f T}$

Logical connectives

Conjunction

The conjunction of two statements P and Q is also a statement denoted by $(P \land Q)$. We use the connective **And** for conjunction.

Consider the example where P and Q are two statements.

P:2+3=5

Q: 5 is a prime number.

 $(P \land Q) : 2 + 3 = 5$ and 5 is a prime number.

Rule: $(P \land Q)$ is true if both P and Q are true, otherwise false.

Truth Table (Conjunction)

P	Q	(P ∧ Q)
Т	Т	Т
T	F	\mathbf{F}
F	T	\mathbf{F}
F	F	F

Logical connectives

Disjunction

The disjunction of two statements P and Q is also a statement denoted by (P \vee Q). We use the connective \mathbf{Or} for disjunction.

Consider the example where P and Q are two statements

P: 2+3 is not equal to 5

Q: 5 is a prime number

 $(P \lor Q) : 2 + 3$ is not equal to 5 or 5 is a prime number.

Rule: (P V Q) is true, if either P or Q is true and it is false when both P and Q are false.

Truth Table (Disjunction)

P	Q	(P ∨ Q)
Т	Т	Т
T	\mathbf{F}	T
F	\mathbf{T}	T
F	\mathbf{F}	F

Discrete mathematics Lec.2

3.conditional

Let P and Q be any two statements. Then the statement P \rightarrow Q is called a conditional statement. This can be put in any one of the following forms.

- (a) If P, then Q (b) P only if Q
- (C) P implies Q (d) Q if P
- Ex) "I will take you boating on Sunday, if it is not raining".

Rule: An implication (conditional) $P \rightarrow Q$ is false only when the hypothesis (P) is true and conclusion (Q) is false, otherwise true.

Truth Table (Conditional)

P	Q	$(\mathbf{P} \to \mathbf{Q})$
\mathbf{T}	T	T
\mathbf{T}	\mathbf{F}	F
\mathbf{F}	T	T
\mathbf{F}	F	T

أ.م عهود سعدي الحسني

4.Bi-conditional

Let P and Q be any two statements. Then the statement P < ->Q is called a bi-conditional statement. This P < ->Q can be put in any one of the following forms.

(a) P if and only if Q

- (b) P is necessary and sufficient of Q
- (c) P is necessary and sufficient for Q (d) P is implies and implied by Q

Rule: (P<->Q) is true only when both P and Q have identical truth values, otherwise false.

Truth Table (Bi-Conditional)

P	Q	$\mathbf{P} o \mathbf{Q}$	$\mathbf{Q} o \mathbf{P}$	$(\mathbf{P}\leftrightarrow\mathbf{Q})$
T	T	T	T	T
T	F	F	T	\mathbf{F}
\mathbf{F}	T	T	F	F
F	F	T	T	T

أم عهود سعدي الحسني

5.converse

Let P and Q be any two statements. The converse statement of the conditional P \rightarrow Q is given as Q \rightarrow P.

6.Inverse

Let P and Q be any two statements. The inverse statement of the conditional (P \rightarrow Q) is given as ($\neg p \rightarrow \neg Q$).

7. Contra positive

Let P and Q be any two statements. The contra positive statement of the conditional $(P \rightarrow Q)$ is given As $(\neg Q \rightarrow \neg P)$.

Truth Table (Contra Positive)

P	Q	$\mathbf{P} o \mathbf{Q}$	¬ Q	¬ P	$(\neg \mathbf{Q} \rightarrow \neg \mathbf{P})$
T	T	T	F	F	Т
T	F	F	\mathbf{T}	F	F
\mathbf{F}	T	T	\mathbf{F}	T	T
F	F	T	T	T	T

Rule: From the truth table it is observed that both conditional (P \rightarrow Q) and contra positive(\neg Q \rightarrow P) have same truth values.

8. Tautology

If the truth values of a composite statement are always true.

So, $(P \land (P \rightarrow Q)) \rightarrow Q$ is a tautology.

Truth Table

P	Q	$(\mathbf{P} \to \mathbf{Q})$	$\mathbf{P} \wedge (\mathbf{P} \rightarrow \mathbf{Q})$	$(\mathbf{P} \wedge (\mathbf{P} \to \mathbf{Q})) \to \mathbf{Q}$
T	Т	T	T	${f T}$
T	F	F	\mathbf{F}	\mathbf{T}
F	\mathbf{T}	\mathbf{T}	\mathbf{F}	${f T}$
F	F	T	\mathbf{F}	T

9. Contradiction

If the truth values of a composite statement are always false.

So, $\neg R \equiv \neg (P \rightarrow (Q \rightarrow (P \land Q)))$ is a contradiction.

Truth Table

P	Q	(P ∧ Q)	$\mathbf{Q} \rightarrow (\mathbf{P} \wedge \mathbf{Q})$	$(\mathbf{P} \to (\mathbf{Q} \to (\mathbf{P} \wedge \mathbf{Q}))$	$\neg \mathbf{R}$
T	\mathbf{T}	\mathbf{T}	${f T}$	\mathbf{T}	\mathbf{F}
\mathbf{T}	\mathbf{F}	F	${f T}$	\mathbf{T}	\mathbf{F}
\mathbf{F}	${f T}$	F	${f F}$	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{F}	F	${f T}$	\mathbf{T}	F

$$P \wedge Q \equiv Q \wedge P$$
 and $P \vee Q \equiv Q \vee P$

10. Algebra of propositions

$$\begin{split} P \wedge (Q \wedge R) &\equiv (P \wedge Q) \wedge R \text{ and } \\ P \vee (Q \vee R) &\equiv (P \vee Q) \vee R \end{split}$$

$$P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$$
 and
 $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$

$$P \wedge P \equiv P \text{ and}$$

 $P \vee P \equiv P$

$$P \lor (P \land Q) \equiv P$$
 and $P \land (P \lor Q) \equiv P$

11. Duality law

Two formulae P and P* are said to be duals of each other if either one can be obtained from the other by interchanging \land by \lor and \lor by \land . The two connectives \land and \lor are called dual to each other.

Consider the formulae

$$P \equiv (P \lor Q) \land R \text{ and } P^* \equiv (P \land Q) \lor R$$

Which are dual to each other.

12.de morgan's laws

If P and Q be two statements, then

$$(i) \neg (P \land Q) \Leftrightarrow (\neg P) \lor (\neg Q) \text{ and }$$

$$(ii) \neg (P \lor Q) \Leftrightarrow (\neg P) \land (\neg Q)$$

Example Construct the truth table for $(P \rightarrow Q) \leftrightarrow (\neg P \lor Q)$.

Solution: The given compound statement is $(P \to Q) \leftrightarrow (\neg P \lor Q)$ where P and Q are two atomic statements.

P	Q	¬ P	P→ Q	¬P vQ	$(P \rightarrow Q) \leftrightarrow (\neg P \lor Q)$
T	T	F	T	T	T
\mathbf{T}	F	F	F	\mathbf{F}	T
\mathbf{F}	T	T	T	${f T}$	T
F	F	T	T	T	T

أ.م عهود سعدي الحسني

Example Construct the truth table for $P \to (Q \leftrightarrow P \land Q)$.

Solution: The given compound statement is $P \to (Q \leftrightarrow P \land Q)$, where P and Q are two atomic statements.

P	Q	P ^ Q	$Q \leftrightarrow P \wedge Q$	$P \rightarrow (Q \leftrightarrow P \land Q)$
Т	Т	Т	T	Т
T	F	F	T	T
F	T	F	F	T
F	F	F	T	T

Discrete mathematics

LEC.3

SETS

Collection of well defined objects is called a set. Well defined means distinct and distinguishable. The objects are called as elements of the set.

Ex: $A = \{a, b, c, d\}$ and $B = \{b, a, d, c\}$ are equal sets.

The symbol \in stands for 'belongs to'. $X \in A$ means x is an element of the set A.

Sets

Set builder method

Tabular method

1. Tabular Method

Expressing the elements of a set within a parenthesis where the elements are separated by commas is known as tabular method, roster method or method of extension.

Consider the example:

$$A = \{1, 3, 5, 7, 9, 11, 13, 15\}$$

2. Set Builder Method

$$S = \{x \mid P(x)\}$$

where P(x) is the property that describes the elements of the set.

$$A = \{x \mid x = 2n + 1; 0 \le n \le 7; n \in I\}$$
$$= \{1, 3, 5, 7, 9, 11, 13, 15\}$$

Types of sets

- > Finite set
- >Infinite set
- > Singleton set
- > Pair set
- > Empty set
- > Set of sets
- > Universal set

- 1. Finite set: A set which contains finite number of elements is known as finite set. Consider the example of finite set as. A = {a, b, c, d, e}.
- 2. Infinite set: A set which contains infinite number of elements is known as infinite set. Consider the example of infinite set as

- 3. Singleton set: A set which contains only one element is known as a singleton set. Consider the example. S = {9}
- 4. Pair set: A set which contains only two elements is known as a pair set.

