### **Computer Science Department** **Computer Networks** **Third Class** **Second Course** By: Asst.Lec. Ibtisam A. Taqi Asst.Lec. Zaid H. Jabir Dr. Imad J. Mohammed (Supervisor) ### **COMPUTER NETWORKS** LAB1: Network Components By: Asst.Lec. Ibtisam A. Taqi Asst.Lec. Zaid H. Jabir Dr. Imad J. Mohammed (Supervisor) University of Baghdad - College of Science **Computer Department** Third Class ## **Network Components** #### Devices - PC, Router => Host - Hub, Switch #### Medium - Wire - Copper - Fiber optics - Twisted pair - STP (Shielded) - UTP (Unshielded) - Wireless ## Copper wire ## Fiber Optics ### Twisted Pair Cable **Shielded Twisted Pair (STP)** **Unshielded Twisted Pair (UTP)** ## **UTP Cables Connection Types** - Straight forward bet. dissimilar devices - PC, Hub - PC, Switch - Router, Switch #### Crossover - PC, PC - Router, Router – similar devices - Switch , Switch \_ - Hub, Switch - PC, Router - Rollover consists of RJ-45 on one end & DB-9 on the other end. **RJ45** A - A B - B 568A 568B Crossover Cable A - B B - A ### **Network Devices** #### • **PC** - we can connect 2 devices directly and this type of connection is called Point to Point( PtP ) - Considered a host - **Switch** : level2 - a distributor for connecting 3 or more devices - NOT considered a host - **Router**: level3 - Is a device used to separate devices into subnets - Considered a host ## Addressing • Physical Address = MAC (Media Access Control) MAC Address: 6 bytes (always unique) $\rightarrow$ in layer 2 • Logical Address = IP (Internet Protocol) IP Address $\rightarrow$ in layer 3 - > IPv4 - > IPv6 ### IPv4 - 32 Bits => 4 bytes, separated by dot (.), unique during connection - Byte = 8 bits = > 8\*4 = 32 bits - Each byte written in decimal - Consist of 2 parts - NetID (subnet) - HostID (for host) ### **IP Address Classes** | Address<br>Class | 1st octet<br>range<br>(decimal) | 1st octet bits<br>(green bits do<br>not change) | Network(N) and<br>Host(H) parts of<br>address | Default subnet<br>mask (decimal<br>and binary) | Number of possible networks and hosts per network | |------------------|---------------------------------|-------------------------------------------------|-----------------------------------------------|------------------------------------------------|--------------------------------------------------------| | А | 1-127** | 00000001-<br>01111111 | N.H.H.H | 255.0.0.0 | 128 nets (2^7)<br>16,777,214 hosts per<br>net (2^24-2) | | В | 128-191 | 10000000-<br>10111111 | N.N.H.H | 255.255.0.0 | 16,384 nets (2^14)<br>65,534 hosts per net<br>(2^16-2) | | С | 192-223 | 11000000-<br>11011111 | N.N.N.H | 255.255.255.0 | 2,097,150 nets (2^21)<br>254 hosts per net<br>(2^8-2) | | D | 224-239 | 11100000-<br>11101111 | NA (multicast) | | | | E | 240-255 | 11110000-<br>11111111 | NA (experimental) | | | <sup>\*\*</sup> All zeros (0) and all ones (1) are invalid hosts addresses. ### **Subnet Mask** is used to let devices differentiate between NetID and HostID #### Class A N.H.H.H /8 Subnet mask = 255.0.0.0 #### Class B N.N.H.H /16 Subnet mask = 255.255.0.0 #### Class C N.N.N.H /24 Subnet mask = 255.255.255.0 There are 2 IP addresses which can **NOT** be used in addressing a host • Subnet IP (always 0) For example: 192.168.10.0 • Broadcast IP (always 255) For example: 192.168.10.255 ## Default Gateway is used to connect the subnet with the other networks It is usually the IP of the router Ex. we have the following configuration for subnet 1 - Subnet IP: 192.168.10.0 - Subnet mask: **255.255.255.0** - Default gateway: **192.168.10.1** ## Check my Computer IP # Thank You ### **COMPUTER NETWORKS** LAB2: IP Configuration By: Asst.Lec. Ibtisam A. Taqi Asst.Lec. Zaid H. Jabir Dr. Imad J. Mohammed (Supervisor) University of Baghdad - College of Science **Computer Department** **Third Class** #### TCP/IP ### (Transmission Control Protocol/Internet Protocol) TCP/IP Control Data Transmission over the Internet **Service Processing** #### **Service Delivery** Layer 4 Layer 3 Layer 2 Layer 1 ### Ethernet - is a technology used in LAN (Local Area Network) - Related to Data link and physical layer (wired connection), throughput and Data transfer rate (speed) . - Throughput: The amount of data that was successfully delivered over a specified period of time. - Data Transfer Rate: The amount of data transmitted over a specified period of time. Ex./10Mbps => Data Transfer Rate =10 Mega bit per second. ## **Ethernet Types** #### • Traditional Ethernet = Ethernet - $\gt$ 10Base-T => (T= Twisted-pair) - > 2 pair UTP - ➤ Half-Duplex - Uses Hub - ➤ Data Transfer Rate is 10 Mbps #### • Fast Ethernet - ➤ 100Base-TX (2 pair UTP) - > 100Base-T4 (4 pair UTP) - ➤ 100Base-FX (Fiber Optics) - > Full-Duplex, Uses switch - ➤ Data Transfer Rate is 100 Mbps #### • Giga Ethernet - ➤ 1000 Base-X (Fiber Optics) - ➤ 1000Base-T (Twisted Pair) - ➤ Data Transfer Rate is 1000 Mbps = 1Gbps - $\Rightarrow$ other (10,40,100) Giga