
 

Basic Language Translator 

2020-2021 

 / الفصل الثاني بكلوريوسال /الاولية الدراسات

 أستاذ المادة

 . وجدان عبد الامير حسن ا.م

 

 

 

 

 

 

 

 

 

 



Lec.1                 Advanced insect physiology                Dr.May I.Younis 
 

 



Basic Language Translator

2nd Class/2nd Sem

Lecture 1

م وجدان عبد الامير حسن.ا



Basic Language 
Translator
FIRST LECTURE



Programming Languages

In computer programming ,programming language 
serves as means of communication between the 
person with a problem and the computer used to 
solve it. 

Programming language is a set of symbols ,words, 
and rules used to instruct the computer.



Programming Languages

A hierarchy of programming languages based on 
increasing machine independence include the 
following:

1- Machine Language

2- Assembly Language

3- High-Level Language

4- Problem-Oriented Language



Programming Languages

1- Machine Language: is the actual language in which 
the computer carries out the instructions of program. 
otherwise ,it is the lowest form of computer language, 
each instruction in program is represented by numeric 
code, and numeric of addresses are used throughout the 
program to refer to memory location in the computer 
memory. 



Programming Languages

2- Assembly Languages: is a symbolic version of a 
machine language, each operation code is given a 
symbolic code such ADD,SUB,… 

3- High-Level Language(HLL): is a programming language  
where programming not require knowledge of the actual 
computing machine to write a program in the language. 
HLL offer a more enriched set of language features such 
as control structures, nested statements, block,…ect.



Programming Languages

4-Problem-Oriented Language: it provides for the
expression of problems in a specific application. Examples
of such language are SQL for database application.



Programming Language

Advantage of HLL over LLL

1- HLL are easier to learn then LLL.

2- A programmer is not required to know how to convert data 
from external form to internal within memory.

3- Most HLL offer a programmer a variety of control structures 
which are not available in LLL.

4- Programs written in HLL are usually more easily debugged than 
LLL equivalents.

5- Most HLL offer more powerful data structure than LLL.

6- HLL are relatively machine-independent .



Translator

High-level language programs must be translated automatically to 
equivalent machine language program. A translator converts a 
source program into an object or target program.

The source program is written in a source language and the 
object program belong to an object language.

source program                                                                       Object programtranslator



Translator

1- If the source program is written in assembly language and 
the target program in machine language the translator is 
called Assembler.

2- If the source program is written in HLL language and the 
object language is LLL then the translator is called Compiler.

3-If the source program is written in LLL language and the 
object language is HLL then the translator is called 
Decompiler.



Compilation Process

Source program                                 Object program                                Result  

Compiler time                                      Run time

The time at which conversion of a source program to an object 
program occurs is called Compile time ,the object program is 
executed at Run time . 

Note that the source program and data are process at different 
time.                      

Compiler Executing



Interpreter

Another kind of translator  called an interpreter in which processes 
an internal form of source program and data at the same time. That 
is interpretation of the internal source form occurs at run time and 
no object program is generated.                                         

Data

Source program                                      Result                                   

interpreter process

interpreter



Interpreter

Another kind of translator  called an interpreter in which 
processes an internal form of source program and data at the 
same time. That is interpretation of the internal source form 
occurs at run time and no object program is 
generated.                                         

Data

Source program                                      Result                                   

interpreter process

interpreter



Comparison between compiler and 
interpreter 

Compiler program usually run faster than interpreter ones 
because the overhead of understanding and translating has 
already been done.

However ,Interpreters are frequent easier to write than 
Compilers, and can more easily support interactive 
debugging of program. 



Thanks for 
listening



Basic Language Translator
2nd Class/2nd Sem

Lecture 2

م وجدان عبد الامير حسن.ا



Basic Language 
Translator

Second Lecture



Introduction

• A compiler is a program that reads a program written in one language
(source language) and translates it into an equivalent program in
another language (target language). It also reports to its user the
presence of errors in the source program.

Source program                                                               Target program

Error message

Fig 1: A compiler

compiler



Introduction

• Compilers are sometimes classified as single-pass, multi-pass, load
and go, debugging, or optimizing, depending on how they have been
constructed or on what function they are supposed to perform.