 Consider the examples

- 5. Empty set :A set which contains no element is known as empty set. The empty set is also known as void set or null set. denoted by \emptyset . Consider the examples
- (i) $f=\{x: x \neq x\}$
- (ii) $f = \{x : x \text{ is a month of the year containing } 368 \text{ days} \} 6.$
- 6.Set of sets: A set which contains sets is known as set of sets.

 Consider the example A = {{a, b}, {1}, {1, 2, 3, 4}, {u, v}, {Book, Pen}}
- 7.Universal Set: A set which is superset of all the sets under consideration or particular discussion is known as universal set. denoted by U

```
Hets A = \{a,b,c\} B = \{a,e,i,o,u\} C = \{p,q,r,s\} So, we can take the universal set U as \{a,b,c,....,z\} U = \{a,b,c,d,e,....,z\} أم عهود سعدي الحسني
```


Discrete Mathematics

LEC.4

CARDINALITY OF A SET

If S be a set, then the number of elements present in the set S is known as cardinality of S and is denoted by |S|.

$$A = \{2, 4, 8, 16, 32, 64, 128, 256\}$$

 $|A| = 8$

CARDINALITY OF A SET

Equivalent Sets

Equivalent Sets: Two sets A and B are said to be equivalent if they contains equal number of elements.

In other words A and B are said to be equivalent if they have same cardinality, i.e. |A| = |B|.

denoted as $A \approx B$.

SUBSET AND SUPERSET

Set A is said to be a subset of B or set B is said to be the superset of A if each element of A is also an element of the set B.

We write $A \subseteq B$.

i.e.,
$$A \subseteq B \leftrightarrow \{x \in A \rightarrow x \in B; \forall x \in A\}$$

Example

(i) Let
$$A = \{1, 2, 3, 4, 5, 6\}$$

 $B = \{1, 2, 3, 4, 5, 6, 7, 8\}$
So $A \subseteq B$.

(ii) Let
$$A = \{a, b, c\}$$

 $B = \{b, c, a\}$
so, $A \subseteq B$ and $B \subseteq A$.

(iii) Let
$$A = \{\}$$
 and $B = \{1, 2, 3\}$
So, $A \subseteq B$.

أ.م عهود سعدي الحسني

SUBSET AND SUPERSET

- 1.Equal Sets
- 2. Proper Subset

Equal Sets: Two sets A and B are said to be equal if and only if every element of A is in B and every element of B is in A

i.e. $A \subseteq B$ and $B \subseteq A$. Mathematically

$$A = B \leftrightarrow \{ A \subseteq B \text{ and } B \subseteq A \}$$

$$A = B \leftrightarrow \{ x \in A \leftrightarrow x \in B \}$$

Consider the example: Let $A = \{x, y, z, p, q, r\}$

$$B = \{p, q, r, x, y, z\}$$

So, $B \subseteq A$ and $A \subseteq B$. Thus A = B.

i.e.,

SUBSET AND SUPERSET

- 1.Equal Sets
- 2. Proper Subset

Proper Subset: Set A is said to be a proper subset of B if each element of A is also an element of B and set B has at least one element which is not an element of set A.

We write $A \subset B$

 $A \subset B \leftrightarrow \{x \in A \to x \in B \text{ and for at least one } y \in B \to y \notin A\}.$

Consider an example

Let

$$A = \{a, b, c, d\}$$

$$B = \{a, b, c, d, e, f, g\}$$

Here for $x \in A$ we have $x \in B$ and $y = e \in B$ such that $y = e \notin A$. Thus $A \subset B$.

- **Rule:** 1. Every set is a subset of itself, *i.e.* $A \subseteq A$.
 - 2. Empty set is a subset of every set, *i.e.* $\phi \subseteq A$.

Discrete mathematics

LEC.5

POWER SET

If A be a set, then the set of all subsets of A is known as power set of A and is denoted as P(A)

```
Mathematically, P(A) = \{X : X \subseteq A\}
Consider the example:
```

Let
$$A = \{a\}$$

 $\Rightarrow P(A) = \{ \Phi, \{a\} \}$
Let $A = \{a, b\}$
 $\Rightarrow P(A) = \{\{a\}, \{b\}, \{a, b\}, \Phi\}$
Let $A = \{a, b, c\}$
 $\Rightarrow P(A) = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{c, a\}, \{a, b, c\}, \Phi\}$

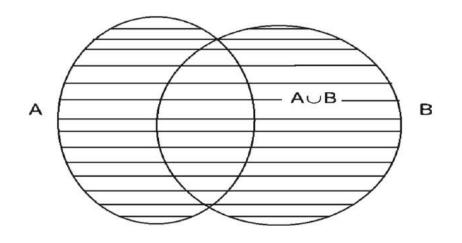
$$|A| = n \Rightarrow |P(A)| = 2^n$$
.

Power set

- 1.Union
- 2.Intersection
- 3. Difference
- 4. Symmetric Difference
- 5. Complement of a set
- 6.Theorem

1. Union: If A and B be two sets, then the union (A \cup B) is defined as a set of all those elements which are either in A or in B or in both. $A \cup B = \{x : x \in A \text{ or } x \in B\}$

Venn diagram



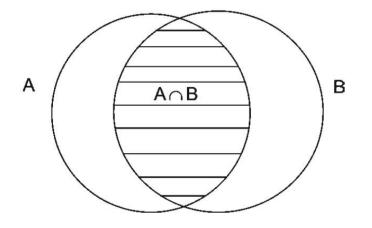
Consider the example:

Let
$$A = \{a, b, c, d, e\}$$

 $B = \{a, e, i, o, u\}$
Therefore, $(A \cup B) = \{a, b, c, d, e, i, o, u\}$

2.Intersection: If A and B be two sets, then the intersection (A \cap B) is defined as a set of all those elements which are common to both the sets. $(A \cap B) = \{x : x \in A \text{ and } x \in B\}$

Venn diagram



Consider the example:

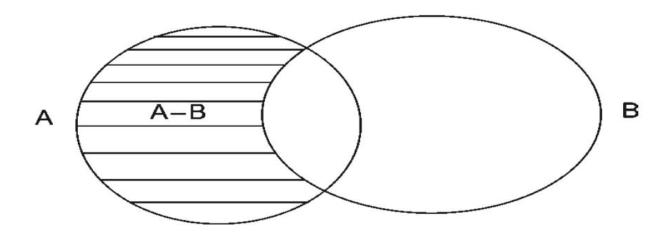
Let $A = \{a, b, c, d, e\}$

 $B = \{a, e, i, o, u\}$

Therefore, $(A \cap B) = \{a, e\}$

3.Difference: If A and B be two sets, then the difference (A - B) is defined as a set of all those elements of A which are not in B.

$$(A - B) = \{x \mid x \in A \text{ and } x \notin B\}$$

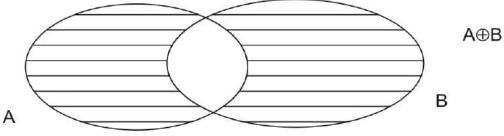


Consider the example:

Symmetric Difference: If A and B be two sets, then the symmetric difference $(A \oplus B)$ is defined as a set of all those elements which are either in A or in B but not in both.

$$(A \oplus B) = (A - B) \cup (B - A)$$

Venn diagram



Consider the example:

Let
$$A = \{a, b, c, k, p, q, r, s\}$$

$$B = \{b, k, q, m, n, o, t\}$$
So,
$$(A - B) = \{a, c, p, r, s\}$$
and
$$(B - A) = \{m, n, o, t\}$$

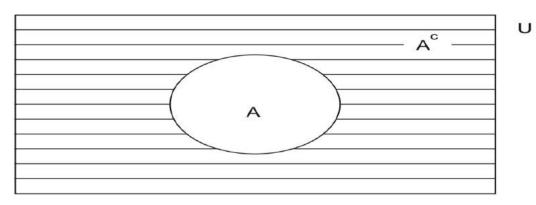
$$Therefore, \qquad (A \oplus B) = (A - B) \cup (B - A)$$

$$= \{a, c, p, r, s, m, n, o, t\}$$

5.Complement of a Set: If A be a set, then the complement of A is given as A^c , A' or \overline{A} and is defined as a set of all those elements of the universal set U which are not in A.

 $\mathbf{A}^c = \{x \mid x \in \mathbf{U} \text{ and } x \not\in \mathbf{A}\}$

Venn diagram



Consider the example:

Let
$$A = \{b, c, k, d, i, p, q, r, s, t\}$$
 So, we can take the universal set $U = \{a, b, c, ..., x, y, z\}$. Therefore,
$$A^c = U - A$$

$$= \{a, e, f, g, h, j, l, m, n, o, u, v, w, x, y, z\}$$

6.Theorem: Let A, B and C be subsets of the universal set U. Then the following important laws hold.

