Computer Science Department

Computer Networks

Third Class

Second Course

By:

Asst.Lec. Ibtisam A. Taqi

Asst.Lec. Zaid H. Jabir

Dr. Imad J. Mohammed (Supervisor)

COMPUTER NETWORKS

LAB1: Network Components

By:

Asst.Lec. Ibtisam A. Taqi

Asst.Lec. Zaid H. Jabir

Dr. Imad J. Mohammed (Supervisor)

University of Baghdad - College of Science

Computer Department

Third Class

Network Components

Devices

- PC, Router => Host
- Hub, Switch

Medium

- Wire
 - Copper
 - Fiber optics
 - Twisted pair
 - STP (Shielded)
 - UTP (Unshielded)
- Wireless

Copper wire

Fiber Optics

Twisted Pair Cable

Shielded Twisted Pair (STP)

Unshielded Twisted Pair (UTP)

UTP Cables Connection Types

- Straight forward bet. dissimilar devices
 - PC, Hub
 - PC, Switch
 - Router, Switch

Crossover

- PC, PC
- Router, Router –

similar devices

- Switch , Switch _
- Hub, Switch
- PC, Router
- Rollover

consists of RJ-45 on one end & DB-9 on the other end.

RJ45

A - A B - B 568A 568B

Crossover Cable

A - B B - A

Network Devices

• **PC**

- we can connect 2 devices directly and this type of connection is called Point to Point(PtP)
- Considered a host
- **Switch** : level2
 - a distributor for connecting 3 or more devices
 - NOT considered a host
- **Router**: level3
 - Is a device used to separate devices into subnets
 - Considered a host

Addressing

• Physical Address = MAC (Media Access Control)

MAC Address: 6 bytes (always unique) \rightarrow in layer 2

• Logical Address = IP (Internet Protocol)

IP Address \rightarrow in layer 3

- > IPv4
- > IPv6

IPv4

- 32 Bits => 4 bytes, separated by dot (.), unique during connection

- Byte = 8 bits = > 8*4 = 32 bits
- Each byte written in decimal
- Consist of 2 parts
 - NetID (subnet)
 - HostID (for host)

IP Address Classes

Address Class	1st octet range (decimal)	1st octet bits (green bits do not change)	Network(N) and Host(H) parts of address	Default subnet mask (decimal and binary)	Number of possible networks and hosts per network
А	1-127**	00000001- 01111111	N.H.H.H	255.0.0.0	128 nets (2^7) 16,777,214 hosts per net (2^24-2)
В	128-191	10000000- 10111111	N.N.H.H	255.255.0.0	16,384 nets (2^14) 65,534 hosts per net (2^16-2)
С	192-223	11000000- 11011111	N.N.N.H	255.255.255.0	2,097,150 nets (2^21) 254 hosts per net (2^8-2)
D	224-239	11100000- 11101111	NA (multicast)		
E	240-255	11110000- 11111111	NA (experimental)		

^{**} All zeros (0) and all ones (1) are invalid hosts addresses.

Subnet Mask

is used to let devices differentiate between NetID and HostID

Class A

N.H.H.H /8

Subnet mask = 255.0.0.0

Class B

N.N.H.H /16

Subnet mask = 255.255.0.0

Class C

N.N.N.H /24

Subnet mask = 255.255.255.0

There are 2 IP addresses which can **NOT** be used in addressing a host

• Subnet IP (always 0)

For example: 192.168.10.0

• Broadcast IP (always 255)

For example: 192.168.10.255

Default Gateway

is used to connect the subnet with the other networks

It is usually the IP of the router

Ex. we have the following configuration for subnet 1

- Subnet IP: 192.168.10.0
- Subnet mask: **255.255.255.0**
- Default gateway: **192.168.10.1**

Check my Computer IP

Thank You

COMPUTER NETWORKS

LAB2: IP Configuration

By:

Asst.Lec. Ibtisam A. Taqi

Asst.Lec. Zaid H. Jabir

Dr. Imad J. Mohammed (Supervisor)

University of Baghdad - College of Science

Computer Department

Third Class

TCP/IP

(Transmission Control Protocol/Internet Protocol)

TCP/IP Control
Data Transmission over
the Internet

Service Processing

Service Delivery

Layer 4

Layer 3

Layer 2

Layer 1

Ethernet

- is a technology used in LAN (Local Area Network)
- Related to Data link and physical layer (wired connection), throughput and Data transfer rate (speed) .
- Throughput: The amount of data that was successfully delivered over a specified period of time.
- Data Transfer Rate: The amount of data transmitted over a specified period of time.

Ex./10Mbps => Data Transfer Rate =10 Mega bit per second.

Ethernet Types

• Traditional Ethernet = Ethernet

- \gt 10Base-T => (T= Twisted-pair)
- > 2 pair UTP
- ➤ Half-Duplex
- Uses Hub
- ➤ Data Transfer Rate is 10 Mbps

• Fast Ethernet

- ➤ 100Base-TX (2 pair UTP)
- > 100Base-T4 (4 pair UTP)
- ➤ 100Base-FX (Fiber Optics)
- > Full-Duplex, Uses switch
- ➤ Data Transfer Rate is 100 Mbps

• Giga Ethernet

- ➤ 1000 Base-X (Fiber Optics)
- ➤ 1000Base-T (Twisted Pair)
- ➤ Data Transfer Rate is 1000 Mbps = 1Gbps
- \Rightarrow other (10,40,100) Giga Ethernet
- Each model is backward compatible