• There are two parts to compilation: analysis (including lexical, syntax,
and semantic phases) part breaks up the source program into
constituent pieces and creates an intermediate representation of the
source program. The synthesis part constructs the desired target
program from the intermediate representation.



1.2  phases of Compiler
A compiler operates in phases, each of which transform the source

program from one representation to another. These phases are:
1- Lexical Analyzer (Scanner)

It reads the stream of characters (making up the source program)from left
to right and group them into tokens (are sequence of characters having a
collective meaning).
2- Syntax Analyzer (parser)

It grouped characters or tokens into nested collections with collective
meaning.
3- Semantic Analyzer

It performs certain checks to ensure that the components of a program
fit together meaningfully.



4- Intermediate Code Generation

It generates an explicit intermediate representation of the source code.
This representation should have two important properties: it should be easy
to product, and easy to translate into the target program.

5- Code Optimizer

It attempts to improve the intermediate code , so that faster running
machine code will result .

6- Code Generator

It translates the intermediate code and generate the target code
(normally relocatable machine code or assembly code).



Syntax Analyzer

Lexical Analyzer

Semantic Analyzer

Intermediate code
Generation

Code Optimizer

Symbol Table 
Manager Error Handler

Code Generation

Source program

Target program

Fig 1.2 phases of compiler



Symbol Tables Management:-

• A symbol table is a data structure containing record for each identifier
with field for the attributes of the identifier. These attributes may
provide information about the storage allocated for an identifier, its
types, and its scope (where in the program it is valid), number and
type of the procedure arguments, the method of passing each
argument, and the type returned by the procedure (if any).

• When an identifier in the source program is detected by the lexical
analyzer, the identifier is enter into the symbol table and then use this
information in various ways.



1.3 Symbol Tables Management

• A symbol table is a data structure containing record for each identifier
with field for the attributes of the identifier. These attributes may
provide information about the storage allocated for an identifier, its
types, and its scope (where in the program it is valid), number and
type of the procedure arguments, the method of passing each
argument, and the type returned by the procedure (if any).

• When an identifier in the source program is detected by the lexical
analyzer, the identifier is enter into the symbol table and then use this
information in various ways.



1.4 Error Detection And Reporting.

• Each phase can encounter errors. However, after detecting an error, a
phase must somehow deal with that error so that compilation can
precede allowing further errors in the source program to be detected.

• The syntax and semantic analysis phases usually handle a large
function of the errors detectable by the compiler. The lexical phase
can detect errors where the characters remaining in the input don’t
form any token of the language. Errors where the token stream
violates the structure rules of the language are determined by the
syntax phase. Semantic analysis phase tried to detect constructs that
have the right syntactic structure but no meaning to the operation
involved (for example, trying to add two identifiers, one of which is
the name of an array, and the other the name of a procedure)



Thanks for 
listening



Basic Language Translator

2nd Class/2nd Sem

Lecture 3

م وجدان عبد الامير حسن.ا



COMPILER
Lexical analyzer



Lexical Analysis(scanner)
Introduction

The main task of lexical analysis is to read the input characters and produce as output a 

sequence of tokens that the parser uses for syntax analysis.

source program token

Get next token

Fig 2.1 Interaction of lexical analyzer with parser.

Lexical 

analyzer

Symbol Table

Parser



Lexical Analysis(scanner)
In order to understand and implement an efficient lexical analyzer, three terms must be 

dealt with. These are 

Token: a set of constructs forming the source programming language like keywords, 

operators , identifiers , …etc.

Lexeme: A sequence of characters in the source program that is matched by the rule of 

token.

Rule: describing the set of lexemes that can represent particular token.

Token Sample lexemes Informal Description of Pattern

Const

If

Relation

Identifier

number

const

if

<,<=,=,<>,>,>=

Pi ,count ,D2

3.12 ,8 ,6.02E31

Const

if

<or<=or<>or>=or>

Letter followed by letters and digits

Any number constant



Lexical Analysis(scanner)

2.2 Recognition of token

To design an elementary lexical analyzer(scanner) for a 
particular language, we must establish the following:

1- Knowing what language constructs (tokens) are, classified 
them in to groups such as identifier, keywords, operators…etc.

2- Describe tokens in terms of rules, either in terms of 
patterns(informal) or terms of regular expressions (formal).

3- Build devices that are well suited to this recognition task , 
which Deterministic Finite Acceptors (DFA).