(a) Commutative laws: $(A \cup B) = (B \cup A)$ $(A \cap B) = (B \cap A)$ (b) Associative laws: $A \cup (B \cup C) = (A \cup B) \cup C$; $A \cap (B \cap C) = (A \cap B) \cap C$ (c) Idempotent laws: $(A \cup A) = A$ $(A \cap A) = A$ (d) Identity laws: $(A \cup \phi) = A$ $(A \cap U) = A$ (e) Bound laws: $(A \cup U) = U$ $(A \cap \phi) = \phi$ (f) Absorption laws: $A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$ (g) Complement laws: $(\mathbf{A} \cup \mathbf{A}^c) = \mathbf{U}$ $(\mathbf{A} \cap \mathbf{A}^c) = \mathbf{\phi}$ (h) Involution law: $(\mathbf{A}^c)^c = \mathbf{A}$ (i) Distributive laws: (i) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (ii) A \cap (B \cup C) = (A \cap B) \cup (A \cap C) ا.م عهود سعدى الحسنى

Discrete mathematics

LEC.6

Binary Relation

Let A and B be two sets. Then any subset R of the Cartesian product (A x B) is a relation (binary relation) from the set A to the set B. Symbolically $R \subseteq (A \times B)$.

$$R = \{(x, y) \mid x \in A \text{ and } y \in B\}$$

If $(x, y) \in \mathbb{R}$, then we write $x \otimes y$ and say that x is related to y. If $(x, y) \notin \mathbb{R}$, then we write $x \otimes y$ and say that x is not related to y. If A = B, then R is a relation (binary relation) on A.

Consider the example $A = \{1, 2, 3, 4, 5\}$ and $B = \{5, 6, 7, 8, 9\}$ and let the relation R from the set A to the set B as

$$R = \{(x, y) \mid x \in A \text{ and } y = 2x + 3 \in B\}$$
 i.e.,
$$R = \{(1, 5), (2, 7), (3, 9), (4, 11), (5, 13)\}$$
 i.e.,
$$R \subseteq A \times B$$

1.Domain of a Relation: Let R be a relation from the set A to the set B. Then the set of all first constituents of the ordered pairs present in the relation R is known as domain of R. Denoted by dom. R or D(R). Mathematically,

$$D(R) = \{x \mid (x, y) \in R, \text{ for } x \in A\}$$

 $D(R) \subseteq A$

Range of a Relation: Let R be a relation from the set A to the set B.
 Then the set of all second constituents of the ordered pairs present in the relation R is known as range of R. Denoted by rng.R or R(R). Mathematically

Mathematically,

i.e.,

So,

$$R(R) = \{y \mid (x, y) \in R, \text{ for } y \in B\}$$
$$R(R) \subseteq B$$

Consider the example: Let $A = \{a, b, c, d\}$ and $B = \{5, 6, 7\}$. Let us define a relation R from the set A to the set B as below.

$$R = \{(a, 5), (a, 6), (c, 6), (d, 6)\}$$

$$D(R) = \{a, c, d\} \text{ and } R(R) = \{5, 6\}$$

2.INVERSE RELATION: Let R be a relation from the set A to the set B. Then the inverse of the relation R is a relation from the set B to the set A. It is denoted by \mathbb{R}^{-1} and is defined as

$$R^{-1} = \{(y, x) \mid (x, y) \in R\}$$
 Consider the example: Let A = \{1, 2, 3, 4, 5\}

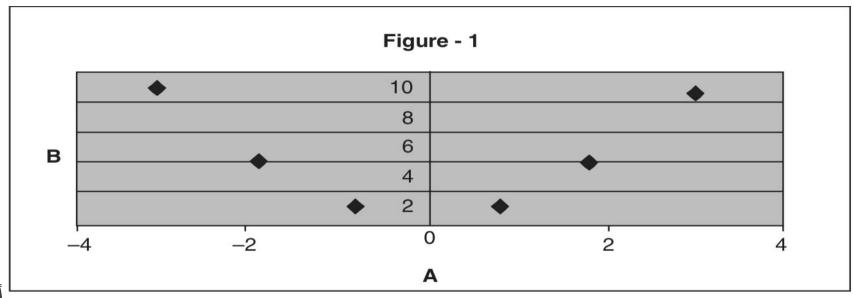
Consider the example: Let $A = \{1, 2, 3, 4, 5\}$

and $B = \{4, 9, 16, 17, 25\}$

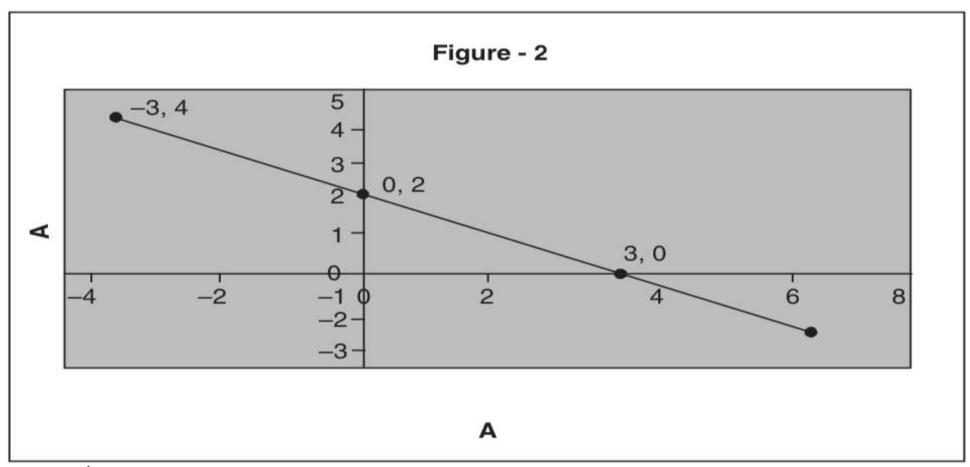
Let us consider the relation R from the set A to the set B as $R = \{(2, 4), (3, 9), (4, 16), (3, 17)\}$ Therefore, $R^{-1} = \{(4, 2), (9, 3), (16, 4), (17, 3)\}$. **3.GRAPH OF RELATION:** Let R be a relation from the set A to the set B; that is R is a subset of $(A \times B)$. Since $(A \times B)$ can be represented by the set of points on the coordinate diagram of $(A \times B)$,

Let A = { - 3, - 2, - 1, 1, 2, 3 } and B = {1, 2, 3, 4, 5, 6, 7, 8, 9} and x R y such that y = x^2 . Thus we have

$$R = \{(-1, 1), (1, 1), (-2, 4), (2, 4), (-3, 9), (3,9)\}$$



Consider another example: Let $A = \{x \mid x \text{ is a real number}\}$ and x R y such that $2x + 3y \le 6$. Thus, we have $R = \{(x, y) \mid 2x + 3y \le 6 \text{ and } x, y \in A\}$.



4.KINDS OF RELATION

- One-One
- One-Many
- Many-One
- Many-Many

5. ARROW DIAGRAM: We use arrow diagrams to represent relations.

Consider the example: Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{2, 4, 6, 8\}$. Let us define the relations from the set A to the set B as

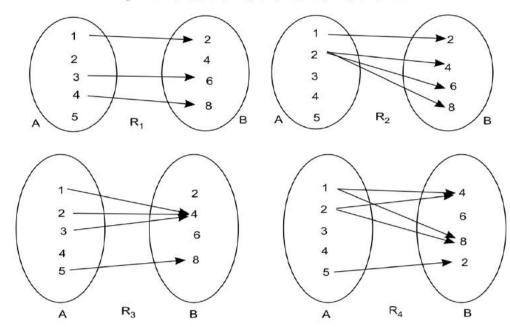
$$R_1 = \{(1, 2), (3, 6), (4, 8)\}$$

$$R_2 = \{(2, 4), (2, 6), (2, 8), (1, 2)\}$$

$$R_3 = \{(1, 4), (2, 4), (3, 4), (5, 8)\}$$

and

$$R_4 = \{(1, 4), (2, 4), (1, 8), (2, 8), (5, 2)\}$$



The arrow diagrams for the above relations are given above. From the above diagrams it is clear that R₁, R₂, R₃ and R₄ are One-One, One-Many, Many-One and Many-Many relations respectively.

Discrete mathematics

LEC.7

6. VOID RELATION

Let R be a relation on a set A; that is R is a subset of $(A \times A)$. Then the relation R is said to be an identity relation if $(x, x) \in R$. Generally denoted by I_A . Mathematically,

$$I_{A} = \{(x, x) \mid x \in A\}$$

7.IDENTITY RELATION

A relation R from a set A to a set B is said to be a void relation or empty relation if $R = \emptyset$. Consider the example: Let $A = \{3, 5, 7\}$; $B = \{2, 4, 8\}$; $R \subseteq A \times B$ and $x R y \mid x$ divides y; $x \in A$, $y \in B$. Hence, we observe that $R = \emptyset \subseteq A \times B$ is a void relation from the set A to the set B.

Consider the example: Let $A = \{a, b, c\}$ and I_A be a relation on A such that $I_A = \{(a, a), (b, b), (c, c)\}$. This is an identity relation on A.