IP Configuration

- Assign IP Address to the Host => (GUI)
 - Static (manually)
 - Dynamic (automatically)
 - DHCP = Dynamic Host Configuration Protocol
- Check IP
 - GUI (windows)
 - CLI (cmd)

GUI

GUI => Graphical User Interface

- Desktop => Network Connection
- Start => Network Connection
- Start => Search => Network Connection
- Start => control panel => Network and Internet =>
 - Network and Sharing Center
- Click on internet access icon => Open Network and Sharing Center

Check IP address

CLI => Command Line Interface

- using ipconfig command to check IP, subnet mask and gateway
- Start => Run => cmd => ipconfig
- cmd abbreviated to command


```
Cit.
                           C:\Windows\system32\cmd.exe
C:\Users\IbtisamAlSaffar>ipconfig
Windows IP Configuration
Wireless LAN adapter Local Area Connection× 3:
  Media State . . . . . . . . . . . . . . . . . . Media disconnected
  Connection-specific DNS Suffix . :
Wireless LAN adapter Wi-Fi:
  Connection-specific DNS Suffix . :
  Link-local IPv6 Address . . . . . : fe80::94e7:4194:3e9d:6b11%6
  IPv4 Address. . . . . . . . . . . . . 192.168.0.103
  Default Gateway . . . . . . . . : 192.168.0.1
Ethernet adapter Bluetooth Network Connection:
  Media State . . . . . . . . . . . . . . . . . . Media disconnected
  Connection-specific DNS Suffix . :
Ethernet adapter Ethernet:
```

DHCP

Dynamic Host Configuration Protocol

- Assign IP automatically to PCs from the pool
- The DHCP server uses IP addresses that are available in the DHCP pool
- we can exclude some addresses from the whole range pool to aviod conflict
- We don't need the whole range (2- 254) because we may need to assign static IP addresses to special devices (Printers, NAS, Servers etc)

- Lease time is the time given by DHCP server to a device to hold specific information
 - These information include: IP address, Subnet mask, default gateway
 - CISCO default time is 1 day
 - When lease expires, new information are assigned to that device

Thank You

COMPUTER NETWORKS

LAB3: Check PCs Connectivity

By:

Asst.Lec. Ibtisam A. Taqi

Asst.Lec. Zaid H. Jabir

Dr. Imad J. Mohammed (Supervisor)

University of Baghdad - College of Science

Computer Department

Third Class

IP Configuration

- Assign IP Address to the Host => (GUI)
 - Static (manually)
 - Dynamic (automatically)
 - DHCP = Dynamic Host Configuration Protocol
- Check IP
 - GUI (start > Network Connections)
 - CLI (start > run > cmd > ipconfig)

IPs Types

- Private (LAN)
- Public (WAN)
 - Google.com
 - Yahoo.com
 - Youtube.com
 - Facebook.com
 - Uobaghdad.edu.iq
 - Host communicate direct with Internet: Server, Router.

Private Addresses

CLASS	/?	IP	RANGE	MASK
A	/8	10.0.0.0	10.255.255.255	255.0.0.0
В	/12	172.16.0.0 – 172.31.0.0	172.16.255.255 – 172.31. 255.255	255.240.0.0
С	C /16 192.168.0.0		192.168.255.255	255.255.0.0

Check PCs Connectivity

• The **ping** command is used to test the ability of the source computer to reach a specified destination computer. The ping command is usually used as a simple way verify that a computer can communicate over the network with another computer or network device.

- Domain Name

- Ping /? => Help
- **ping** [-**n** count] [-**t**][-1 size] [-**f**] destination

Ping

- ICMP (Internet Control Message Protocol) send messages to the destination to check connectivity.
- The default **number of packets** sent by ping differs depending on the system
- we are using
 - Windows is 4
 - Linux is infinite
 - CISCO is 5
- The echo **reply** represent the delay

Start => run => cmd => ping /? (Help)

Example:

Start => run => cmd

- Ping 172.217.169.174
- Ping www.google.com

```
C:\Windows\system32\cmd.exe
Cit.
Microsoft Windows [Version 6.3.9600]
(c) 2013 Microsoft Corporation. All rights reserved.
C:\Users\IbtisamAlSaffar>ping google.com
Pinging google.com [172.217.169.174] with 32 bytes of data:
Reply from 172.217.169.174: bytes=32 time=60ms TTL=48
Reply from 172.217.169.174: bytes=32 time=53ms TTL=48
Reply from 172.217.169.174: bytes=32 time=53ms TTL=48
Ping statistics for 172.217.169.174:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 53ms, Maximum = 60ms, Average = 54ms
C:\Users\IbtisamAlSaffar)ping 172.217.169.174
Pinging 172.217.169.174 with 32 bytes of data:
Reply from 172.217.169.174: bytes=32 time=53ms TTL=48
Reply from 172.217.169.174: bytes=32 time=53ms TTL=48
Reply from 172.217.169.174: bytes=32 time=54ms TTL=48
Reply from 172.217.169.174: bytes=32 time=53ms TTL=48
Ping statistics for 172.217.169.174:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 53ms, Maximum = 54ms, Average = 53ms
```

TTL: Time-To-Live is one of the information in the L3 header

- It is a counter with an initial value (that depends on the system)
- The default value in Windows is 128
- Each router that the packets goes through decreases the TTL by 1 and the packet(s) is dropped if TTL reaches zero.
- This is done to prevent an infinite loop in L3 layer
- For example: if a packet passes 2 routers then it will become 126