Ethernet - Each model is backward compatible ## **IP** Configuration - Assign IP Address to the Host => (GUI) - Static (manually) - Dynamic (automatically) - DHCP = Dynamic Host Configuration Protocol - Check IP - GUI (windows) - CLI (cmd) ### **GUI** #### **GUI => Graphical User Interface** - Desktop => Network Connection - Start => Network Connection - Start => Search => Network Connection - Start => control panel => Network and Internet => - Network and Sharing Center - Click on internet access icon => Open Network and Sharing Center ### Check IP address #### **CLI => Command Line Interface** - using ipconfig command to check IP, subnet mask and gateway - Start => Run => cmd => ipconfig - cmd abbreviated to command ``` Cit. C:\Windows\system32\cmd.exe C:\Users\IbtisamAlSaffar>ipconfig Windows IP Configuration Wireless LAN adapter Local Area Connection× 3: Media State . . . . . . . . . . . . . . . . . . Media disconnected Connection-specific DNS Suffix . : Wireless LAN adapter Wi-Fi: Connection-specific DNS Suffix . : Link-local IPv6 Address . . . . . : fe80::94e7:4194:3e9d:6b11%6 IPv4 Address. . . . . . . . . . . . . 192.168.0.103 Default Gateway . . . . . . . . : 192.168.0.1 Ethernet adapter Bluetooth Network Connection: Media State . . . . . . . . . . . . . . . . . . Media disconnected Connection-specific DNS Suffix . : Ethernet adapter Ethernet: ``` ### **DHCP** #### Dynamic Host Configuration Protocol - Assign IP automatically to PCs from the pool - The DHCP server uses IP addresses that are available in the DHCP pool - we can exclude some addresses from the whole range pool to aviod conflict - We don't need the whole range (2- 254) because we may need to assign static IP addresses to special devices (Printers, NAS, Servers etc) - Lease time is the time given by DHCP server to a device to hold specific information - These information include: IP address, Subnet mask, default gateway - CISCO default time is 1 day - When lease expires, new information are assigned to that device # Thank You ### **COMPUTER NETWORKS** LAB3: Check PCs Connectivity By: Asst.Lec. Ibtisam A. Taqi Asst.Lec. Zaid H. Jabir Dr. Imad J. Mohammed (Supervisor) University of Baghdad - College of Science Computer Department Third Class ### IP Configuration - Assign IP Address to the Host => (GUI) - Static (manually) - Dynamic (automatically) - DHCP = Dynamic Host Configuration Protocol - Check IP - GUI (start > Network Connections) - CLI (start > run > cmd > ipconfig) ## IPs Types - Private (LAN) - Public (WAN) - Google.com - Yahoo.com - Youtube.com - Facebook.com - Uobaghdad.edu.iq - Host communicate direct with Internet: Server, Router. ### **Private Addresses** | CLASS | /? | IP | RANGE | MASK | |-------|-------------------|-------------------------|----------------------------------|-------------| | A | /8 | 10.0.0.0 | 10.255.255.255 | 255.0.0.0 | | В | /12 | 172.16.0.0 – 172.31.0.0 | 172.16.255.255 – 172.31. 255.255 | 255.240.0.0 | | С | C /16 192.168.0.0 | | 192.168.255.255 | 255.255.0.0 | # **Check PCs Connectivity** • The **ping** command is used to test the ability of the source computer to reach a specified destination computer. The ping command is usually used as a simple way verify that a computer can communicate over the network with another computer or network device. - Domain Name - Ping /? => Help - **ping** [-**n** count] [-**t**][-1 size] [-**f**] destination # Ping - ICMP (Internet Control Message Protocol) send messages to the destination to check connectivity. - The default **number of packets** sent by ping differs depending on the system - we are using - Windows is 4 - Linux is infinite - CISCO is 5 - The echo **reply** represent the delay Start => run => cmd => ping /? (Help) ### **Example:** Start => run => cmd - Ping 172.217.169.174 - Ping www.google.com ``` C:\Windows\system32\cmd.exe Cit. Microsoft Windows [Version 6.3.9600] (c) 2013 Microsoft Corporation. All rights reserved. C:\Users\IbtisamAlSaffar>ping google.com Pinging google.com [172.217.169.174] with 32 bytes of data: Reply from 172.217.169.174: bytes=32 time=60ms TTL=48 Reply from 172.217.169.174: bytes=32 time=53ms TTL=48 Reply from 172.217.169.174: bytes=32 time=53ms TTL=48 Ping statistics for 172.217.169.174: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 53ms, Maximum = 60ms, Average = 54ms C:\Users\IbtisamAlSaffar)ping 172.217.169.174 Pinging 172.217.169.174 with 32 bytes of data: Reply from 172.217.169.174: bytes=32 time=53ms TTL=48 Reply from 172.217.169.174: bytes=32 time=53ms TTL=48 Reply from 172.217.169.174: bytes=32 time=54ms TTL=48 Reply from 172.217.169.174: bytes=32 time=53ms TTL=48 Ping statistics for 172.217.169.174: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 53ms, Maximum = 54ms, Average = 53ms ``` TTL: Time-To-Live is one of the information in the L3 header - It is a counter with an initial value (that depends on the system) - The default value in Windows is 128 - Each router that the packets goes through decreases the TTL by 1 and the packet(s) is dropped if TTL reaches zero. - This is done to prevent an infinite loop in L3 layer - For example: if a packet passes 2 routers then it will become 126 - -n [number] => number of requests(packets) to send. - For example: ping -n 6 <u>172.217.169.174</u> => send 6 packets to 172.217.169.174 ``` C:\Users\IbtisamAlSaffar>ping -n 6 172.217.169.174 Pinging 172.217.169.174 with 32 bytes of data: Reply from 172.217.169.174: bytes=32 time=52ms TTL=48 Reply from 172.217.169.174: bytes=32 time=52ms TTL=48 Reply from 172.217.169.174: bytes=32 time=54ms TTL=48 Reply from 172.217.169.174: bytes=32 time=52ms TTL=48 Reply from 172.217.169.174: bytes=32 time=52ms TTL=48 Reply from 172.217.169.174: bytes=32 time=52ms TTL=48 Reply from 172.217.169.174: bytes=32 time=55ms TTL=48 Ping statistics for 172.217.169.174: Packets: Sent = 6, Received = 6, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 52ms, Maximum = 55ms, Average = 52ms ``` - -t to send an infinite number of packets - CTRL-C to stop - We can't use -n with it ``` C:\Users\IbtisamAlSaffar>ping google.com -t Pinging google.com [172.217.169.142] with 32 bytes of data: Reply from 172.217.169.142: bytes=32 time=54ms TTL=48 Reply from 172.217.169.142: bytes=32 time=57ms TTL=48 Reply from 172.217.169.142: bytes=32 time=53ms TTL=48 Reply from 172.217.169.142: bytes=32 time=54ms TTL=48 Reply from 172.217.169.142: bytes=32 time=53ms TTL=48 Reply from 172.217.169.142: bytes=32 time=54ms TTL=48 Reply from 172.217.169.142: bytes=32 time=55ms TTL=48 Reply from 172.217.169.142: bytes=32 time=55ms TTL=48 Reply from 172.217.169.142: bytes=32 time=53ms TTL=48 Reply from 172.217.169.142: bytes=32 time=53ms TTL=48 Reply from 172.217.169.142: bytes=32 time=53ms TTL=48 Reply from 172.217.169.142: bytes=32 time=60ms TTL=48 Reply from 172.217.169.142: bytes=32 time=374ms TTL=48 Ping statistics for 172.217.169.142: Packets: Sent = 13, Received = 13, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 53ms, Maximum = 374ms, Average = 79ms Control-C ``` - -1 => change the size of the send packets - The default size is 32 bytes (without using this option) - This also increase the time required to send and receive packets ``` C:\Users\IbtisamAlSaffar>ping -1 64 172.217.169.142 Pinging 172.217.169.142 with 64 bytes of data: Reply from 172.217.169.142: bytes=64 time=61ms TTL=48 Reply from 172.217.169.142: bytes=64 time=54ms TTL=48 Reply from 172.217.169.142: bytes=64 time=56ms TTL=48 Reply from 172.217.169.142: bytes=64 time=53ms TTL=48 Ping statistics for 172.217.169.142: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 53ms, Maximum = 61ms, Average = 56ms ``` - MTU = Maximum Transmission Unit which defines the maximum size of bytes that can be send without fragmentation, MTU depends on the physical network. In Ethernet MTU is 1500 byte - Ping <u>www.yahoo.com</u> –1 1500 ``` C:\Users\IbtisamAlSaffar>ping www.yahoo.com -1 1500 Pinging new-fp-shed.wg1.b.yahoo.com [87.248.98.7] with 1500 bytes of data: Reply from 87.248.98.7: bytes=1500 time=118ms TTL=46 Reply from 87.248.98.7: bytes=1500 time=111ms TTL=46 Reply from 87.248.98.7: bytes=1500 time=119ms TTL=46 Reply from 87.248.98.7: bytes=1500 time=111ms TTL=46 Ping statistics for 87.248.98.7: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 111ms, Maximum = 119ms, Average = 114ms ``` - Fragmentation is the process in which we broke the information into smaller pieces and the combining them at the destination. - Ping <u>www.yahoo.com</u> -1 1500 -f => don't fragment ``` C:\Users\IbtisamAlSaffar>ping www.yahoo.com -1 1500 -f Pinging new-fp-shed.wg1.b.yahoo.com [87.248.98.8] with 1500 bytes of data: Packet needs to be fragmented but DF set. Ping statistics for 87.248.98.8: Packets: Sent = 4, Received = 0, Lost = 4 (100% loss), ``` ### **Trace Route** - Tracert destination-IP - Follows the route from source to destination - This form is slow because it register the hostname and IP, to make it faster we can -d (ignore hostname and print only the IP) And suppose we are working at the device which has the IP (192.168.10.2) If we use the following command **tracert** -d 192.168.20.5 then we will get the following output: | Tracin | g ro | oute | to 192 | .168 | 3.20.5 | over | а | maximum | of | 30 | hops | |--------|------|------|--------|------|--------|------|---|---------|------|-------|------| | | | | | | | | | | | | - | | 1 | 2 | ms | 3 | ms | | 2 ms | | 192. | 168. | .10 | .1 | | 2 | 75 | ms | 83 | ms | 8 | 8 ms | | 192. | 168. | . 106 | 0.2 | | 3 | 73 | ms | 79 | ms | 9 | 3 ms | | 192. | 168. | . 20 | . 