Lexical Analysis(scanner)
Example:

Build a scanner that can recognize the following group of tokens:

1- identifier           

2- constant number

Solution

Informal rules

Identifier: letter followed by letters or digits.

Constant numbers: any numeric constant.



Lexical Analysis(scanner)
Regular expressions (formal)

id         letter (letter|digit)*

Letter        A|B|C|……..|a|b|c|……..z

digit        0|1|2|3……..|9

num digits  Optional-fraction  Optional –exponent

digits        digit+ 

Optional-fraction        .digits |∈

Optional –exponent        E(+|-| ∈)digits| ∈



Lexical Error
2.3 Lexical Errors

The lexical analyzer may correlate error message from the compiler with the source 

program.

Some possible error recovery actions are:

1- Detecting an extraneous character.

Inserting a missing character. 2-

3- Replacing an incorrect character by a correct one.

4- Transposing two adjacent characters.



Symbol table
2.4 Symbol table

A simple technique for separating Keywords from identifiers is initialize the symbol 

table in which information about identifiers is saved. 

A simple table is the data structure use to store information about various identifiers. 

The information is collected by the analysis phases of compiler and then used for 

checking the semantics correctness and aiding in the proper generation of code. The 

stored information (know as attributes) is as follows:

1) Variable name 

It is the means by which a particular variable is identified for semantic analysis and 

code generation. This attributes should be inserted into the symbol table during lexical 

analysis.

2) Object code address

It denote the relative location for value (s) of a variable. This address is entered into the 

symbol table when a variable is declared and recalled from the table when the variable 

is referenced in the source program.



Symbol table
3) Type

It represents the type of variable and used for:

-Determining how many spaces in the memory is needed to store the variable.

-checking the semantic error in arithmetic equation.

4) Number of Dimensions and Number of parameters

- scalar dim 0

- vector dim 1 

- metrics dim 2

- function according to number of parameters.

5) Line Declare 

The source line number at which a variable is declared.

6) Lines Referenced

The source lines numbers of all other references to the variable.



Example
Draw a diagram of a cross reference table that would result when compiling the 
following program segment (report error and warning messages if any).

Main()

{

Int i, j[5];

Char c, index[5][6], block[5];

float  f;

i=0;

i= i+ k;

f=f+i;

C=’x’;

block[4]=c;

}



G

error k is un defined
warning j is not used
warning index is not used

Name Object      

Address

Type Dimension Line Declared Line  Referenced

i 0 int 0 3 6,7,8

j 2 int 1 3

c 12 char 0 4 9,10

Index 13 char 2 4

block 43 char 1 4 10

f 48 float 0 5 8

k 7



Thanks for 
listening



Basic Language Translator

2nd Class/2nd Sem

Lecture 4

م وجدان عبد الامير حسن.ا



SYNTAX ANALYZER
Part 1



Syntax Analyzer

3.1  introduction

In compiler model, the parser obtains  a string of tokens 

from the lexical analyzer and verifies that the string can be 

generated by the grammar for the source language.

Methods used in compilers are classified as being either top-

down or bottom-up. Top-down parser builds parse tree from 

the top to the down (leaves) while bottom-up parser starts 

from the leaves and work up to the root.



Syntax Analyzer

There are number of tasks that might be conducted during 

parsing:

1- Collecting information about various tokens from the symbol 

table

2- Performing type checking and other kinds of semantics 

analysis.  

3- Generating intermediate code.



Syntax Analyzer

3.2  Syntax Error and Handling

Program can contain errors at many different levels. For example, errors can be

Lexical such as misspelling an identifier, keyword, or operator.

Syntactic such as an arithmetic expression with unbalanced parentheses.

Semantic such as an operator applied to an incompatible operand.

Logical such as infinitely recursive call.

The error handler in a parser has the following goals:

1- It should report the presence of errors clearly and accurately.

2- It should recover from each error quickly enough to be able to detect 

subsequent error.

3-It should not significantly slow down the processing of correct program.



Syntax Analyzer

How should an error handler report the presence of an 

error?

A common strategy is to print the offending line with a pointer to 

the position at which an error is detected. In some compilers, an 

informative, understandable message is also included.

Once an error is detected, how should the parser 

recover?

with a reasonable hope that correct input will be parsed. Usually 

there is some form of error recovery in which the parser attempts 

to restore itself to a state where processing of the input can 

continue.