8.UNIVERSAL RELATION: relation R from a set A to a set B is said to be an universal relation if R is equal to $(A \times B)$. That is $R = (A \times B)$. Let $A = \{1, 2, 3\}$ and $B = \{a, b\}$. Therefore the universal relation R from the set A to the set B is given as $R = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$.

9. RELATION MATRIX (MATRIX OF THE RELATION)

Let

and

A = {
$$a_1, a_2, a_3, \dots, a_i, \dots, a_k$$
}
B = { $b_1, b_2, b_3, \dots, b_i, \dots, b_l$ }

be two finite sets and R be a relation from the set A to the set B. Then the matrix of the relation R, i.e., M(R) is defined as

 $M(R) = [m_{ij}] \text{ of order } (k \times l)$

 $m_{ij} = \begin{cases} 1; & \text{if } a_i \neq b_j \\ 0; & \text{if } a_i \neq b_j \end{cases}$

where

$$M(R) = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 3 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

10 COMPOSITION OF RELATIONS

Let R_1 be a relation from the set A to the set B and R_2 be a relation from the set B to the set C. That is R_1 is a subset of $(A \times B)$ and R_2 is a subset of $(B \times C)$. Then the composition of R_1 and R_2 is given by R_1R_2 and is defined by

$$R_1R_2 = \{(x, z) \in (A \times C) \mid \text{ for some } y \in B, (x, y) \in R_1 \text{ and } (y, z) \in R_2\}$$

Consider the example: Let $A = \{1, 2, 4, 5, 7\}$;

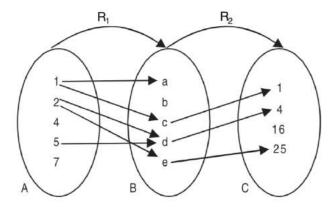
$$B = \{a, b, c, d, e\}$$

and

$$C = \{1, 4, 16, 25\}$$

Consider the relations $R_1: A \to B$ and $R_2: B \to C$ as

 $R_1 = \{(1, a), (1, c), (2, d), (2, e), (5, d)\}$ and $R_2 = \{(c, 1), (d, 4), (e, 25)\}$. The arrow diagram is given as



So,

$$R_1R_2 = \{(1, 1), (2, 4), (2, 25), (5, 4)\}$$

11. TYPES OF RELATIONS

This section discusses a number of different important types of relations on a set A that are important for the study of finite state systems.

1. Reflexive Relations

A relation R defined on a set A is said to be reflexive if $(x, x) \in R$ for every element $x \in A$.

i.e.,
$$x R x \quad \forall x \in A$$

Consider the following relations on the set $A = \{1, 3, 5, 7\}$

$$R_1 = \{(1, 1), (1, 3), (1, 5), (5, 5), (5, 7)\}$$

$$R_2 = \{(1, 3), (1, 5), (5, 7), (3, 7)\}$$

$$R_3 = \{(1, 1), (1, 3), (3, 3), (5, 5), (5, 7), (1, 7), (7, 7)\}$$

From the above relations it is clear that R_3 is a reflexive relation. R_1 is not a reflexive relation as $(3,3) \notin R_1$ and $(7,7) \notin R_1$. Similarly, R_2 is also not reflexive.

2. Symmetric Relations

A relation R defined on a set A is said to be symmetric if $(x, y) \in R$ then $(y, x) \in R$.

i.e.,
$$x R y \Rightarrow y R x$$
.

Consider the following relations on the set $A = \{1, 3, 5, 7\}$

$$R_1 = \{(1, 1), (1, 3), (3, 5), (3, 1), (5, 3), (5, 5)\}$$

$$R_2 = \{(1, 1), (1, 3), (3, 1), (3, 5), (5, 3), (5, 7), (7, 7)\}$$

From the above relations it is clear that R_1 is a symmetric relation, but R_2 is not a symmetric relation as $(5,7) \in R_2 \Rightarrow (7,5) \notin R_2$.

3. Transitive Relations:

A relation R defined on a set A is said to be transitive if $(x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$. *i.e.*, x R y and $y R z \Rightarrow x R z$

Consider the following relations on the set $A = \{1, 3, 5, 7\}$.

$$R_1 = \{(1, 1), (1, 3), (1, 5), (1, 7), (3, 3), (3, 5), (3, 7), (5, 3), (5, 5), (5, 7)\}$$

$$R_2 = \{(1, 1), (1, 3), (3, 5), (5, 5), (7, 7)\}$$

From the above relations it is clear that R_1 is a transitive relation. The relation R_2 is not transitive as $(1,3) \in R_2$, $(3,5) \in R_2 \Rightarrow (1,5) \notin R_2$.

- **12. EQUIVALENCE RELATION:** A relation R defined on a set A is said to be an equivalence relation in A if and only if R is reflexive, symmetric and transitive.
 - \circ **Theorem:** If R be an equivalence relation defined in a set A, then \mathbb{R}^{-1} is also an equivalence relation in the set A.

Example Let R be the relation on the set $\{1, 2, 3, 4, 5\}$ defined by the rule $(x, y) \in R$ if $x + y \le 6$. Find the followings.

(a) List the elements of R

(b) List the elements of R⁻¹

(c) Domain of R

(d) Range of R

(e) Range of R $^{-1}$

(f) Domain of R^{-1}

Check that domain of R is equal to range of R^{-1} and range of R is equal to domain of R^{-1} .

Solution: Let A = $\{1, 2, 3, 4, 5\}$ and R = $\{(x, y) \in R \mid x + y \le 6 ; x, y \in A\}$

- (a) $R = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (4, 1), (4,$ (4, 2), (5, 1)
- (b) $R^{-1} = \{(1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (1, 2), (2, 2), (3, 2), (4, 2), (1, 3), (2, 3), (3, 3), (1, 4), (2, 1), (2, 1), (2, 1), (3, 1), (4, 1)$ (2, 4), (1, 5)
- (c) Domain of R
- *i.e.*, $D(R) = \{1, 2, 3, 4, 5\}$

- (f) Domain of R^{-1} i.e., $D(R^{-1}) = \{1, 2, 3, 4, 5\}$

From this it is clear that $D(R) = R(R^{-1})$ and $R(R) = D(R^{-1})$.

Discrete mathematics

LEC.8

Function

Let A and B be two non-empty sets. A relation *f* from the set A to the set B is said to be a function if it satisfies the following two conditions.

- (i) D(f) = A and
- (ii) if $(x_1, y_1) \in f$ and $(x_2, y_2) \in f$, then $y_1 = y_2$.

In other words a relation f from the set A to the set B is said to be a function if for each element x in A there exists unique element y in B. A function from A to B is sometimes denoted as $f: A \to B$.

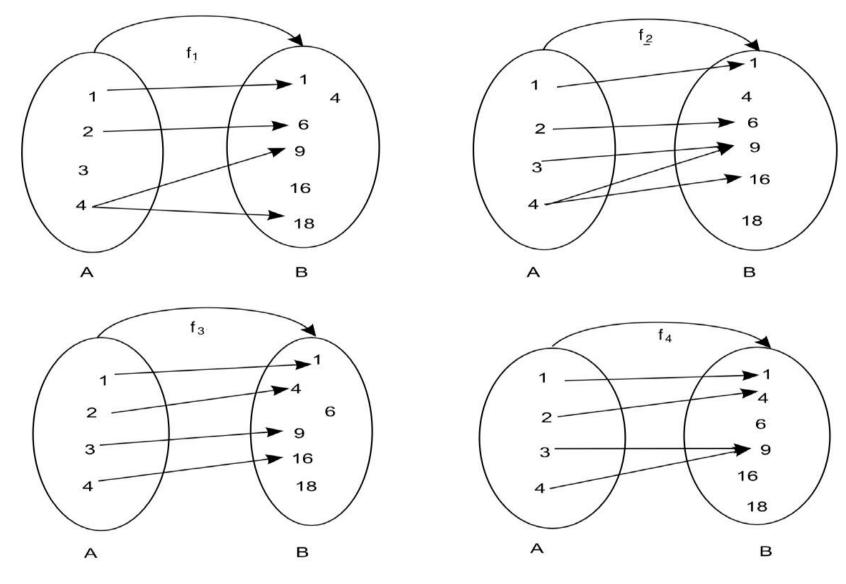
Consider the following relations from the set $A = \{1, 2, 3, 4\}$ to the set $B = \{1, 4, 6, 9, 16, 18\}$.

$$f_1 = \{(1, 1), (2, 6), (4, 9), (4, 18)\}$$

$$f_2 = \{(1, 1), (2, 6), (3, 9), (4, 9), (4, 16)\}$$

$$f_3 = \{(1, 1), (2, 4), (3, 9), (4, 16)\}$$

$$f_4 = \{(1, 1), (2, 4), (3, 9), (4, 9)\}$$



أ.م عهود سعدي الحسني

1. a) Domain and Co-domain of a Function

Suppose that *f* be a function from the set A to the set B. The set A is called the domain of the function *f* where as the set B is called the co-domain of the function *f*.