5 | # Thank You # **COMPUTER NETWORKS** LAB4: Network Services By: Asst.Lec. Ibtisam A. Taqi Asst.Lec. Zaid H. Jabir Dr. Imad J. Mohammed (Supervisor) University of Baghdad - College of Science **Computer Department** Third Class ### TCP/IP Model ### (Transmission Control Protocol/Internet Protocol) **Service Request** **Service Delivery** TCP/IP Control **Data Transmission over** the Internet (Service Processing) Layer 4 Layer 3 De-Capsulation Layer 2 Layer 1 # **Network Services** - ➤ Web Browser - > E-Mail - > File sharing - Instant messaging - Online game - Printing - > DNS - Voice over IP - Video on demand - Video telephony , etc.... ### Port no. - ⇒ Port no. are used to identify which service the server provide to the requesting client - $\Rightarrow$ For each service => port number - $\Rightarrow$ In transport layer - $\Rightarrow$ The port number uses 16 bits => (2^16) => The range = (0 65,535) | Port no. Range | Port Types | |----------------|--------------------------| | 0 - 1023 | well known applications | | 1024 - 49151 | registered ports | | 49152 - 65,535 | Dynamic or private ports | # Well Known Applications | Service | Port no. | Protocol | |--------------------------------------------------------------|----------|--------------------------------------| | Files: Transfer Files over the Internet | 20/21 | File Transfer Protocol (FTP) | | Remotely access: Establish a secure connection bet. a remote | 22 | Secure Shell (SSH) | | server and computer (encryption), create/delete/browse/ | | | | transfer files-folders, start/stop service. | | | | Remotely access: Establish a connection between a remote | 23 | Terminal network (Telnet) | | server and computer (manage device remotely by CLI) | | | | Email: Deliver email messages successfully and securely | 25 | Simple Mail Transfer Protocol (SMTP) | | Name System: Link the host names to their respective IP | 53 | Domain Name System (DNS) | | Addresses | | | | Host Configuration: assign IP Address to the Hosts | 67/68 | Dynamic Host Configuration Protocol | | automatically | | (DHCP) | | Web: Establish a connection between the webpages and the | 80 | Hypertext Transfer Protocol (HTTP) | | browser | | | | Web: Establish a secure connection between webpages and | 443 | Hypertext Transfer Protocol Secure | | browser (encryption) | | (HTTPS => HTTP+SSL) | # **DNS** - Domain Name System - It's a service allowed to use Domain Name or Hostname instead of IP address - more than 1 DNS server => - Balance the load of the network - Speed - Prevent the halt of the network if one DNS server crashes Ex./ Primary DNS server address: 8.8.8.8 Alternate DNS server address: 8.8.4.4 # **DNS** - Ex./ Ping <u>www.Google.com</u> or Ping <u>172.217.17.228</u> | Domain | Stand for | |--------|--------------| | com | commercial | | edu | education | | org | organization | | gov | government | | info | information | | net | network | ### DNS service => DNS server => DNS protocol | DNS Record Types | | | |------------------|---------------------------------|--| | Record | Description | | | NS: | Nameserver record | | | A: | Address record | | | HINFO: | Host Information record | | | MX: | Mail Exchange record | | | TXT: | Text record | | | CNAME: | Canonical Name record | | | SOA: | Start of Authority record | | | RP: | Responsible Person record | | | PTR: | Point of inverse lookups record | | | SRV: | Service location record | | ## **NSLOOKUP** - Domain Name (Host name) => IPs - nslookup <hostname> <server> Ex./ nslookup www.google.com DNS Server address: 8.8.8.8 or 8.8.4.4 ``` C:\Users\IbtisamAlSaffar>nslookup www.google.com Server: dns.google Address: 8.8.4.4 Non-authoritative answer: Name: www.google.com Addresses: 2a00:1450:4025:401::68 142.250.27.103 142.250.27.105 142.250.27.106 142.250.27.106 142.250.27.104 ``` ``` C:\Users\IbtisamAlSaffar>nslookup yahoo.com Server: dns.google Address: 8.8.8.8 Non-authoritative answer: Name: yahoo.com Addresses: 2001:4998:c:1023::5 2001:4998:58:1836::11 2001:4998:58:1836::10 2001:4998:44:41d::4 2001:4998:c:1023::4 2001:4998:44:41d::3 98.138.219.232 98.137.246.7 72.30.35.10 98.138.219.231 72.30.35.9 98.137.246.8 ``` ``` C:\Users\IbtisamAlSaffar>nslookup www.facebook.com dns.google Server: Address: 8.8.4.4 Non-authoritative answer: star-mini.c10r.facebook.com Name: Addresses: 2a03:2880:f11c:8083:face:b00c:0:25de 31.13.92.36 Aliases: www.facebook.com C:\Users\IbtisamAlSaffar>nslookup uobaghdad.edu.iq Server: dns.google Address: 8.8.4.4 Non-authoritative answer: uobaghdad.edu.ig Name: Addresses: 2606:4700:3034::ac43:bba8 2606:4700:3033::681b:a698 2606:4700:3036::681b:a798 104.27.167.152 104.27.166.152 172.67.187.168 ``` # Display DNS Server IP #### 1. GUI $\Rightarrow$ Network connection (Windows) #### 2. CLI $\Rightarrow$ Start => Run => cmd => ipconfig ## **IPCONFIG** - Display information about your PC during connect to the net like ip, mask, default gateway and DNS, etc.. - ipconfig /? => Help - ipconfig - ipconfig /all - ipconfig /release - To release the IP address back to DHCP pool - ipconfig /renew - To get a new IP address from the DHCP pool ### ipconfig /all ``` Wireless LAN adapter Wi-Fi: Connection-specific DNS Suffix . : Description . . . . . . . . . : Intel(R) Dual Band Wireless-AC 3160 Physical Address. . . . . . . . . . . . 