- -n [number] => number of requests(packets) to send.
- For example:

ping -n 6 <u>172.217.169.174</u> => send 6 packets to 172.217.169.174

```
C:\Users\IbtisamAlSaffar>ping -n 6 172.217.169.174

Pinging 172.217.169.174 with 32 bytes of data:
Reply from 172.217.169.174: bytes=32 time=52ms TTL=48
Reply from 172.217.169.174: bytes=32 time=52ms TTL=48
Reply from 172.217.169.174: bytes=32 time=54ms TTL=48
Reply from 172.217.169.174: bytes=32 time=52ms TTL=48
Reply from 172.217.169.174: bytes=32 time=52ms TTL=48
Reply from 172.217.169.174: bytes=32 time=52ms TTL=48
Reply from 172.217.169.174: bytes=32 time=55ms TTL=48
Ping statistics for 172.217.169.174:
    Packets: Sent = 6, Received = 6, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 52ms, Maximum = 55ms, Average = 52ms
```

- -t to send an infinite number of packets
 - CTRL-C to stop
 - We can't use -n with it

```
C:\Users\IbtisamAlSaffar>ping google.com -t
Pinging google.com [172.217.169.142] with 32 bytes of data:
Reply from 172.217.169.142: bytes=32 time=54ms TTL=48
Reply from 172.217.169.142: bytes=32 time=57ms TTL=48
Reply from 172.217.169.142: bytes=32 time=53ms TTL=48
Reply from 172.217.169.142: bytes=32 time=54ms TTL=48
Reply from 172.217.169.142: bytes=32 time=53ms TTL=48
Reply from 172.217.169.142: bytes=32 time=54ms TTL=48
Reply from 172.217.169.142: bytes=32 time=55ms TTL=48
Reply from 172.217.169.142: bytes=32 time=55ms TTL=48
Reply from 172.217.169.142: bytes=32 time=53ms TTL=48
Reply from 172.217.169.142: bytes=32 time=53ms TTL=48
Reply from 172.217.169.142: bytes=32 time=53ms TTL=48
Reply from 172.217.169.142: bytes=32 time=60ms TTL=48
Reply from 172.217.169.142: bytes=32 time=374ms TTL=48
Ping statistics for 172.217.169.142:
    Packets: Sent = 13, Received = 13, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 53ms, Maximum = 374ms, Average = 79ms
Control-C
```

- -1 => change the size of the send packets
 - The default size is 32 bytes (without using this option)
 - This also increase the time required to send and receive packets

```
C:\Users\IbtisamAlSaffar>ping -1 64 172.217.169.142

Pinging 172.217.169.142 with 64 bytes of data:
Reply from 172.217.169.142: bytes=64 time=61ms TTL=48
Reply from 172.217.169.142: bytes=64 time=54ms TTL=48
Reply from 172.217.169.142: bytes=64 time=56ms TTL=48
Reply from 172.217.169.142: bytes=64 time=53ms TTL=48
Ping statistics for 172.217.169.142:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 53ms, Maximum = 61ms, Average = 56ms
```

- MTU = Maximum Transmission Unit which defines the maximum size of bytes that can be send without fragmentation, MTU depends on the physical network. In Ethernet MTU is 1500 byte
- Ping <u>www.yahoo.com</u> –1 1500

```
C:\Users\IbtisamAlSaffar>ping www.yahoo.com -1 1500

Pinging new-fp-shed.wg1.b.yahoo.com [87.248.98.7] with 1500 bytes of data:
Reply from 87.248.98.7: bytes=1500 time=118ms TTL=46

Reply from 87.248.98.7: bytes=1500 time=111ms TTL=46

Reply from 87.248.98.7: bytes=1500 time=119ms TTL=46

Reply from 87.248.98.7: bytes=1500 time=111ms TTL=46

Ping statistics for 87.248.98.7:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 111ms, Maximum = 119ms, Average = 114ms
```