Syntax Analyzer

Many strategies employ recovery:

1- Panic-Mod

On discovering an error, the parser discards input symbols one at a time until one of a 
designated set of tokens is found.

It has the advantage of simplicity and is guaranteed not to go into an infinite loop. It 
skips a considerable amount of input without checking it for additional errors.

2- Phrase-level

One discovering an error, the parser may perform local correction on the remaining 
input.

That is, it may replace a prefix of the remaining input by some string that allows the 
parser to continue.

A typical local correction would be to replace a comma by a semicolon, detecting an 
extraneous semicolon, or insert a missing semicolon. 

Its major drawback is the difficulty it has in coping with situations in which the actual 
error has occurred before the point of detection.



Syntax Analyzer

3- Error productions 

If we have a good idea of the common errors that might be encountered, 

we can augment the grammar for the language at hand with productions 

that generate the erroneous constructs. We then use the grammar 

augmented by these error productions to construct a parser. If an error 

production is used by the parser, we can generate appropriate error 

diagnostics to indicate the erroneous construct that has been recognized 

in the input.

4- Global Correction

Design algorithms to choose a minimal sequence of changes to obtain a 

globally least-cost correction. These methods are in general too costly to 

implement in terms of time and space.



Syntax Analyzer

3.3 Context-Free Grammar

Context Free Grammar consists of terminals, non-terminals, a start 

symbol, and productions. Terminals are the basic symbols from which 

strings are formed. Non-terminals are syntactic variables that denote 

sets of strings. 

One non- terminal is distinguished as the start symbol. The productions 

of a grammar specify the manner in which terminals and non-terminals 

can be combined to form strings. Each production consists of a non-

terminals followed by an arrow followed by a string of non-terminals and 

terminals.



Syntax Analyzer
Example:-

Consider the following context – free grammar:

expr         expr op expr |(expr)|-expr  |id

op           +|- |*|/| ↑

Non-terminal: expr,op

Terminal:+,-,/,(,),id, ↑

Star:expr

We can rewrite the above grammar as:

E         EAE|(E)| -E| id

A          +|-|*|/|↑



Syntax Analyzer
A parse tree may be viewed as a graphical representation for a derivation that 

filters out the choice regarding replacement order.

Example:-

E        E+E |E-E| E/E |E*E|(E)|-E|id

The string –(id+id)

E          E         E          E         E         

- E      - E   - E   - E      - E

(   E  )  (  E  )     (   E  )    (  E  )

E + E    E + E      E + E

id            id         id



Example:-
E        E+E |E-E| E/E |E*E|(E)|-E|id

The string –(id+id)

Leftmost derivation:

E      –E –(E)      –(E+E)      –(id+E)      –(id+id)

Rightmost derivation

E      -E -(E)      -(E+E)      -(E+id)      -(id+id)



Thanks for listening



Basic Language Translator

2nd Class/2nd Sem

Lecture 5

م وجدان عبد الامير حسن.ا



SYNTAX ANALYZER
Part 2



3.4 Ambiguity , Left Recursion , and Left Factoring

An ambiguous grammar is one that produces more than one leftmost or more 

than one rightmost derivation for the same sentence.

Example:

E     E+E |E-E |E*E |E/E |E↑ E |(E) |-E |id

The String  id+id*id has the following two leftmost derivation:

E      E+E     id+E id+E*E     id+id*E id+id*id

E      E*E     E+E*E    id+E*E     id+id*E id+id*id

Ambiguous grammar may be detected if it has the following forms:

N     NaN where a is a string of terminals and non- terminals.



3.4 Ambiguity , Left Recursion , and Left Factoring

However, a simple set of sufficient conditions can be developed such that when 

they are applied to a grammar , then the grammar is guaranteed to be un 

ambiguous.

- Operator precedence.

- Associatively of operators.

Example:

E    E+E|E-E|E*E|E/E|E↑ E|(E)|-E |id        ambiguous

By applying the above conditions, we obtain:

E     E+T|E-T|T

T     T*P|T/P|P 

P     F ↑ P|F

F     -E|(E)|id  

+,-,*,/   are left associative

↑ is aright associative



3.4 Ambiguity , Left Recursion , and Left Factoring

A grammar is said to be left recursive if it has a non-terminal A such that there 

is a derivation A           Aa for some string a. Form this we can notice that there 

is two types of left recursion , either immediate or non-immediate.