Consider the function f from the set $A = \{a, b, c, d\}$ to the set $B = \{1, 2, 3, 4\}$ as

$$f = \{(a, 1), (b, 2), (c, 2), (d, 4)\}$$

Therefore, domain of $f = \{a, b, c, d\}$ and co-domain of $f = \{1, 2, 3, 4\}$. *i.e.*, $D(f) = \{a, b, c, d\}$ and Co-domain $f = \{1, 2, 3, 4\}$.

b) Range of a Function

Let f be a function from the set A to the set B. The element $y \in B$ which the function f associates to an element $x \in A$ is called the image of x or the value of the function f for x. From the definition of function it is clear that each element of A has an unique image on B. Therefore the range of a function $f: A \to B$ is defined as the image of its domain A. Mathematically,

$$R(f) \text{ or rng } (f) = \{ y = f(x) : x \in A \}$$

It is clear that $R(f) \subseteq B$.

Consider the function f from $A = \{a, b, c\}$ to $B = \{1, 3, 5, 7, 9\}$ as $f = \{(a, 3), (b, 5), (c, 5)\}$. Therefore, $R(f) = \{3, 5\}$.

2.EQUALITY OF FUNCTIONS

If f and g are functions from A to B, then they are said to be equal i.e., f = g if the following conditions hold.

(a)
$$D(f) = D(g)$$

(b)
$$R(f) = R(g)$$

(c) $f(x) \neq g(x) \ \forall x \in A$.

Consider $f(x) = 3x^2 + 6$: R \to R and $g(x) = 3x^2 + 6$: C \to C, where R and C are the set of real numbers and complex numbers respectively. Now it is clear that D(f) \neq D(g). Therefore $f(x) \neq g(x)$.

Let us consider $A = \{1, 2, 3, 4\}$; $B = \{1, 2, 7, 8, 17, 18, 31, 32\}$ and the function $f : A \to B$ defined by $f = \{(1, 2), (2, 8), (3, 18), (4, 32)\}$. Consider another function $g : A \to N$ defined by $g(x) = 2x^2$. Now it is clear that $D(f) = \{1, 2, 3, 4\}$ with f(1) = 2, f(2) = 8, f(3) = 18, f(4) = 32.

Similarly $D(g) = A = \{1, 2, 3, 4\}$ with g(1) = 2, g(2) = 8, g(3) = 18, g(4) = 32. Therefore, we get

(a)
$$D(f) = \{1, 2, 3, 4\} = D(g)$$

(b)
$$R(f) = \{2, 8, 18, 32\} = R(g)$$
 and

(c)
$$f(x) = g(x) \ \forall x \in \{1, 2, 3, 4\}.$$

This implies f and g are equal. i.e., f = g.

أ.م عهود سعدي الحسني

3.TYPES OF FUNCTION

1. One-One Function:

A function $f: A \to B$ is said to be an one-one function or injective if $f(x_1) = f(x_2)$, then $x_1 = x_2$ for $x_1, x_2 \in A$. *i.e.*, $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$

Consider a function $f: Q \to Q$ defined by f(x) = 4x + 3; $x \in Q$.

Suppose that $f(x_1) = f(x_2)$ for $x_1, x_2 \in \mathbb{Q}$.

$$\Rightarrow \qquad 4x_1 + 3 = 4x_2 + 3$$

$$\Rightarrow \qquad 4x_1 = 4x_2$$

$$\Rightarrow$$
 $x_1 = x_2$

i.e., $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$. So, $f(x) = (4x + 3) : Q \rightarrow Q$ is One-One.

Consider another function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2; x \in \mathbb{R}$. Suppose that $f(x_1) = f(x_2)$

$$\Rightarrow$$
 $x_1^2 = x_2^2$

$$\Rightarrow x_1 = \pm x_2$$

$$x_1 \neq x_2$$

i.e., $f(x_1) = f(x_2) \Rightarrow x_1 \neq x_2$. It is also clear that f(1) = 1 = f(-1); but $1 \neq -1$. Therefore $f(x) = x^2$: $R \to R$; $x \in R$ is not One-One.

3.TYPES OF FUNCTION

2 Onto Function

A function $f: A \to B$ is said to be an onto function or surjective if for every $y \in B$ there exists at least one element $x \in A$ such that f(x) = y.

In other words a function $f: A \to B$ is said to be an Onto function if f(A) = B. *i.e.*, range of f is equal to co-domain of f.

Consider a function $f: \mathbb{Q} \to \mathbb{Q}$ defined by $f(x) = 4x + 3, x \in \mathbb{Q}$. Then for every $y \in \text{co-domain set}$

Q there exists $x = \frac{y-3}{4}$ belongs to domain set Q. Therefore, f(x) = 4x + 3 is an Onto function.

3 One-One Onto Function

A function $f: A \to B$ is said to be an one-one onto function or bijective if f is both one-one and onto function.

Consider a function $f: Q \to Q$ defined by f(x) = 4x + 3, $x \in Q$. From the above discussions it is clear that f(x) = 4x + 3, $x \in Q$ is an one-one onto function.

4 Into Function

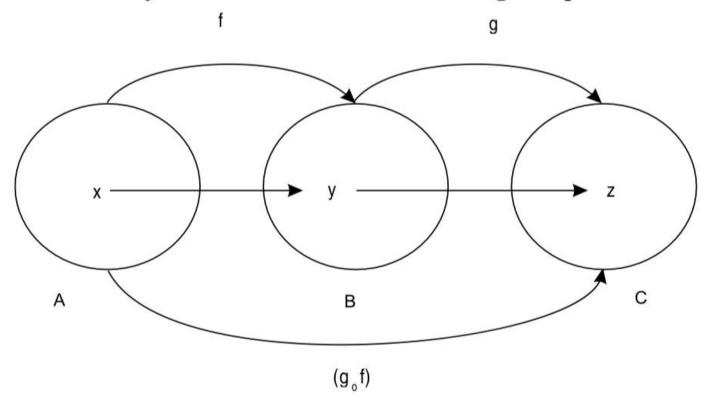
A function $f: A \to B$ is said to be an into function if for at least one $y \in B$ there exists no element $x \in A$ such that f(x) = y. In other words

A function $f: A \to B$ is said to be an into function if $f(A) \subset B$, *i.e.*, range of f is a proper subset of co-domain of f.

Consider a function $f: Q \to R$ defined by f(x) = x + 4, $x \in Q$. Hence, it is clear that for $y = \sqrt{3} \in R$ there exists no element $x = \sqrt{3} - 4 \in Q$. Therefore, $f(x) = x + 4 : Q \to R$ is an into function.

4 COMPOSITION OF FUNCTIONS

Let f be a function from the set A to the set B and g be a function from the set B to the set C. Then the composition of the functions f and g is given as $(g \circ f)$ or gf. This is a function from the set A to the set C. It may also be noted that domain of g is equal to co-domain of f.



As f is a function from the set A to the set B, then for every $x \in A$ there exists unique $y \in B$ such that y = f(x). Similarly g is a function from the set B to the set C, then for every $y \in B$ there exists unique $z \in C$ such that z = g(y). Again $(g \circ f)$ is a function from the set A to the set C, so we get $(g \circ f)(x) = z$ for all $x \in A$.

i.e.,
$$(g_0 f)(x) = g(y)$$

i.e.,
$$(g_0 f)(x) = g(f(x))$$

Consider two functions f(x) = 2x + 5 and g(x) = 3x.

Therefore $(g_0 f)(x) = g(f(x))$

$$= g (2x + 5)$$
$$= 3 (2x + 5)$$

i.e.,
$$(g_o f)(x) = 6x + 15$$

Similarly,
$$(f_o g)(x) = f(g(x))$$
$$= f(3x)$$

$$=2(3x)+5$$

i.e.,
$$(f_0 g)(x) = 6x + 5$$

4.composition of function

> Theorem

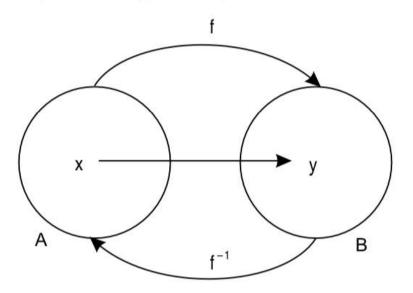
Let $f: A \to B$ and $g: B \to C$ be two functions. Then $(g_0 f)$ is one-one if both f and g are one-one and $(g_0 f)$ is onto if both f and g are onto.

>Theorem

If $f: A \to B$; $g: B \to C$ and $h: C \to D$, then $h_o(g_o f) = (h_o g)_o f$, *i.e.*, composition of functions holds the associative law.

5. INVERSE FUNCTION

Let $f: A \to B$ be a bijective function. Then the inverse of f, *i.e.* f^{-1} be a function from B to A. Since f is a function from A to B, for every $x \in A$, there exists unique $y \in B$ such that f(x) = y.



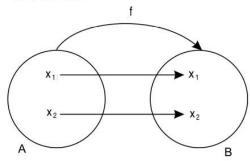
Since f^{-1} : B \to A for every $y \in$ B there exists unique $x \in$ A such that $f^{-1}(y) = x$, *i.e.*, $f^{-1}(f(x)) = x$.