- Fragmentation is the process in which we broke the information into smaller pieces and the combining them at the destination.
- Ping <u>www.yahoo.com</u> -1 1500 -f => don't fragment

```
C:\Users\IbtisamAlSaffar>ping www.yahoo.com -1 1500 -f
Pinging new-fp-shed.wg1.b.yahoo.com [87.248.98.8] with 1500 bytes of data:
Packet needs to be fragmented but DF set.
Ping statistics for 87.248.98.8:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

Trace Route

- Tracert destination-IP
- Follows the route from source to destination
- This form is slow because it register the hostname and IP, to make it faster we can -d (ignore hostname and print only the IP)

And suppose we are working at the device which has the IP (192.168.10.2) If we use the following command **tracert** -d 192.168.20.5 then we will get the following output:

Tracin	g ro	oute	to 192	.168	3.20.5	over	а	maximum	of	30	hops
											-
1	2	ms	3	ms		2 ms		192.	168.	.10	.1
2	75	ms	83	ms	8	8 ms		192.	168.	. 106	0.2
3	73	ms	79	ms	9	3 ms		192.	168.	. 20	. 5

Thank You

COMPUTER NETWORKS

LAB4: Network Services

By:

Asst.Lec. Ibtisam A. Taqi

Asst.Lec. Zaid H. Jabir

Dr. Imad J. Mohammed (Supervisor)

University of Baghdad - College of Science

Computer Department

Third Class

TCP/IP Model

(Transmission Control Protocol/Internet Protocol)

Service Request

Service Delivery

TCP/IP Control **Data Transmission over** the Internet

(Service Processing)

Layer 4

Layer 3

De-Capsulation

Layer 2

Layer 1

Network Services

- ➤ Web Browser
- > E-Mail
- > File sharing
- Instant messaging
- Online game
- Printing
- > DNS
- Voice over IP
- Video on demand
- Video telephony , etc....

Port no.

- ⇒ Port no. are used to identify which service the server provide to the requesting client
- \Rightarrow For each service => port number
- \Rightarrow In transport layer
- \Rightarrow The port number uses 16 bits => (2^16) => The range = (0 65,535)

Port no. Range	Port Types
0 - 1023	well known applications
1024 - 49151	registered ports
49152 - 65,535	Dynamic or private ports

Well Known Applications

Service	Port no.	Protocol
Files: Transfer Files over the Internet	20/21	File Transfer Protocol (FTP)
Remotely access: Establish a secure connection bet. a remote	22	Secure Shell (SSH)
server and computer (encryption), create/delete/browse/		
transfer files-folders, start/stop service.		
Remotely access: Establish a connection between a remote	23	Terminal network (Telnet)
server and computer (manage device remotely by CLI)		
Email: Deliver email messages successfully and securely	25	Simple Mail Transfer Protocol (SMTP)
Name System: Link the host names to their respective IP	53	Domain Name System (DNS)
Addresses		
Host Configuration: assign IP Address to the Hosts	67/68	Dynamic Host Configuration Protocol
automatically		(DHCP)
Web: Establish a connection between the webpages and the	80	Hypertext Transfer Protocol (HTTP)
browser		
Web: Establish a secure connection between webpages and	443	Hypertext Transfer Protocol Secure
browser (encryption)		(HTTPS => HTTP+SSL)

DNS

- Domain Name System
- It's a service allowed to use Domain Name or Hostname instead of IP address
- more than 1 DNS server =>
 - Balance the load of the network
 - Speed
 - Prevent the halt of the network if one DNS server crashes

Ex./ Primary DNS server address: 8.8.8.8

Alternate DNS server address: 8.8.4.4

DNS

- Ex./ Ping <u>www.Google.com</u> or Ping <u>172.217.17.228</u>

Domain	Stand for
com	commercial
edu	education
org	organization
gov	government
info	information
net	network

DNS service => DNS server => DNS protocol

DNS Record Types		
Record	Description	
NS:	Nameserver record	
A:	Address record	
HINFO:	Host Information record	
MX:	Mail Exchange record	
TXT:	Text record	
CNAME:	Canonical Name record	
SOA:	Start of Authority record	
RP:	Responsible Person record	
PTR:	Point of inverse lookups record	
SRV:	Service location record	

NSLOOKUP

- Domain Name (Host name) => IPs
- nslookup <hostname> <server>

Ex./ nslookup www.google.com

DNS Server address: 8.8.8.8 or 8.8.4.4

```
C:\Users\IbtisamAlSaffar>nslookup www.google.com
Server: dns.google
Address: 8.8.4.4

Non-authoritative answer:
Name: www.google.com
Addresses: 2a00:1450:4025:401::68

142.250.27.103
142.250.27.105
142.250.27.106
142.250.27.106
142.250.27.104
```

```
C:\Users\IbtisamAlSaffar>nslookup yahoo.com
Server: dns.google
Address: 8.8.8.8
Non-authoritative answer:
Name:
         yahoo.com
Addresses: 2001:4998:c:1023::5
          2001:4998:58:1836::11
         2001:4998:58:1836::10
         2001:4998:44:41d::4
          2001:4998:c:1023::4
         2001:4998:44:41d::3
         98.138.219.232
         98.137.246.7
         72.30.35.10
         98.138.219.231
         72.30.35.9
         98.137.246.8
```

```
C:\Users\IbtisamAlSaffar>nslookup www.facebook.com
        dns.google
Server:
Address: 8.8.4.4
Non-authoritative answer:
        star-mini.c10r.facebook.com
Name:
Addresses: 2a03:2880:f11c:8083:face:b00c:0:25de
         31.13.92.36
Aliases: www.facebook.com
C:\Users\IbtisamAlSaffar>nslookup uobaghdad.edu.iq
Server: dns.google
Address: 8.8.4.4
Non-authoritative answer:
        uobaghdad.edu.ig
Name:
Addresses: 2606:4700:3034::ac43:bba8
         2606:4700:3033::681b:a698
         2606:4700:3036::681b:a798
         104.27.167.152
         104.27.166.152
         172.67.187.168
```

Display DNS Server IP

1. GUI

 \Rightarrow Network

connection

(Windows)

2. CLI

 \Rightarrow Start =>

Run =>

cmd =>

ipconfig

IPCONFIG

- Display information about your PC during connect to the net like ip, mask, default gateway and DNS, etc..
- ipconfig /? => Help
- ipconfig
- ipconfig /all
- ipconfig /release
 - To release the IP address back to DHCP pool
- ipconfig /renew
 - To get a new IP address from the DHCP pool

ipconfig /all