Example:

Consider the following grammars:

E       E+T|T   (immediate left recursion)

S       Aa|b    (non-immediate left recursion)

A       Ac|Sd|Є (since S       Aa     Sda)



3.4 Ambiguity , Left Recursion , and Left Factoring

Left  factoring is a grammar transformation that is useful for producing a grammar 
suitable for predictive parsing. if  A → a𝛽1|a𝛽2 are two A productions and the input 
begins with a string derived from a, we don’t  know whether to expand A or a𝛽1 or 
a𝛽2 , we have to left factored the original productions to be: A→aA ̕ and A ̕→𝛽1|𝛽2

Algorithm: Left factoring

For each non-terminal A, find the longest prefix a common to two or more of its 
alternatives.  

If a ≠∈, replace all the productions:

A→a𝛽1 |a𝛽2|………|a𝛽𝑛|y

By

A→ aA ̕̕|y

A ̕→𝛽1|𝛽2 |…..|𝛽𝑛



3.4 Ambiguity , Left Recursion , and Left Factoring

Example :-

Consider the following grammar:

S→ iEtSeS| iEtS | a

E→b

Left factored this grammar becomes:

S→iEtSS̕|a

S̕→eS|∈

E→b

Note:

The three transformations must be done in order.



3.5 top-down parsing

The top-down construction of a parse tree is done by starting with the root 

and repeatedly performing the following two steps:

1- At node n, select one of the productions  for A and construct children of n for 

the symbols on the right- hand  side of the production.

Find the next node at which a sub tree is to be constructed. 

We will consider two types of top-down parsing

1-Recursive-Descent Parsing

A special case of it called predictive parsing.

2-Non-recursive Predictive Parsing

Recursive-descent parsing is a top-down method of syntax analysis in which we 

execute a set of recursive procedures to process the input. A procedure is 

associated with each non-terminal of a grammar. Recursive-descent parsing may 

involve backtracking (making repeated scans of the input).



Example:

Consider the following grammar:

S→ cAd

A→ ab|a

The string w=cad                                  

backtracking

S                                 S      choosing another      S

production for A 

c   A   d                       c   A    d                       c   A    d    

a        b                            a



3.6 Bottom-Up Parsing

Shift-reduce parsing:

1- Operator precedence (easy form)

LR parsing (general form)2-

A general style of bottom up syntax analysis is known as shift reduce-parsing. Shift-
reduce parsing Attempts to construct a parse tree for an input string beginning at the 
leaves (the bottom) and working up towards the root  (the top).At each reduction 
step a particular substring matching the right side of a production is placed by the 
symbol on the left of the production and if the substring is chosen correctly at each 
step, a right most derivation is traced out in reverse.

Example:

Consider the following grammar :

S→ aABe

A→ Abc|b

B→ d

The string abbcde

abbcde →aAbcde →aAde →aABe →S

S →aABe →aAde →aAbcde →abbcde



A handle of a string is a substring that matches the right side of a production and 
whose reduction to the non-terminal on the left side of the production represents one 
step along the reverse of rightmost derivation.

Example:

Consider the following grammar:

E→E+E|E*E|(E)|id

The right most derivation for the string id+id*id is:

E→ E+E→ E+E*E→ E+E*id→ E+id*id→ id+id*id

The underlined symbols are the handles.

A convenient way to implement a shift-reduce parsing is to use a stack to hold 
grammar symbols an input buffer to hold the string w to be parsed. We use $   to 
mark the bottom of the stack and also the right end of the input. Initially, the stack is 
empty and the string w is one the input as follow:

Stack input

$                        w$



The parser operators by shifting zero or more input symbols onto the stack until a 
handle β is on the top of the stack. The parser reduce  β to the left side of the 
appropriate production. The parser repeat this cycle until it has detected an 
error or until the stack contains the start symbol and the input is empty as 
follow:

Stack input

$ S                       $

After entering this configuration, The parser halts and announces successful 
completion of parsing. There are four possible actions the parser can make:

Shift: the next input symbol is shifted onto the stack.

Reduce: parser knows right end of handle, it must locate left end of handle and 
decide what non-terminal to replace the handle.

Accept: successful completion.

Error: calls an error recovery routine.