أ.م عهود سعدي الحسني

SOME IMPORTANT FUNCTIONS

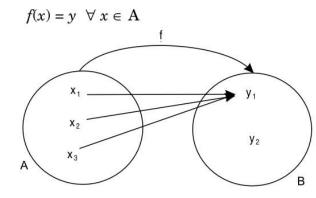
1 Identity Function

Let A be a set. The function $f: A \to A$ is said to be an identity function if for every $x \in A$, f(x) = x. Mathematically $f(x) = x \ \forall \ x \in A$.



2 Constant Function

The function $f: A \to B$ is said to be a constant function if for every $x \in A$ there exists unique $y \in B$ such that f(x) = y. Mathematically,



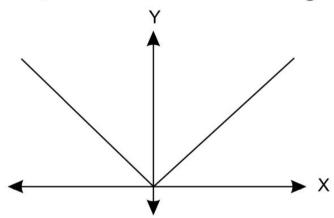
SOME IMPORTANT FUNCTIONS

3 Absolute Function

The absolute function or absolute value function f(x) = |x| is defined as

$$|x| = \begin{cases} x; & \text{if } x \ge 0 \\ -x; & \text{if } x < 0 \end{cases}$$

The graph of $f = \{(x, |x|) : x \in \mathbb{R}\}$ is shown in the following figure.



جامعة بغداد / كلية علوم الحاسوب

ا.م. عهود سعدي عبد الكريم الحسني الكورس الثاني

Discrete mathematics Matrix

Square matrices

A matrix with the same number of rows as columns is called square matrix . A square matrix with n rows and n columns is said to be order n ,and is called an n-square matrix.

Def: Main diagonal

The main diagonal or simply diagonal ,of asquare matrix A=[aij] consists of the numbers: a11,a22,a33,.....,ann.

Ex:The matrix
$$\begin{bmatrix} 1 & -2 & 0 \\ 0 & -4 & -1 \\ 5 & 3 & 2 \end{bmatrix}$$

Is asquare matrix of order 3 . The numbers along the main diagonal are 1,-4,2.

Def:(Trace of the matrix)

If $A=[a_{ij}]$ is an nxn matrix, then the trace of A which is denoted by tr(A) is defined as the sum of all elements on the main diagonal of A.

$$Tr(A)=\sum_{i=1}^{n} aii$$

Ex :The trace of the following matrix $\begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$ is 4

Trace of the matrix has the following properties:-

$$2)Tr(c A)=c Tr(A)$$

$$4)Tr(A^{T})=Tr(A)$$

Def:Identity matrix

The n-sqare matrix with 1's along the main diagonal and 0's else where , is called the unit matrix and will be denoted and defined by

$$I_n = \begin{bmatrix} 1 & 0 \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix}$$

Note: The unit matrix (I_n) plays the same role in matrix multiplication as the number 1 does in the usual multiplication of number, specifically

$$A I_n = I_n A = A$$

For any square matrix A.

Def:Diagonal matrix

Asquare matrix $A=[a_{ij}]$ for which every term off the main diagonal is zero ,that is $a_{ij}=0$ for $i\neq j$,is called diagonal matrix.

Ex:
$$G = \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix}$$
, $H = \begin{bmatrix} -3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$

Are diagonal matrices.

Def:Scalar matrix

A diagonal matrix $A=[a_{ij}]$ for which all terms on the main diagonal are equal, that is $a_{ii}=c$ for i=j and $a_{ii}=0$ for $i\neq j$, is called scalar matrix.

Ex: The following are scalar matrices

$$\mathsf{J} = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}, \ \ \mathsf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Def:Upper triangular matrix

A matrix $A=[a_{ij}]$ is called upper triangular matrix if $a_{ij}=0$ for i > j, and defined by

$$A = \begin{bmatrix} a11 & a12 \dots \dots & a1n \\ 0 & a22 \dots \dots & a2n \\ 0 & 0 & ann \end{bmatrix}$$

Ex:Suppose that
$$A = \begin{bmatrix} 7 & 5 & 12 \\ 0 & 1 & 18 \\ 0 & 0 & 6 \end{bmatrix}$$

Is an upper triangular matrix of order 3.

Def: Lower triangular matrix:

An n- square matrix $A=[a_{ij}]$ is called lower triangular matrix if $a_{ij}=0$ for i < j, and

$$\mbox{defined by } A = \begin{bmatrix} a11 & 0 \dots & 0 \\ a21 & a22 \dots & 0 \\ an1 & an2 \dots & ann \end{bmatrix}$$

Ex:Suppose that A=
$$\begin{bmatrix} 2 & 0 & 0 & 0 \\ 5 & 6 & 0 & 0 \\ 7 & 1 & 8 & 0 \\ 3 & 2 & 4 & 5 \end{bmatrix}$$

Is a lower triangular matrix of order 4.

Def:(Periodic matrix)

If A is an n-square matrix . Such that $A^{K+1}=A$ where k is positive integer , then A is called periodic matrix .

Ex:Suppose that
$$A = A = \begin{bmatrix} 1 & -2 & -6 \\ -3 & 2 & 9 \\ 2 & 0 & -3 \end{bmatrix}$$
, is a periodic matrix.

Def:(Idempotent matrix)

If A is an n-square matrix such that $A^2=A$, then Ais called idempotent matrix.

Ex:Suppose that
$$A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$$
, is idempotent matrix.

Def:(Nilpotent matrix)

If A is an n-square matrix such that $A^P=0$, where P is apositive integer ,then A is called nilpotent matrix.

Ex:Suppose that
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$$
 is nilpotent matrix of order 3..

Transpose of matrix:

If $A=[a_{ij}]$ is an m x n matrix, then the n x m matrix $A^T=[a_{ij}]^T$ where $a_{ij}=a_{ij}$,

($1 \le i \le m$, $1 \le j \le n$)is called the transpose of A ,thus the transpose of A is obtained by interchanging the rows and columns of A.

$$\begin{bmatrix} a1 & b1 & c1 \\ a2 & b2 & c2 \\ an & bn & cn \end{bmatrix} = \begin{bmatrix} a1 & a2 & an \\ b1 & b2 & c2 \\ c1 & c2 & cn \end{bmatrix}$$

The transpose operation on matrices satisfies the following properties:Theorem:1)(A+B) $^{T}=A^{T}+B^{T}$

2) $(KA)^T = K A^T$, for K ascalar.

$$3)(AB)^T=B^T.A^T$$

$$4)(A^T)^T=A$$

Def:(Symmetric matrix)

A matrix $A=[a_{ij}]$ is called symmetric if $A^T=A$.

That is ,A is symmetric if it is asquare matrix for which aij=aji

If A is symmetric, then the elements of A are symmetric with respect to the main diagonal of A.

Ex: The matrices
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$$
 $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

are symmetric.

Def:Skew symmetric matrix:

Amatrix $A=[a_{ij}]$ is called skew symmetric matrix if $A^T=-A$ that is ,A is skew symmetric matrix if and only if $a_{ij}=-a_{ji}$, for all i,j

$$Ex:A = \begin{bmatrix} 0 & 1 & 4 \\ -1 & 0 & -5 \\ -4 & 5 & 0 \end{bmatrix}, A is skew symmetric matrix.$$

Def:(Orthogonal matrix)

If A is an n- square matrix such that A $.A^T = A^T .A = In$, then A is called orthogonal matrix

Ex:A =
$$\begin{bmatrix} 2/3 & -2/3 & 1/3 \\ 2/3 & 1/3 & -2/3 \\ 1/3 & 2/3 & 2/3 \end{bmatrix}$$
 is an orthogonal matrix.

Notes:1)we can form powers of asquare matrix A by defining

$$A^2=A \cdot A A^3=A^2 A \dots$$
 and $A^0=I$

In general, If p and q be non negative integers and A be asquare matrix, then

$$2)(A^{p})^{q} = A^{pq}$$

3)If
$$AB = BA$$
, then $(AB)^p = A^p B^p$

4)(c A) p = c^p A p where c is ascalar.

2)We can form polynomials in A . That is ,for any polynomials

$$f(x)=a_0+a_1x+a_2x^2+....+a_nx^n$$

we define f(A) to be the matrix

$$f(A) = a_0 I + a_1 A + a_2 A^2 + \dots + a_n A^n$$

In the case that f(A) is the zero matrix, then A is said azero or root of the polynomial f(x).

Ex: Let A =
$$\begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix}$$
, then A²= $\begin{bmatrix} 7 & -6 \\ -9 & 22 \end{bmatrix}$

If $f(x) = x^2 + 3x - 10$, then

$$f(x) = \begin{bmatrix} 7 & -6 \\ -9 & 22 \end{bmatrix} + 3 \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix} + (-10) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Thus A is azero of the polynomial f(x).