```
Wireless LAN adapter Wi-Fi:
  Connection-specific DNS Suffix . :
  Description . . . . . . . . . : Intel(R) Dual Band Wireless-AC 3160
  Physical Address. . . . . . . . . . . . 2C-6E-85-68-0D-DF
  DHCP Enabled. . . . . . . . . . . Yes
  Autoconfiguration Enabled . . . . : Yes
  Link-local IPv6 Address . . . . . : fe80::94e7:4194:3e9d:6b11%6(Preferred)
  IPv4 Address. . . . . . . . . . . . . . . . . 192.168.0.104(Preferred)
  Default Gateway . . . . . . . . . . . 192.168.0.1
 DHCP Server . . . . . . . . . . : 192.168.0.1
  DHCPU6 IAID . . . . . . . . . . . . . . 103575173
  DNS Servers . . . . . . . . . . . . . . 8.8.4.4
                            8.8.8.8
                            192.168.100.1
  NetBIOS over Tcpip. . . . . . . : Enabled
```

- Windows caches the DNS servers information
 - ipconfig /displaydns => display the contents of DNS cache
 - ipconfig /flushdns => delete the contents of DNS cache
- **Socket** is the name given to the [IP + port no.]
 - IP: port
 - Ex./ 192.168.10.10:80 => web browser service (http)

Thank You

COMPUTER NETWORKS

LAB5: MAC Address

By:

Asst.Lec. Ibtisam A. Taqi

Asst.Lec. Zaid H. Jabir

Dr. Imad J. Mohammed (Supervisor)

University of Baghdad - College of Science

Computer Department

Third Class

Hub

- plug and play
- 4,8,16 ports
- Layer 1 device => Physical Layer (OSI model)
- Not intelligent device : Direct Data to all Hosts
 not to a specific destination
- Hub Types:
 - Passive
 - Active : Repeater

Switch

- Layer 2 device => Data Link Layer **or** multilayer => router and switch at the same time
- Smart device: Direct message to the dest. Host (MAC Table)
- Ethernet Switch (LAN Switch) Categories:
 - Fixed: fixed number of ports (not flexible, cheap)
 - Unmanaged => plug and play
 - Managed => Partially M. (smart switch) and Fully M. (enterprise switch) Ex./ 5,8,10,16, 24,28, 48,52 ports
 - Modular: add expansion modules (flexible, expensive)

Ex./ expansion modules are application-specific (such as firewall, wireless or network analysis) and modules for additional interfaces, power supplies, or cooling fans

Multiple standalone => as one switch

- Switching Methods
 - Store and forward: S. & F. frame after checking error (CRC)
 - Cut through (direct frame forward without check error)

- Symmetric and Asymmetric switching ports (same or different Data transfer Rate)
- PoE and not PoE (Power over Ethernet)
 - not POE => port => transfer Data only ex./printer
 - POE => port => transfer Data + Power to the device

ex./camera

Transmission Types

- Half Duplex (port => send or receive data at a time)
- Full Duplex (port => send and receive at the same time)

Communication Types

- UniCast => 1:1 => 1 sender : 1 receiver
- BroadCast => 1:All => 1 sender : All receivers
- MultiCast => 1:M => 1 sender : many receivers

MAC Address

- Physical address (Hardware Address)
- Stands for Media Access Control
 - Used in layer 2 (Data Link Layer) in OSI model
 - 6 bytes = 48 bits, each byte 2 digit, digit = 4 bit, Hexadecimal
 - separated by a hyphen(-) or a colon(:) or a dot(.)
- For Example: Broadcast MAC Add.
 - FF:FF:FF:FF:FF:FF or FF-FF-FF-FF or FFFF.FFF.FFFF
 or FFFFF.FFFFFF or FFFFFFFFF
 or FFFFFFFFFFFF

MAC Address

is a Network Card number

consist of 2 parts as:

- OUI : Organization Unique Identifier
- NIC : Network Interface Card (Controller)
 - LAN Card = Ethernet NIC
 - Wireless NIC (Wireless Connection ex./ Wi-Fi)
- Display Mac Address
 - GUI (windows) => Network Connection
 - > CLI => Start => Run => cmd => ipconfig /all

MAC Table

- Switch => Switch Table or MAC Table or
 - **CAM** (Content Addressable Memory) **Table**
- CAM Table: Mac address for each device + port no.
- Fa = Fastethernet 0/1 .. Fastethernet 0/24

Data Transfer Rate for the port=10/100 Mbps

Slot no. Port no.

Click on Switch1=> CLI

sh mac add = show mac address-table

ARP

- Address Resolution Protocol (Layer 2 protocol)
- It has an ARP cache (Table) which contains the MACs of all devices in a subnet
- The cache can be either filled
 - Statically (manually)
 - Dynamically (by the ARP)
- The source sends an ARP Request Broadcast MAC Add. FFFF.FFFF.FFFF
 (it is picked by all the devices) with specific dest. IP
- The device which has that IP replies with an ARP reply (Unicast, because it is one device which replies) to return it's MAC add.

- arp -a => display the ARP table
- **arp** -**d** => deletes the ARP table
- arp -s <IP address> <MAC address>
 - => To set a MAC address manually for a device
- Ex:/ arp -s 192.168.10.12 B2-FD-0F-11-A2-C3
 - => Add the Host IP add. 192.168.10.12 with
 - it's MAC Add. B2-FD-0F-11-A2-C3 to the
 - ARP cache statically (manually)

- PC0 => ping PC1,PC2,PC3
- PC0 => arp -a

MAC Add.

Computer Networks Lab. / Third Class

Thank You

Computer Networks Lab. / Third Class

COMPUTER NETWORKS

LAB6: Netstat (Network Statistics)

By:

Asst.Lec. Ibtisam A. Taqi

Asst.Lec. Zaid H. Jabir

Dr. Imad J. Mohammed (Supervisor)

University of Baghdad - College of Science

Computer Department

Third Class

Transport Layer

- is end-to-end connection between the sender and receiver before transmitting any data
- The major protocols are:
 - TCP: Transmission Control Protocol
 - UDP: User Datagram Protocol
- TCP Connection
 - > Open Connection => Established (3 way handshake)
 - SYN (Synchronize)
 - SYN + ACK (Acknowledgment)
 - ACK
 - > Transfer Data
 - ➤ End Connection => Closed

Open Connection

Reset Connection

Close Connection

TCP	UDP
Reliable	Unreliable
Connection oriented (3 way handshake)	Connectionless
Slower (Delay)	Speed
Acknowledgment	-
Sequence no. (reorder: sort segments in the right order)	-
Windowing (Flow Control) => Dest. Window size	-
Error Handling (resend if lost)	-
High Overhead	Low Overhead
Text	VoIP, Video

Netstat

Netstat = Network Statistics

- => display *very* detailed information about network active connections, protocol-specific statistics
- => help troubleshoot certain kinds of networking issues.
- Proto => protocol that is used to establish the connection (either TCP or UDP)