Example:

Consider the following grammar:

E→E+E|E*E|(E)|id

The input string is id+id*id

Stack input Action

$                      id+id*id$                         shift

$id                   +id*id$                            reduce by E→id

$E                    +id*id$                            shift

$E+                   id*id $                              shift

$E+id                *id$                                reduce by E →id

$E+E                 *id$                                shift

E+E*                 id$                                shift$

E+E*id                 $                                 reduce by E →id$

$E+E*E                  $                                 reduce by E→ E*E

$E+E                     $                                 reduce by E→ E+E

E                         $                                 accept               $



Thanks for listening



Basic Language Translator

2nd Class/2nd Sem

Lecture 6

م وجدان عبد الامير حسن.ا



SYNTAX ANALYZER
Part 3



3.4 Ambiguity , Left Recursion , and Left Factoring

A grammar is said to be left recursive if it has a non-terminal A such that there is 

a derivation A           Aa for some string a. Form this we can notice that there is 

two types of left recursion , either immediate or non-immediate.

Example:

Consider the following grammars:

E       E+T|T   (immediate left recursion)

S       Aa|b    (non-immediate left recursion)

A       Ac|Sd|Є (since S       Aa     Sda)



3.4 Ambiguity , Left Recursion , and Left Factoring
Example1:

Eliminating left recursion from the following grammar

Consider the following grammars:

E      E+T|E-T|T

T      T*P|T/P|P 

P      F ↑ P|F

F      -E|(E)|id 

Solution

E      TE`

E`     +TE`|-TE`|∈

T       PT`

T`      *PT`|/PT`| ∈

P       F ↑ P|F

F      –E|(E)|id



3.4 Ambiguity , Left Recursion , and Left Factoring
Example2:

Eliminating left recursion from the following grammar

Aa|b  S 

A      Ac|Sd  

Solution

S     Aa|b

A     Ac|Aad|bd 

S      Aa|b

A      bdA`

A`     c A`|ad A`|∈



3.5 top-down parsing

The top-down construction of a parse tree is done by starting with the root 

and repeatedly performing the following two steps:

1- At node n, select one of the productions  for A and construct children of n for 

the symbols on the right- hand  side of the production.

Find the next node at which a sub tree is to be constructed. 

We will consider two types of top-down parsing

1-Recursive-Descent Parsing

A special case of it called predictive parsing.

2-Non-recursive Predictive Parsing

Recursive-descent parsing is a top-down method of syntax analysis in which we 

execute a set of recursive procedures to process the input. A procedure is 

associated with each non-terminal of a grammar. Recursive-descent parsing may 

involve backtracking (making repeated scans of the input).

Type      Simple|id|array[simple]of type

Simple     integer|char|num..num



3.6 Bottom-Up Parsing

Shift-reduce parsing:

1- Operator precedence (easy form)

LR parsing (general form)2-

LR parsing:

It is an efficient bottom-up syntax analysis technique that can be used to parse a 

large class of context – free – grammar.

LR parser is non –backtracking parser. 



Algorithm: LR parsing

Input:An input string w and LR parsing table with functions action and goto for 

the grammar G.

Otput: if w in L(G), a bottom-up parse for w; otherwise, an error indicated.

Metod :initially, the parser has S0 on its stack, where S0 is the initial state, and 

w$ in the input buffer. The parser then execute the following program until an 

accept or error action is encountered.

Set ip to point the first symbol of w$.

Repeat forever begin

Let S be the state on top of the stack and a the symbol pointed to by ip

If action[S,a]=shift S` then begin

Push a then S` on top of the stack

Advance ip to the next input symbol

End

Else if  action[S,a]=reduce A      B then begin

Pop 2*|B| Symbols off the stack.

Lets S` be the state now on top of the stack.

Push A then goto[S`,A] on top of the stack.