Invertible matrices:

Asquare matrix A is said to be invertible if there exist amatrix B with the property that AB =BA=I(The identity matrix), such amatrix B is unique, it is called the inverse of A is denoted by A-1. Observe that B is the inverse of A if and only if A is the inverse of B. For example

Suppose that
$$A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}$

Then
$$AB = \begin{bmatrix} 6-5 & -10+10 \\ 3-3 & -5+6 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $BA = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Thus A and B are inverses.

<u>Note</u>:If is known that $AB = I_n$ if and only if $BA = I_n$, hence it is necessary to test only one product to determine whether two given matrices are inverse as in the following example.

Ex: A=
$$\begin{bmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{bmatrix}$$
 and B= $\begin{bmatrix} -11 & 2 & 2 \\ -4 & 0 & 1 \\ 6 & -1 & -1 \end{bmatrix}$ A.B= $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Thus the two matrices are invertible and are inverses of each other.

Note :-If A and B are two square matrices with the same size then

$$(A B)^{-1} = B^{-1}.A^{-1}$$

Determinants

To each n- square matrix $A = [a_{ij}]$ we assign aspecific real number called the determinant of A , denoted by det(A) or |A| where

The determinants of order one ,two and three are defined as follows:

3)
$$\begin{vmatrix} a11 & a12 & a13 \\ a21 & a22 & a23 \\ a31 & a32 & a33 \end{vmatrix} = \begin{vmatrix} a11 & a12 & a13 & a11 & a12 \\ a21 & a22 & a23 & a21 & a22 \\ a31 & a32 & a33 & a31 & a32 \end{vmatrix}$$

=a11 a22 a33 +a12 a23 a31+a13 a21 a32 - a13 a22 a31 -a11 a23 a32 -a12 a21 a33

$$2)\begin{vmatrix} 2 & 1 \\ -4 & 6 \end{vmatrix} = 12 + 4 = 16 \qquad 3)\begin{vmatrix} 2 & 1 & 3 \\ 4 & 6 & -1 \\ 5 & 1 & 0 \end{vmatrix} = -81$$

Properties of determinants:-

1)The determinants of matrix and its transpose are equal

That is $|A| = |A^T|$

Ex: Suppose that
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 1 & 2 \end{bmatrix}$$
, then $|A| = |A^T| = 6$

2)If matrix B result from matrix A by interchanging two rows (columns) of A ,then $\mid B\mid = -\mid A\mid$

Ex:
$$A = \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$$
, $|A| = \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix} = 4+3=7$

Suppose that
$$\mathsf{B} = \begin{bmatrix} 3 & 2 \\ 2 & -1 \end{bmatrix}$$
 ,then| $B \mid = - \mid \begin{array}{ccc} 3 & 2 \\ 2 & -1 \\ \end{array} \mid = -7$

3)If two rows (columns)of A are equal , then $\mid A \mid$ =0

Ex:A=
$$\begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & 7 \\ 1 & 2 & 3 \end{bmatrix}$$
, then $|A|=0$

4)If arow(column)of A consists entirely of zero ,then |A| = 0

Ex:A =
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 0 \end{bmatrix}$$
 = $|A| = 0$

5) If B is obtained from A by multiplying arow (column) of A by areal number

c, then
$$|B| = c |A|$$

Ex:Suppose that
$$B = \begin{bmatrix} 2 & -1 \\ 3 & 9 \end{bmatrix}$$
 and $A = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$

3.
$$|A| = 3.7 = 21$$

|B| = 21,0bserve that |B| = 3. |A| = 21.

6)If amatrix $A=[a_{ii}]$ is upper (lower) triangular matrix then

$$|A| = a_{11} a_{22} \dots a_{nn}$$

That is, the determinant of atriangular matrix is the product of the elements on the main diagonal.

Ex:A=
$$\begin{bmatrix} 7 & 5 & 12 \\ 0 & 1 & 18 \\ 0 & 0 & 6 \end{bmatrix}$$
, then $|A| = 7.1.6 = 42$

7)The determinant of aproduct of two matrices is the product of their determinants ,that is, $\mid AB\mid$ = $\mid A\mid$. $\mid B\mid$

Ex:let A =
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $\begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$, then $|A|$ =-2, $|B|$ =5

$$|A||B|$$
 =-2 .5 =-10,also

A.B =
$$\begin{bmatrix} 4 & 3 \\ 10 & 5 \end{bmatrix}$$
, | AB | = -| $\begin{bmatrix} 4 & 3 \\ 10 & 5 \end{bmatrix}$ = 20 - 30 = -10

Observe that , $\mid AB\mid = \mid A\mid . \mid B\mid =-10$

جامعة بغداد / كلية علوم الحاسوب

ا.م. عهود سعدي عبد الكريم الحسني الكورس الثاني

Discrete mathematics Matrix

Minors and cofactors of the elements of matrix

Let A=[a_{ij}] be an n x n matrix .let M_{ij} be the (n-1)x(n-1) sub matrix of A obtained by deleting the i-th row and j-th column of A .The determinants $\mid M_{ij} \mid$ is called minor of a_{ij}.

Ex: let A =
$$\begin{bmatrix} 5 & 2 & 1 \\ 0 & 4 & 3 \\ -1 & 7 & 8 \end{bmatrix}$$

We are disply the minors of an afrix A

The minor of a_{11} is $M_{11} = \begin{bmatrix} 4 & 3 \\ 7 & 8 \end{bmatrix}$

The minor of a_{12} is $|M_{12}| = \begin{bmatrix} 0 & 3 \\ -1 & 8 \end{bmatrix}$

The minor of a_{13} is $|M_{13}| = \begin{bmatrix} 0 & 4 \\ -1 & 7 \end{bmatrix}$

The minor of a_{21} is $| M_{21} | = \begin{bmatrix} 2 & 1 \\ 7 & 8 \end{bmatrix}$

The minor of a_{22} is $M_{22} = \begin{bmatrix} 5 & 1 \\ -1 & 8 \end{bmatrix}$

The minor of a_{23} is $|M_{23}| = \begin{bmatrix} 5 & 2 \\ -1 & 7 \end{bmatrix}$

The minor of a_{31} is $| M_{31} | = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$

The minor of a_{32} is $| M_{32} | = \begin{bmatrix} 5 & 1 \\ 0 & 3 \end{bmatrix}$

The minor of a_{33} is $| M_{33} | = \begin{bmatrix} 5 & 2 \\ 0 & 4 \end{bmatrix}$

Cofactors and the matrix of cofactors

The cofactor α_{ij} of a_{ij} is defined as α_{ij} = (-1)^{i+j} | M_{ij} | and the matrix of cofactors of a_{ii} is defined as

$$C(A)=[\alpha_{ij}]=\begin{bmatrix}\alpha 11 & \alpha 12 \dots & \alpha 1n\\ \alpha 21 & \alpha 22 \dots & \alpha 2n\\ \alpha n1 & \alpha n2 \dots & \alpha nn\end{bmatrix}$$

Ex: let A =
$$\begin{bmatrix} 3 & -2 & 1 \\ 5 & 6 & 2 \\ 1 & 0 & -3 \end{bmatrix}$$
, compute C(A)?

Sol .:- The cofactors of A are:

$$\alpha 11 = (-1)^{1+1} |M_{11}| = \begin{vmatrix} 6 & 2 \\ 0 & -3 \end{vmatrix} = -18 - 0 = -18$$

$$\alpha 12 = (-1)^{1+2} |M_{12}| = (-1)^3 \begin{vmatrix} 5 & 2 \\ 1 & -3 \end{vmatrix} = -[-15 - 2] = 17$$

$$\alpha 13 = (-1)^{1+3} |M_{13}| = (-1)^4 \begin{vmatrix} 5 & 6 \\ 1 & 0 \end{vmatrix} = 0 - 6 = -6$$

$$\alpha 21 = (-1)^{2+1} |M_{21}| = (-1)^3 \begin{vmatrix} -2 & 1 \\ 0 & -3 \end{vmatrix} = -[6 - 0] = -6$$

$$\alpha 22 = (-1)^{2+2} |M_{22}| = (-1)^4 \begin{vmatrix} 3 & 1 \\ 1 & -3 \end{vmatrix} = -9 - 1 = -10$$

$$\alpha 23 = (-1)^{2+3} |M_{23}| = (-1)^5 \begin{vmatrix} 3 & -2 \\ 1 & -0 \end{vmatrix} = -[0 + 2] = -2$$

$$\alpha 31 = (-1)^{3+1} |M_{31}| = (-1)^4 \begin{vmatrix} -2 & 1 \\ 6 & 2 \end{vmatrix} = -4 - 6 = -10$$

$$\alpha 32 = (-1)^{3+2} |M_{32}| = (-1)^5 \begin{vmatrix} 3 & 1 \\ 5 & 2 \end{vmatrix} = -[6 - 5] = -1$$

$$\alpha 33 = (-1)^{3+3} |M_{33}| = (-1)^6 \begin{vmatrix} 3 & -2 \\ 5 & 6 \end{vmatrix} = 18 + 10 = 28$$
So C(A) =
$$\begin{bmatrix} -18 & 17 & -6 \\ -6 & -10 & -2 \\ -10 & -1 & 28 \end{bmatrix}$$