```
Socket => IP : Port no
```

- Local Address => The IP address and port number of the source computer try to establish a connection.
- Foreign Address => The IP address and port number of the destination (remote) computer.
- State => connection state :
 - Established => The session is established between the source and destination
 - Close_wait => The remote end has shut down, waiting for the socket to close.
 - Time_wait => The socket is waiting after close to handle packets still in the network.

- Netstat /?
- Netstat
- **Netstat** -a => Displays all active connections (protocol, local add., foreign add., state)
- **Netstat** -e => Displays ethernet statistics

Socket => IP : Port no

Socket => Domain name : Protocol name

Socket => Domain name : Port no

Socket => IP: Protocol name

Loopback Address: 127.0.0.1

Netstat –n

Socket => IP : Port no

- ⇒ Displays addresses and port numbers in numerical form .
- \Rightarrow ex./ http => 80, https => 443

• Netstat –p proto => display information about a specific protocol

```
C:\Users\IbtisamAlSaffar>netstat -p tcp
Active Connections
 Proto Local Address
                                 Foreign Address
                                                         State
                                 Ibtisam: 7824
  TCP
         127.0.0.1:1096
                                                         ESTABLISHED
                                 Ibtisam: 1096
 TCP
         127.0.0.1:7824
                                                         ESTABLISHED
                                 5.62.54.42:https
         192.168.0.105:1032
                                                         ESTABLISHED
  TCP
  TCP
         192.168.0.105:1174
                                 prg16-007:http
                                                         ESTABLISHED
```

- Netstat –s
 - => Displays statistics for :
 - > IP, IPv6 (Packet)
 - ICMP, ICMPv6 (Message)
 - > TCP, TCPv6, UDP, and UDPv6 (Segment)

Ex./ send, received (discard, delivered), error

• Netstat –f => display fully Qualified domain name for foreign addresses