Else if action [S,a]=accept then return accept

Else error() 

End

Example :Consider the following grammar 

1) E    E+T

2) E    T

3) T    T*F

4) T    F

5) F    (E)

6) F    id which has the following parsing table



GotoAction

FTE$)(*+id 

321S4S50

ACCS61

R2R2S7R22

R4R4R4R43

328S4S54

R6R6R6R65

39S4S56

10S4S57

S11S68

R1R1S7R19

R3R3R3R310

R5R5R5R511

Si means shift and stack state i

Rj means reduce by production numbered j

Acc means accept

Blank means error



ActioninputStack

Shift S5id*id+id$0

Reduce by  R6( F    id) *id+id$0id5

Reduce by R4(T     F) *id+id$0F3

Shift S7*id+id$0T2

Shift S5id+id$0T2*7

Reduce by R6 (F    id) +id$0T2*7id5

Reduce by R3 (T    T*F) +id$0T2*7F10

Reduce by R2 (E     T)+id$0T2

Shift S6+id$0E1

Shift S5id$0E1+6

Reduce by R6 (F    id)$0E1+6id5

Reduce by R4( T    F) $0E1+6F3

Reduce byR1( E    E+T) $0E1+6T9

accept$0E1

If the string is id*id+id then the parsing of this string will be

Action[0,id]=S5

Action[5,*]=R6 goto[0,F]=3

Action[2,*]=S7

Action[7,id]=S5

Action[5,+]=R6 goto[7,F]=10

Action[10,+]=R3

Action[3,*]=R4 goto[0,T]=2

goto[0,T]=2

Action[2,+]=R2 goto[0,E]=1

Action[1,+]=S6

Action[6,id]=S5

Action[5,$]=R6

goto[6,T]=9Action[3,$]=R4

goto[6,F]=3

Action[9,$]=R1 goto[0,E]=1

Action[1,$]=Acc



Thanks for listening



Basic Language Translator

2nd Class/2nd Sem

Lecture 7 

م وجدان عبد الامير حسن.ا



Semantic Analysis

The Semantic analysis phase of compiler connects variable 

definition to their uses, and checks that each expression has 

a correct type.

This checking called "static type checking” to distinguish it 

from “dynamic type checking” during execution of target 

program. This phase is characterized be the maintenance of 

symbol tables mapping identifiers to their types and locations.



Semantic Analysis

Example of static type checking:      

1- Type checks:- A compiler should report an error if an operator is 
applied to an incompatible operand.      

2- Flow of control checks:- Statements that cause flow of control

leave construct must have some place to which to transfer the 

flow of control .

For  example, a “break” statement in ‘C’ Language causes control 

to leave the smallest enclosing  while ,for ,or switch statement. 



Semantic Analysis

Example of static type checking:

3- Uniqueness checks:- There situations in which an object must be

defined exactly once. For example in ‘Pascal’ Language an

identifier must be declared uniquely.        

4- Name related checks:- Sometimes, the same name must appear

two or more times. The compiler must check that the same name 

Is used at both places.



Semantic Analysis

Type system:-

The design of type checker for a language is based on
information about the syntactic construct in the language, the
notation of types, and the rules for assigning types to language
constructs.

The following excerpts are example of information that a
compiler writer might have to start with

❖ If both operands of the arithmetic operators “addition” ,

“subtraction”, and “multiplication” are of type integer then the 
result is of type integer.  



Semantic Analysis

❖ The result of Unary & operator is a pointer to the object 

referred to by the operand. If the type of operand is T, the 

type of result is pointer to T.

We can classify type into:

1- Basic type: this type are the atomic types with no internal 

structure , such as Boolean, Integer, Real, Char, and a special 

basic types ”type-error, void”.

2-Construct types: Many programming Languages allows a 

programmer to construct types from basic types and other 

constructed types. For example array, struct.



Semantic Analysis

3- complex type: Such as link list, tree, pointer.

Type system:- is a collection of rules for assigning type 

expressions to the various parts of a program. A type checker 

implements a type system.



Thanks for

listening



Basic Language Translator

2nd Class/2nd Sem

Lecture 8 

م وجدان عبد الامير حسن.ا



Intermediate Code Generation(IR)

IR is an internal form of a program created by the compiler while 

translating the program from a HLL to LLL(assembly or machine 

code),from IR the back end of compiler generates target code.

Although a source program can be translated directly into the target 

language, some benefits of using a machine independent IR are:

1- A compiler for different machine can be created by attaching a back 

end for a new machine into an existing frond end.

2- Certain optimization strategies can be more easily performed on IR than 

on either original program or LLL.