Def: adjoint matrix:

Let A = $[a_{ij}]$ be an nx n matrix. The nx n matrix, adj (A), called adjoint of A, is the matrix whose i, j th element is the cofactor α_{ij} of a_{ij} , that is adj(A)= $[C(A)]^T$

Thus adj (A)=
$$\begin{bmatrix} \alpha 11 & \alpha 21 \dots & \alpha n1 \\ \alpha 12 & \alpha 22 \dots & \alpha n2 \\ \alpha 1n & \alpha 2n \dots & \alpha nn \end{bmatrix}$$

Ex:from the previous example ,the adj(A) of amatrix A

$$A = \begin{bmatrix} 3 & -2 & 1 \\ 5 & 6 & 2 \\ 1 & 0 & -3 \end{bmatrix} , adj (A) = [C (A)]^{T} = \begin{bmatrix} -18 & -6 & -10 \\ 17 & -10 & -1 \\ -6 & -2 & 28 \end{bmatrix}$$

Notes:1)If A and B are n x n matrix, then adj (AB) = adj (A). adj (B)

2) The magnitude of any determinant for agiven matrix is define by multiplying the elements of any row (column) by its cofactors, that is,

|
$$A \mid = \sum_{k=1}^{n} \alpha i k \alpha$$
 i k =a i1 α i1 + a i 2 α i 2 +......+a i n α i n [expansion of | $A \mid$ about the i-th row]

| $A \mid = \sum_{k=1}^{n} akj \alpha k j$ =a 1j α 1j + a 2j α 2j +.....+a nj α nj [expansion of | $A \mid$ about the j-th column]

Ex:find the value determinant of A = $\begin{bmatrix} 2 & -1 & 3 \\ 5 & 1 & -2 \\ 1 & 2 & -1 \end{bmatrix}$ by using

$$|A| = \sum_{k=1}^{n} aik \alpha i k$$

Sol. :
$$|A| = a_{11} \alpha_{11} + a_{12} \alpha_{12} + a_{13} \alpha_{13}$$

 $= a_{11} \cdot (-1)^{1+1} |M11| + a_{12} \cdot (-1)^{1+2} |M12| + a_{13} \cdot (-1)^{1+3} \cdot |M13|$
 $= 2 \cdot (-1)^2 \cdot \begin{vmatrix} 1 & -2 \\ 2 & -1 \end{vmatrix} + (-1) \cdot (-1)^3 \cdot \begin{vmatrix} 5 & -2 \\ 1 & -1 \end{vmatrix} + 3 \cdot (-1)^4 \cdot \begin{vmatrix} 5 & 1 \\ 1 & 2 \end{vmatrix}$
 $= 2[-1+4]+[-5+2]+3[10-1]$
 $= 6-3+27=30$

Note:If $A=[a_{ij}]$ is an $n \times n$ matrix, then

ai1
$$\alpha$$
k1 + ai2 α k2 +.....+ ain α kn = $|A|$ =0 for i \neq k
or
a1j α 1k + a2j α 2k+.....+ anj α nk = $|A|$ =0 for j \neq k

Ex:find the value of determinant of A = $\begin{bmatrix} 2 & -1 & 3 \\ 5 & 1 & -2 \\ 1 & 2 & -1 \end{bmatrix}$ by using

$$|A| = \sum_{k=1}^{n} aik \alpha i k$$

Sol. :
$$|A| = a_{11} \alpha_{11} + a_{12} \alpha_{12} + a_{13} \alpha_{13}$$

 $= a_{11} \cdot (-1)^{1+1} | M11| + a_{12} \cdot (-1)^{1+2} | M12| + a_{13} \cdot (-1)^{1+3} \cdot | M13|$
 $= 2 \cdot (-1)^2 \cdot \begin{vmatrix} 1 & -2 \\ 2 & -1 \end{vmatrix} + (-1) \cdot (-1)^3 \cdot \begin{vmatrix} 5 & -2 \\ 1 & -1 \end{vmatrix} + 3 \cdot (-1)^4 \cdot \begin{vmatrix} 5 & 1 \\ 1 & 2 \end{vmatrix}$
 $= 2[-1+4]+[-5+2]+3[10-1]$
 $= 6-3+27=30$

Note:If $A=[a_{ij}]$ is an $n \times n$ matrix, then

ai1
$$\alpha$$
k1 + ai2 α k2 +.....+ ain α kn = $|A|$ =0 for i \neq k or a1j α 1k + a2j α 2k+.....+ anj α nk = $|A|$ =0 for j \neq k

Apractical method for finding the inverse of n x n non- singular matrix

المصفوفة الشاذة-غير المعتلة(Singular matrix)

An n x n matrix A is non –singular if and only if $|A| \neq 0$.

Otherwise , amatrix A is singular if and only if $\mid A \mid = 0$

In other words ,An n x n matrix A is called non –singular (or invertible)if there exist an n x n matrix B such that $A B= B A=I_n$.

The matrix B is called an inverse of A, if there exists no such matrix B, then A is called singular(or non-invertible)

Properties of the inverse:

1)If A is a non singular matrix, then A-1 is non -singular and (A-1)-1=A

2)If A and B are non -singular matrices ,then AB is non -singular and

$$(AB)^{-1}=B^{-1}A^{-1}$$

3)If A is a non singular matrix ,then $(A^T)^{-1}=(A^{-1})^T$

4)If A is anon – singular matrix ,and $|A| \neq 0$ then

$$|A^{-1}| = \frac{1}{|A|}$$

Notes :1)If A and B be n x n matrices and if AB is singular ,then A or B must be singular.

2)If A is a non –singular matrix ($\mid A \mid \neq 0$) and A B =AC then B=C.

We will illustrate the following method for finding A-1 of non —singular matrix:-

(معكوس مصفوفة قطرية غير شاذة):The inverse of anon –singular diagonal matrix

Suppose that A is an n x n diagonal matrix

$$A = \begin{bmatrix} k1 & 0 & 0 \\ 0 & k2 & 0 \\ 0 & 0 & kn \end{bmatrix}$$

Then A-1=
$$\begin{bmatrix} \frac{1}{k1} & 0 & 0 \\ 0 & \frac{1}{k2} & 0 \\ 0 & 0 & \frac{1}{kn} \end{bmatrix}$$

2)The inverse of an n x n matrix by using determinants and the cofactors matrix

If A is an n x n matrix, then the inverse of A is defined as

$$A^{-1} = \frac{1}{|A|} .adj(A)$$

Note: If A = [aij] is an n x n matrix, then A (adj(A)) = (adj(A)) A = |A|. In

Linear Systems

Consider the linear n equations in n- unknowns:

$$a_{11}x_1+a_{12}x_2+....+a_{1n}x_n=b_1$$
 $a_{21}x_1+a_{22}x_2+....+a_{2n}x_n=b_2$
:
 $a_{n1}x_1+a_{n2}x_2+...+a_{nn}x_n=b_n$

now, define the following matrices

$$A = \begin{bmatrix} a11 & a12 \dots & a1n \\ a21 & a22 \dots & a2n \\ an1 & an2 \dots & ann \end{bmatrix}, \ X = \begin{bmatrix} x1 \\ x2 \\ xn \end{bmatrix} \quad , B = \begin{bmatrix} b1 \\ b2 \\ bn \end{bmatrix}$$

The linear system can be written in matrix form as AX=B

The matrix A is called the coefficient matrix of the linear system.

Alinear system of the form

$$a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n = 0$$
 $a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n = 0$
:
:
:
:
 $a_{n1} x_1 + a_{n2} x_2 + \dots + a_{nn} x_n = 0$

is called ahomogeneous system . We can also write in amatrix form as AX=0

We have two methods to solve the linear system:

1)By using the inverse of coefficient matrix

$$AX = B$$

$$A^{-1}(A X)=A^{-1}B$$

$$I^nX=X=A^{-1}B(If \mid A \mid \neq 0)$$

We have an uniqe solution.

Ex:Solve the following linear system by using the inverse of coefficients matrix

$$x1+x2+x3=8$$

$$2x2+3x3=24$$

$$5x1+5x2+x3=8$$

The linear system can be written in matrix form as

$$X = A^{-1}B$$
, Then

$$A^{-1} = \frac{1}{|A|}$$
 .adj(A)

Therefore x1=0,x2=0,x3=8

Second(Cramer's –rule): If A is an $n \times n$ matrix ,then we can solve the linear system (1) AX=B

If $|A| \neq 0$, then the system has the unique solution

$$x_1 = \frac{|A1|}{|A|}$$
, $x_2 = \frac{|A2|}{|A|}$, $x_n = \frac{|A1|}{|A|}$

where Ai is the matrix obtained from A by replacing the i th column of A by B

.....

EX: consider the linear system

$$-2x1 + 3x2 - x3 = 1$$

$$x1 + 2x2 - x3 = 4$$

-2x1 - x2 + x3 = -3, find the solution of the linear system by using Cramer's rule?

SOL. |
$$A = -2$$