```
C:\Users\IbtisamAlSaffar>netstat -f
Active Connections
 Proto
        Local Address
                                Foreign Address
                                                       State
                                Ibtisam:7824
        127.0.0.1:1096
  TCP
                                                       ESTABLISHED
        127.0.0.1:7824
                                Ibtisam:1096
  TCP
                                                       ESTABLISHED
                                5.62.54.42:https
  TCP
        192.168.0.105:1032
                                                       ESTABLISHED
  TCP
        192.168.0.105:1174
                                prg16-007.ff.avast.com:http
                                                             ESTABLISHED
```

- ⇒ Netstat –s –p tcp => statistic about TCP protocol
- \Rightarrow Netstat -s -p tcp -f => same as above with fully domain name for foreign addresses

C:\Users\IbtisamAlSaffar>netstat -s -p tcp							
TCP Stat	istics for IPv4						
Passiv Failed Reset Curren Segmen Segmen	Opens Connection Attempts Connections Conn	= 1721 = 9 = 178 = 604 = 4 = 177476 = 177285 = 3810					
Active C	onnections						
TCP TCP	Local Address 127.0.0.1:2735 127.0.0.1:3285 192.168.0.105:3310 192.168.0.105:3329	Foreign Address Ibtisam:3285 Ibtisam:2735 5.62.54.89:http fra02-002:http	State ESTABLISHED ESTABLISHED ESTABLISHED ESTABLISHED				

C:\Users	\IbtisamAlSaffar>netst	at -s -p tcp -f			
TCP Stat	istics for IPv4				
Active	Opens	= 1721			
Passiv	e Opens	= 9			
Failed	Connection Attempts	= 178			
Reset	Connections	= 604			
Curren	t Connections	= 4			
Segmen	ts Received	= 177486			
Segmen	ts Sent	= 177292			
Segmen	ts Retransmitted	= 3812			
Active C	onnections				
Proto	Local Address	Foreign Address	State		
TCP	127.0.0.1:2735	Ibtisam:3285	ESTABLISHED		
TCP	127.0.0.1:3285	Ibtisam:2735	ESTABLISHED		
TCP	192.168.0.105:3310	5.62.54.89:http	ESTABLISHED		
TCP	192.168.0.105:3329	fra02-002.ff.avast.d	com:http ESTABLISHED		

Thank You

COMPUTER NETWORKS

LAB7: Wireshark

By:

Asst.Lec. Ibtisam A. Taqi

Asst.Lec. Zaid H. Jabir

Dr. Imad J. Mohammed (Supervisor)

University of Baghdad - College of Science

Computer Department

Third Class

Wireshark

- => used for packet capture (PCAP) with detailed information about the connection and protocols
 - Reading headers contents
- => It used by
 - > Attackers
 - Network Admins
 - > Educational Purposes
- => To protect data we can use
 - > Encryption
 - > Hashing (to prevent changing the data)

Wireshark.org => download

Capturing from Wi-Fi

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

	F 🕹 📃	■ 0 0	Q <u>II</u>
--	-------	-------	-------------

[Ap	pply a display filter <c< th=""><th>trl-/></th><th></th><th></th><th></th></c<>	trl-/>			
No.	Time	Source	Destination	Protocol	Length Info
	337.925299	192.168.0.1	192.168.0.109	ICMP	74 Echo (ping) reply id=0x0001, seq=71/18176, ttl=64 (request in 1073)
	337.989448	fe80::94e7:4194:3e9d:6b11	ff02::1:2	DHCPv6	149 Solicit XID: 0x33a320 CID: 00010001222000b51c3947b69bed
	338.927053	192.168.0.109	192.168.0.1	ICMP	74 Echo (ping) request id=0x0001, seq=72/18432, ttl=128 (reply in 1077)
	338.928245	192.168.0.1	192.168.0.109	ICMP	74 Echo (ping) reply id=0x0001, seq=72/18432, ttl=64 (request in 1076)
	339.942565	192.168.0.109	192.168.0.1	ICMP	74 Echo (ping) request id=0x0001, seq=73/18688, ttl=128 (reply in 1079)
	339.943998	192.168.0.1	192.168.0.109	ICMP	74 Echo (ping) reply id=0x0001, seq=73/18688, ttl=64 (request in 1078)
	341.047962	192.168.0.109	192.168.0.255	NBNS	92 Name query NB ISATAP<00>
	341.048478	IntelCor_68:0d:df	Broadcast	ARP	42 Who has 192.168.0.1? Tell 192.168.0.109
	341.049076	fe80::94e7:4194:3e9d:6b11	ff02::1:3	LLMNR	86 Standard query 0xd541 A isatap
	341.049691	192.168.0.109	224.0.0.252	LLMNR	66 Standard query 0xd541 A isatap
	341.052244	TendaTec_3e:b9:50	<pre>IntelCor_68:0d:df</pre>	ARP	42 192.168.0.1 is at c8:3a:35:3e:b9:50
	341.473933	fe80::94e7:4194:3e9d:6b11	ff02::1:3	LLMNR	86 Standard query 0xd541 A isatap
	341.474264	192.168.0.109	224.0.0.252	LLMNR	66 Standard query 0xd541 A isatap
	341.786330	192.168.0.109	192.168.0.255	NBNS	92 Name query NB ISATAP<00>
	342.537032	192.168.0.109	192.168.0.255	NBNS	92 Name query NB ISATAP<00>
	342.911333	5.45.58.217	192.168.0.109	TCP	60 [TCP Keep-Alive] 80 → 1033 [ACK] Seq=2144 Ack=605 Win=74 Len=0
	342.911603	192.168.0.109	5.45.58.217	TCP	54 [TCP Keep-Alive ACK] 1033 → 80 [ACK] Seq=605 Ack=2145 Win=62 Len=0
	343.005258	192.168.0.109	185.107.47.111	UDP	145 32304 → 6881 Len=103
	343.113125	185.107.47.111	192.168.0.109	UDP	319 6881 → 32304 Len=277

[▶] Frame 1: 145 bytes on wire (1160 bits), 145 bytes captured (1160 bits) on interface \Device\NPF_{1CC7EC8E-2A7E-4686-9E6C-C1C3E00F8D5B}, id 0

Ethernet II, Src: IntelCor_68:0d:df (2c:6e:85:68:0d:df), Dst: TendaTec_3e:b9:50 (c8:3a:35:3e:b9:50)

[▶] Internet Protocol Version 4, Src: 192.168.0.109, Dst: 124.155.3.55

[▶] User Datagram Protocol, Src Port: 32304, Dst Port: 6881

Data (103 bytes)

• **Filter** => The filter bar can be used to filter results depending on a certain criteria

- Protocol

- tcp, udp, arp, icmp, dns, http
- !dns =>!: Display all protocol information except DNS
- http or icmp
- tcp.port==80 , tcp.port==80 | udp.port==80 => | : or
- !(tcp.port == 53)

- IP Address

- Source & destination => ip.addr == 192.168.0.109
- Source => ip.src == 192.168.0.109
- Destination => ip.dst == 192.168.0.109