2C-6E-85-68-0D-DF DHCP Enabled. . . . . . . . . . . Yes Autoconfiguration Enabled . . . . : Yes Link-local IPv6 Address . . . . . : fe80::94e7:4194:3e9d:6b11%6(Preferred) IPv4 Address. . . . . . . . . . . . . . . . . 192.168.0.104(Preferred) Default Gateway . . . . . . . . . . . 192.168.0.1 DHCP Server . . . . . . . . . . : 192.168.0.1 DHCPU6 IAID . . . . . . . . . . . . . . 103575173 DNS Servers . . . . . . . . . . . . . . 8.8.4.4 8.8.8.8 192.168.100.1 NetBIOS over Tcpip. . . . . . . : Enabled ``` - Windows caches the DNS servers information - ipconfig /displaydns => display the contents of DNS cache - ipconfig /flushdns => delete the contents of DNS cache - **Socket** is the name given to the [IP + port no.] - IP: port - Ex./ 192.168.10.10:80 => web browser service (http) # Thank You # **COMPUTER NETWORKS** LAB5: MAC Address By: Asst.Lec. Ibtisam A. Taqi Asst.Lec. Zaid H. Jabir Dr. Imad J. Mohammed (Supervisor) University of Baghdad - College of Science **Computer Department** Third Class # Hub - plug and play - 4,8,16 ports - Layer 1 device => Physical Layer (OSI model) - Not intelligent device : Direct Data to all Hosts not to a specific destination - Hub Types: - Passive - Active : Repeater # Switch - Layer 2 device => Data Link Layer **or** multilayer => router and switch at the same time - Smart device: Direct message to the dest. Host (MAC Table) - Ethernet Switch (LAN Switch) Categories: - Fixed: fixed number of ports (not flexible, cheap) - Unmanaged => plug and play - Managed => Partially M. (smart switch) and Fully M. (enterprise switch) Ex./ 5,8,10,16, 24,28, 48,52 ports - Modular: add expansion modules (flexible, expensive) Ex./ expansion modules are application-specific (such as firewall, wireless or network analysis) and modules for additional interfaces, power supplies, or cooling fans Multiple standalone => as one switch - Switching Methods - Store and forward: S. & F. frame after checking error (CRC) - Cut through (direct frame forward without check error ) - Symmetric and Asymmetric switching ports (same or different Data transfer Rate) - PoE and not PoE (Power over Ethernet) - not POE => port => transfer Data only ex./printer - POE => port => transfer Data + Power to the device ex./camera ### Transmission Types - Half Duplex (port => send or receive data at a time) - Full Duplex (port => send and receive at the same time) #### Communication Types - UniCast => 1:1 => 1 sender : 1 receiver - BroadCast => 1:All => 1 sender : All receivers - MultiCast => 1:M => 1 sender : many receivers ### **MAC Address** - Physical address (Hardware Address) - Stands for Media Access Control - Used in layer 2 (Data Link Layer) in OSI model - 6 bytes = 48 bits, each byte 2 digit, digit = 4 bit, Hexadecimal - separated by a hyphen(-) or a colon(:) or a dot(.) - For Example: Broadcast MAC Add. - FF:FF:FF:FF:FF:FF or FF-FF-FF-FF or FFFF.FFF.FFFF or FFFFF.FFFFFF or FFFFFFFFF or FFFFFFFFFFFF #### MAC Address is a Network Card number consist of 2 parts as: - OUI : Organization Unique Identifier - NIC : Network Interface Card (Controller) - LAN Card = Ethernet NIC - Wireless NIC (Wireless Connection ex./ Wi-Fi) - Display Mac Address - GUI (windows) => Network Connection - > CLI => Start => Run => cmd => ipconfig /all # MAC Table - Switch => Switch Table or MAC Table or - **CAM** (Content Addressable Memory) **Table** - CAM Table: Mac address for each device + port no. - Fa = Fastethernet 0/1 .. Fastethernet 0/24 Data Transfer Rate for the port=10/100 Mbps Slot no. Port no. Click on Switch1=> CLI sh mac add = show mac address-table # **ARP** - Address Resolution Protocol (Layer 2 protocol) - It has an ARP cache (Table) which contains the MACs of all devices in a subnet - The cache can be either filled - Statically (manually) - Dynamically (by the ARP) - The source sends an ARP Request Broadcast MAC Add. FFFF.FFFF.FFFF (it is picked by all the devices) with specific dest. IP - The device which has that IP replies with an ARP reply (Unicast, because it is one device which replies) to return it's MAC add. - arp -a => display the ARP table - **arp** -**d** => deletes the ARP table - arp -s <IP address> <MAC address> - => To set a MAC address manually for a device - Ex:/ arp -s 192.168.10.12 B2-FD-0F-11-A2-C3 - => Add the Host IP add. 192.168.10.12 with - it's MAC Add. B2-FD-0F-11-A2-C3 to the - ARP cache statically (manually) - PC0 => ping PC1,PC2,PC3 - PC0 => arp -a #### MAC Add. Computer Networks Lab. / Third Class # Thank You Computer Networks Lab. / Third Class ## **COMPUTER NETWORKS** LAB6: Netstat (Network Statistics) By: Asst.Lec. Ibtisam A. Taqi Asst.Lec. Zaid H. Jabir Dr. Imad J. Mohammed (Supervisor) University of Baghdad - College of Science **Computer Department** Third Class # **Transport Layer** - is end-to-end connection between the sender and receiver before transmitting any data - The major protocols are: - TCP: Transmission Control Protocol - UDP: User Datagram Protocol - TCP Connection - > Open Connection => Established (3 way handshake) - SYN (Synchronize) - SYN + ACK (Acknowledgment) - ACK - > Transfer Data - ➤ End Connection => Closed #### **Open Connection** #### **Reset Connection** #### **Close Connection** | TCP | UDP | |----------------------------------------------------------|----------------| | Reliable | Unreliable | | Connection oriented (3 way handshake) | Connectionless | | Slower (Delay) | Speed | | Acknowledgment | - | | Sequence no. (reorder: sort segments in the right order) | - | | Windowing (Flow Control) => Dest. Window size | - | | Error Handling ( resend if lost ) | - | | High Overhead | Low Overhead | | Text | VoIP, Video | ## Netstat #### **Netstat = Network Statistics** - => display *very* detailed information about network active connections, protocol-specific statistics - => help troubleshoot certain kinds of networking issues. - Proto => protocol that is used to establish the connection (either TCP or UDP) ``` Socket => IP : Port no ``` - Local Address => The IP address and port number of the source computer try to establish a connection. - Foreign Address => The IP address and port number of the destination (remote) computer. - State => connection state : - Established => The session is established between the source and destination - Close\_wait => The remote end has shut down, waiting for the socket to close. - Time\_wait => The socket is waiting after close to handle packets still in the network. - Netstat /? - Netstat - **Netstat** -a => Displays all active connections (protocol, local add., foreign add., state) - **Netstat** -e => Displays ethernet statistics Socket => IP : Port no Socket => Domain name : Protocol name Socket => Domain name : Port no Socket => IP: Protocol name #### Loopback Address: 127.0.0.1 Netstat –n Socket => IP : Port no - ⇒ Displays addresses and port numbers in numerical form . - $\Rightarrow$ ex./ http => 80, https => 443 • Netstat –p proto => display information about a specific protocol ``` C:\Users\IbtisamAlSaffar>netstat -p tcp Active Connections Proto Local Address Foreign Address State Ibtisam: 7824 TCP 127.0.0.1:1096 ESTABLISHED Ibtisam: 1096 TCP 127.0.0.1:7824 ESTABLISHED 5.62.54.42:https 192.168.0.105:1032 ESTABLISHED TCP TCP 192.168.0.105:1174 prg16-007:http ESTABLISHED ``` - Netstat –s - => Displays statistics for : - > IP, IPv6 ( Packet ) - ICMP, ICMPv6 ( Message ) - > TCP, TCPv6, UDP, and UDPv6 (Segment) Ex./ send, received (discard, delivered), error • Netstat –f => display fully Qualified domain name for foreign addresses ``` C:\Users\IbtisamAlSaffar>netstat -f Active Connections Proto Local Address Foreign Address State Ibtisam:7824 127.0.0.1:1096 TCP ESTABLISHED 127.0.0.1:7824 Ibtisam:1096 TCP ESTABLISHED 5.62.54.42:https TCP 192.168.0.105:1032 ESTABLISHED TCP 192.168.0.105:1174 prg16-007.ff.avast.com:http ESTABLISHED ``` - ⇒ Netstat –s –p tcp => statistic about TCP protocol - $\Rightarrow$ Netstat -s -p tcp -f => same as above with fully domain name for foreign addresses | C:\Users\IbtisamAlSaffar>netstat -s -p tcp | | | | | | | | |---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|--| | TCP Stat | istics for IPv4 | | | | | | | | Passiv<br>Failed<br>Reset<br>Curren<br>Segmen<br>Segmen | Opens Connection Attempts Connections Conn | = 1721<br>= 9<br>= 178<br>= 604<br>= 4<br>= 177476<br>= 177285<br>= 3810 | | | | | | | Active C | onnections | | | | | | | | TCP<br>TCP | Local Address<br>127.0.0.1:2735<br>127.0.0.1:3285<br>192.168.0.105:3310<br>192.168.0.105:3329 | Foreign Address Ibtisam:3285 Ibtisam:2735 5.62.54.89:http fra02-002:http | State ESTABLISHED ESTABLISHED ESTABLISHED ESTABLISHED | | | | | | C:\Users | \IbtisamAlSaffar>netst | at -s -p tcp -f | | | | |----------|------------------------|----------------------|----------------------|--|--| | TCP Stat | istics for IPv4 | | | | | | Active | Opens | = 1721 | | | | | Passiv | e Opens | = 9 | | | | | Failed | Connection Attempts | = 178 | | | | | Reset | Connections | = 604 | | | | | Curren | t Connections | = 4 | | | | | Segmen | ts Received | = 177486 | | | | | Segmen | ts Sent | = 177292 | | | | | Segmen | ts Retransmitted | = 3812 | | | | | Active C | onnections | | | | | | | | | | | | | Proto | Local Address | Foreign Address | State | | | | TCP | 127.0.0.1:2735 | Ibtisam:3285 | ESTABLISHED | | | | TCP | 127.0.0.1:3285 | Ibtisam:2735 | ESTABLISHED | | | | TCP | 192.168.0.105:3310 | 5.62.54.89:http | ESTABLISHED | | | | TCP | 192.168.0.105:3329 | fra02-002.ff.avast.d | com:http ESTABLISHED | | | # Thank You ## **COMPUTER NETWORKS** LAB7: Wireshark By: Asst.Lec. Ibtisam A. Taqi Asst.Lec. Zaid H. Jabir Dr. Imad J. Mohammed (Supervisor) University of Baghdad - College of Science **Computer Department** **Third Class** # Wireshark - => used for packet capture (PCAP) with detailed information about the connection and protocols - Reading headers contents - => It used by - > Attackers - Network Admins - > Educational Purposes - => To protect data we can use - > Encryption - > Hashing (to prevent changing the data) #### Wireshark.org => download Capturing from Wi-Fi File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help | | F 🕹 📃 | ■ 0 0 | Q <u>II</u> | |--|-------|-------|-------------| |--|-------|-------|-------------| | [ Ap | pply a display filter <c< th=""><th>trl-/&gt;</th><th></th><th></th><th></th></c<> | trl-/> | | | | |------|------------------------------------------------------------------------------------|---------------------------|------------------------------|----------|-------------------------------------------------------------------------| | No. | Time | Source | Destination | Protocol | Length Info | | | 337.925299 | 192.168.0.1 | 192.168.0.109 | ICMP | 74 Echo (ping) reply id=0x0001, seq=71/18176, ttl=64 (request in 1073) | | | 337.989448 | fe80::94e7:4194:3e9d:6b11 | ff02::1:2 | DHCPv6 | 149 Solicit XID: 0x33a320 CID: 00010001222000b51c3947b69bed | | | 338.927053 | 192.168.0.109 | 192.168.0.1 | ICMP | 74 Echo (ping) request id=0x0001, seq=72/18432, ttl=128 (reply in 1077) | | | 338.928245 | 192.168.0.1 | 192.168.0.109 | ICMP | 74 Echo (ping) reply id=0x0001, seq=72/18432, ttl=64 (request in 1076) | | | 339.942565 | 192.168.0.109 | 192.168.0.1 | ICMP | 74 Echo (ping) request id=0x0001, seq=73/18688, ttl=128 (reply in 1079) | | | 339.943998 | 192.168.0.1 | 192.168.0.109 | ICMP | 74 Echo (ping) reply id=0x0001, seq=73/18688, ttl=64 (request in 1078) | | | 341.047962 | 192.168.0.109 | 192.168.0.255 | NBNS | 92 Name query NB ISATAP<00> | | | 341.048478 | IntelCor_68:0d:df | Broadcast | ARP | 42 Who has 192.168.0.1? Tell 192.168.0.109 | | | 341.049076 | fe80::94e7:4194:3e9d:6b11 | ff02::1:3 | LLMNR | 86 Standard query 0xd541 A isatap | | | 341.049691 | 192.168.0.109 | 224.0.0.252 | LLMNR | 66 Standard query 0xd541 A isatap | | | 341.052244 | TendaTec_3e:b9:50 | <pre>IntelCor_68:0d:df</pre> | ARP | 42 192.168.0.1 is at c8:3a:35:3e:b9:50 | | | 341.473933 | fe80::94e7:4194:3e9d:6b11 | ff02::1:3 | LLMNR | 86 Standard query 0xd541 A isatap | | | 341.474264 | 192.168.0.109 | 224.0.0.252 | LLMNR | 66 Standard query 0xd541 A isatap | | | 341.786330 | 192.168.0.109 | 192.168.0.255 | NBNS | 92 Name query NB ISATAP<00> | | | 342.537032 | 192.168.0.109 | 192.168.0.255 | NBNS | 92 Name query NB ISATAP<00> | | | 342.911333 | 5.45.58.217 | 192.168.0.109 | TCP | 60 [TCP Keep-Alive] 80 → 1033 [ACK] Seq=2144 Ack=605 Win=74 Len=0 | | | 342.911603 | 192.168.0.109 | 5.45.58.217 | TCP | 54 [TCP Keep-Alive ACK] 1033 → 80 [ACK] Seq=605 Ack=2145 Win=62 Len=0 | | | 343.005258 | 192.168.0.109 | 185.107.47.111 | UDP | 145 32304 → 6881 Len=103 | | | 343.113125 | 185.107.47.111 | 192.168.0.109 | UDP | 319 6881 → 32304 Len=277 | <sup>▶</sup> Frame 1: 145 bytes on wire (1160 bits), 145 bytes captured (1160 bits) on interface \Device\NPF\_{1CC7EC8E-2A7E-4686-9E6C-C1C3E00F8D5B}, id 0 Ethernet II, Src: IntelCor\_68:0d:df (2c:6e:85:68:0d:df), Dst: TendaTec\_3e:b9:50 (c8:3a:35:3e:b9:50) <sup>▶</sup> Internet Protocol Version 4, Src: 192.168.0.109, Dst: 124.155.3.55 <sup>▶</sup> User Datagram Protocol, Src Port: 32304, Dst Port: 6881 Data (103 bytes) • **Filter** => The filter bar can be used to filter results depending on a certain criteria #### - Protocol - tcp, udp, arp, icmp, dns, http - !dns =>!: Display all protocol information except DNS - http or icmp - tcp.port==80 , tcp.port==80 | udp.port==80 => | : or - !(tcp.port == 53) #### - IP Address - Source & destination => ip.addr == 192.168.0.109 - Source => ip.src == 192.168.0.109 - Destination => ip.dst == 192.168.0.109 #### - IP Address and Protocol • ip.src == 192.168.0.109 and icmp - Ex./ Filter by ICMP protocol: Display All Information about ICMP protocol - From My PC => Ping 192.168.0.1 - We can follow the stream of a specific packet by right clicking on it and choosing (follow stream) Ex./ Display All Information about ICMP protocol for the source ip (My - PC) = 192.168.0.109 | | ip.src==192.168.0.109 and icmp | | | | | | | | | |----|--------------------------------|---------------|-------------|------------|--------|-----------------------|--------------------------|----------------------|------| | No | Time | Source | Destination | Protocol L | ength. | Info | | | | | | 8034 50.737889 | 192.168.0.109 | 192.168.0.1 | ICMP | 74 | 4 Echo (ping) request | id=0x0001, seq=79/20224, | ttl=128 (reply in 80 | 035) | | | 8186 51.753434 | 192.168.0.109 | 192.168.0.1 | ICMP | 74 | 4 Echo (ping) request | id=0x0001, seq=80/20480, | ttl=128 (reply in 83 | 187) | | | 8348 52.772448 | 192.168.0.109 | 192.168.0.1 | ICMP | 74 | 4 Echo (ping) request | id=0x0001, seq=81/20736, | ttl=128 (reply in 83 | 350) | | | 8508 53.784877 | 192.168.0.109 | 192.168.0.1 | ICMP | 74 | 4 Echo (ping) request | id=0x0001, seq=82/20992, | ttl=128 (reply in 89 | 511) | #### Ex./ Filter by DNS protocol: Display All Information about DNS protocol | dn | s | | | | | |----------|-------|-----------|---------------|---------------|----------| | No. | | Time | Source | Destination | Protocol | | | 2496 | 14.778089 | 192.168.0.109 | 192.168.100.1 | DNS | | <b>↓</b> | 2503 | 14.823038 | 192.168.100.1 | 192.168.0.109 | DNS | | | 4687 | 28.422297 | 192.168.0.109 | 192.168.100.1 | DNS | | | 4701 | 28.516179 | 192.168.0.109 | 192.168.100.1 | DNS | | | 4704 | 28.525668 | 192.168.100.1 | 192.168.0.109 | DNS | | | 10161 | 65.023067 | 192.168.0.109 | 192.168.100.1 | DNS | | | 10164 | 65.034319 | 192.168.100.1 | 192.168.0.109 | DNS | #### Ex./Display All Information about DNS protocol for the source ip (MY - PC) = 192.168.0.109 | | ip.src==192.168.0.109 and dns | | | | | | | |----|-------------------------------|-----------|---------------|---------------|----------|--------|-------------------------------------------| | No | | Time | Source | Destination | Protocol | Length | Info | | | 2496 | 14.778089 | 192.168.0.109 | 192.168.100.1 | DNS | 77 | Standard query 0x5dbe A beacons3.gvt2.com | | • | 4687 | 28.422297 | 192.168.0.109 | 192.168.100.1 | DNS | 70 | Standard query 0x7be5 A google.com | | | 4701 | 28.516179 | 192.168.0.109 | 192.168.100.1 | DNS | 70 | Standard query 0x7be5 A google.com | | | 10161 | 65.023067 | 192.168.0.109 | 192.168.100.1 | DNS | 75 | Standard query 0x2b56 A ssl.gstatic.com | # Thank You Computer Networks Lab. / Third Class ## **COMPUTER NETWORKS** ## LAB8 By: Asst.Lec. Ibtisam A. Taqi Asst.Lec. Zaid H. Jabir Dr. Imad J. Mohammed (Supervisor) University of Baghdad - College of Science **Computer Department** Third Class #### Q1\ Draw the net. and then do the following: - 1. Assign IPs to the Host **statically**. - 2. Display the IP address for PC1 using <a href="mailto:ipconfig">ipconfig</a> command - 3. Check connectivity between PC0 and PC2 by using ping command bidirectional Q2/ using (**Ping**) command to check your PC connectivity with the following website: - **Telegram.com** with (5) echo messages. - Youtube.com with (6) echo requests, (64) byte of data (message length) - Facebook.com with infinity messages until stopped by using CTRL+C Q3/ using (Tracert) command to check route from your PC to - Uobaghdad.edu.iq - Google.com - Twitter.com Note: Using Ctrl+C to stop Q4/By using Packet Tracer design the Topology below then check connectivity between PC0 & PC5 using (ping) command as follows: - Send 6 echo request. - Send infinity echo request. # Thank you ## **COMPUTER NETWORKS** ### LAB9 By: Asst.Lec. Ibtisam A. Taqi Asst.Lec. Zaid H. Jabir Dr. Imad J. Mohammed (Supervisor) University of Baghdad - College of Science **Computer Department** **Third Class** Q1/ Display IPs allocated for the following websites by using (nslookup) command: - Uobaghdad.edu.iq - Yahoo.com Q2/ Display the DNS servers addresses by using CLI after do the following steps:- - ipconfig /release - ipconfig /renew - ipconfig /all Q3/Using <u>Packet Tracer</u> to Design the topology below and then - assign IPs to the Hosts - assign DNS server address for each Host - show DNS server address for PC1 by using ipconfig /all #### Q4/ Use CMD of your PC to answer the following: - How to display the **options of arp** command - Display the ARP table for your PC using arp –a Q5/ Design the topology below using Packet **Tracer** and then answer the following: - 1- Ping from PC1 to PC0, PC2, PC3 - 2- Display PC1-MAC address using ipconfig /all - 3- Show PC1-ARP table using arp -a. Explain the arp table briefly - 4- Delete PC1-ARP table using arp -d - 5- Enter to the switch (by one click), then Display switch-MAC address using sh mac add #### **Note That:** If you want to run arp -d to delete the arp table for your PC, you must do the following steps: Start > Search > cmd > *Right click on* Command Prompt > Run as administrator # Thank you # COMPUTER NETWORKS LAB10 By: Asst.Lec. Ibtisam A. Taqi Asst.Lec. Zaid H. Jabir Dr. Imad J. Mohammed (Supervisor) University of Baghdad - College of Science **Computer Department** Third Class #### Q1/ Use CMD of your PC to Run and explain the following commands: - Netstat /? - Netstat –a - Netstat -n - Netstat -f #### Q2/ Run and explain the main differences between the following commands: - Netstat -s and Netstat -p TCP - Netstat -s -p ICMP and Netstat -s -p IP - Netstat -s -p TCP and Netstat -s -p TCP -f Q3/Use Wireshark to capture your network traffic and answer the following: #### Display all information about: - All websites that your PC browse - All your PC requests - All responses reached to your PC - All your PC request messages - All reply messages to your PC - All services request by your PC except domain name service #### Q4/ What are the differences between: - TCP and UDP header - TCP.port==443 and !(TCP.port==443) - (ip.src==your PC-IP and dns or http) and - (ip.dst== your PC-IP and !(dns or http)) # Thank you