- IP Address and Protocol

• ip.src == 192.168.0.109 and icmp

- Ex./ Filter by ICMP protocol: Display All Information about ICMP protocol
 - From My PC => Ping 192.168.0.1
- We can follow the stream of a specific packet by right clicking on it and choosing (follow stream)

Ex./ Display All Information about ICMP protocol for the source ip (My - PC) = 192.168.0.109

	ip.src==192.168.0.109 and icmp								
No	Time	Source	Destination	Protocol L	ength.	Info			
	8034 50.737889	192.168.0.109	192.168.0.1	ICMP	74	4 Echo (ping) request	id=0x0001, seq=79/20224,	ttl=128 (reply in 80	035)
	8186 51.753434	192.168.0.109	192.168.0.1	ICMP	74	4 Echo (ping) request	id=0x0001, seq=80/20480,	ttl=128 (reply in 83	187)
	8348 52.772448	192.168.0.109	192.168.0.1	ICMP	74	4 Echo (ping) request	id=0x0001, seq=81/20736,	ttl=128 (reply in 83	350)
	8508 53.784877	192.168.0.109	192.168.0.1	ICMP	74	4 Echo (ping) request	id=0x0001, seq=82/20992,	ttl=128 (reply in 89	511)

Ex./ Filter by DNS protocol: Display All Information about DNS protocol

dn	s				
No.		Time	Source	Destination	Protocol
	2496	14.778089	192.168.0.109	192.168.100.1	DNS
↓	2503	14.823038	192.168.100.1	192.168.0.109	DNS
	4687	28.422297	192.168.0.109	192.168.100.1	DNS
	4701	28.516179	192.168.0.109	192.168.100.1	DNS
	4704	28.525668	192.168.100.1	192.168.0.109	DNS
	10161	65.023067	192.168.0.109	192.168.100.1	DNS
	10164	65.034319	192.168.100.1	192.168.0.109	DNS

Ex./Display All Information about DNS protocol for the source ip (MY - PC) = 192.168.0.109

	ip.src==192.168.0.109 and dns						
No		Time	Source	Destination	Protocol	Length	Info
	2496	14.778089	192.168.0.109	192.168.100.1	DNS	77	Standard query 0x5dbe A beacons3.gvt2.com
•	4687	28.422297	192.168.0.109	192.168.100.1	DNS	70	Standard query 0x7be5 A google.com
	4701	28.516179	192.168.0.109	192.168.100.1	DNS	70	Standard query 0x7be5 A google.com
	10161	65.023067	192.168.0.109	192.168.100.1	DNS	75	Standard query 0x2b56 A ssl.gstatic.com

Thank You

Computer Networks Lab. / Third Class

COMPUTER NETWORKS

LAB8

By:

Asst.Lec. Ibtisam A. Taqi

Asst.Lec. Zaid H. Jabir

Dr. Imad J. Mohammed (Supervisor)

University of Baghdad - College of Science

Computer Department

Third Class

Q1\ Draw the net. and then do the following:

- 1. Assign IPs to the Host **statically**.
- 2. Display the IP address for PC1 using ipconfig command
- 3. Check connectivity between PC0 and PC2 by using ping command bidirectional

Q2/ using (**Ping**) command to check your PC connectivity with the following website:

- **Telegram.com** with (5) echo messages.
- Youtube.com with (6) echo requests, (64) byte of data (message length)
- Facebook.com with infinity messages until stopped by using CTRL+C

Q3/ using (Tracert) command to check route from your PC to

- Uobaghdad.edu.iq
- Google.com
- Twitter.com

Note: Using Ctrl+C to stop

Q4/By using Packet Tracer design the Topology below then check connectivity between PC0 & PC5 using (ping) command as follows:

- Send 6 echo request.
- Send infinity echo request.

Thank you

COMPUTER NETWORKS

LAB9

By:

Asst.Lec. Ibtisam A. Taqi

Asst.Lec. Zaid H. Jabir

Dr. Imad J. Mohammed (Supervisor)

University of Baghdad - College of Science

Computer Department

Third Class

Q1/ Display IPs allocated for the following websites by using (nslookup) command:

- Uobaghdad.edu.iq
- Yahoo.com

Q2/ Display the DNS servers addresses by using CLI after do the following steps:-

- ipconfig /release
- ipconfig /renew
- ipconfig /all

Q3/Using <u>Packet Tracer</u> to Design the topology below and then

- assign IPs to the Hosts
- assign DNS server address for each Host
- show DNS server address for PC1 by using ipconfig /all

Q4/ Use CMD of your PC to answer the following:

- How to display the **options of arp** command
- Display the ARP table for your PC using arp –a

Q5/ Design the topology below using Packet

Tracer and then answer the following:

- 1- Ping from PC1 to PC0, PC2, PC3
- 2- Display PC1-MAC address using ipconfig /all

- 3- Show PC1-ARP table using arp -a. Explain the arp table briefly
- 4- Delete PC1-ARP table using arp -d
- 5- Enter to the switch (by one click), then Display switch-MAC address using sh mac add

Note That:

If you want to run arp -d to delete the arp table for your PC, you must do the following steps:

Start > Search > cmd > *Right click on*

Command Prompt > Run as administrator

Thank you

COMPUTER NETWORKS LAB10

By:

Asst.Lec. Ibtisam A. Taqi

Asst.Lec. Zaid H. Jabir

Dr. Imad J. Mohammed (Supervisor)

University of Baghdad - College of Science

Computer Department

Third Class

Q1/ Use CMD of your PC to Run and explain the following commands:

- Netstat /?
- Netstat –a
- Netstat -n
- Netstat -f

Q2/ Run and explain the main differences between the following commands:

- Netstat -s and Netstat -p TCP
- Netstat -s -p ICMP and Netstat -s -p IP
- Netstat -s -p TCP and Netstat -s -p TCP -f

Q3/Use Wireshark to capture your network traffic and answer the following:

Display all information about:

- All websites that your PC browse
- All your PC requests
- All responses reached to your PC
- All your PC request messages
- All reply messages to your PC
- All services request by your PC except domain name service

Q4/ What are the differences between:

- TCP and UDP header
- TCP.port==443 and !(TCP.port==443)
- (ip.src==your PC-IP and dns or http) and
- (ip.dst== your PC-IP and !(dns or http))

Thank you