3- An IR represent a more attractive form of target code.

front end of compiler(lexical analysis , syntax analysis, semantic analysis)

back end of compiler(code optimization, code generation)



Intermediate Languages:

1- Syntax Tree and Postfix Notation are two kinds of intermediate 
representation, for example a=b*-c + b*-c

= =

a       +                                                                     a          +

*     * *

b       - b      - b -

c               c c

Syntax tree                                                           DAG                                 

] [



▪ A DAG give the same information in syntax tree but in compact way 
because common subexpressions are identified.

▪ Postfix notation is linearized representation of a syntax tree, for 
example abc-*bc-*+=

2-Three Address Code is a sequence of statement of the general form:

X=Y op Z  //op is binary arithmetic operation

For example  x+y*z

t1=y*z

t2=x+t1

Where t1,t2 are compiler generated temporary.



Types of three address code statement:

1- Assigning statement of the form X=Y op Z (where op is a binary arithmetic or logical operator)

2-Assigning instructions of the form X=op Y (op is a unary operator)

3- Copy statement of the form X=Y.

4- Unconditional jump(Goto l).

5- Conditional jump(if X relop Y goto L).

6- Param X and call P,N for function call and return Y.

7- Index assignments of the form X=Y[i] & X[i]=Y.

8- Address & pointer Assignments

x=&y

X=*Y

*X=Y  



Implementation of three address code:

Example: a=b *-c + b*-c

t1=-c                                            t1=-c

t2=b*t1                                         t2=b*t1

t3=-c                                            t5=t2+t2

t4=b*t3                                          a=t5

t5=t2+t4                                         

a=t5

Three address code for                                    Three address code for DAG 

syntax tree

Note: three address statement are kin to assembly code statement can have 
symbolic labels and there are statements for flow of control.



In compiler , three address code can be implement as records, with fields for 
operator and operands.

1- Quadruples:-It is a record structure with four fields:

• OP//operator

• Arg1,arg2//operands

• Result

2- Triples:-To avoid entering temporary into ST, we might refer to a temporary 
value by position of the statement that compute it. So three address can be 
represent by record with only three field:

• OP//operator

• Arg1,arg2//operands



Example: a=b*-c + b*-c

i.By Quadruples

resultarg2arg1OpPosition 

t1c-0

t2t1b*1

t3c-2

t4t3b*3

t5t4t2+4

at5=5



Example: a=b*-c + b*-c

ii.By Triples

arg2arg1OpPosition 

c-0

(0)b*1

c-2

(2)b*3

(3)(1)+4

(4)a=5



Thanks for

listening



Basic Language Translator

2nd Class/2nd Sem

Lecture 9 

م وجدان عبد الامير حسن.ا



Code Optimization

Compiler should produce target code that is as good as can be written by 

hand. This goal is achieved by program transformation called 

“Optimization”. Compilers that apply code improving transformations are 

called “Optimizing compilers”.

Code optimization attempts to increase program efficiency by 

restructuring code to simplify instruction sequences and take advantage of 

machine specific features:-

- Run faster, or

- Less Space, or

- Both(Run Faster and Less Space)  



Code Optimization

The transformation that are provided by an optimizing compiler 

should have several properties:-

1- A transformation must preserve the meaning of program. 

That is , an optimizer must not change the output produce by 

program for a given input, such as division by zero.

2- A transformation must speed up programs by a measurable 

amount.  



Code Optimization

Basic Blocks:-

The code is typically divided into a sequence of “Basic Bloks”.

A Basic Blok is a sequence of straight-line code, with no branches “In” or 

“out” except a branch “In” at the top of block and a branch “out” at the 

bottom of block.

- Set of Basic Block : The following steps are used to set the Basic Block :

1- Determine the Block beginning:

i- The First instruction.

ii- Target of conditional and unconditional Jumps.

iii-Instruction follow Jumps.



2- Determine the Basic Blocks:

i- There is Basic Block for each Block beginning.

ii- The Basic Block consist of the Block beginning and runs until the next 

Block beginning or program end. 

Example:

1) i=0                                B1         1)i=0

2) t=0                                             2)t=0

3) t=t+1                                          3)t=t+1

4) i=i+1                              B2         4) i=i+1

5) If I<10 then goto 3                       5)if I<10 then goto 3

6) x=t

B3         6)x=t

Basic Blocks



B1    1) i=0

2) t=0                       

3) t=t+1   

B2   4) i=i+1

5) if I<10 then goto B2

B3   6) x=t

Control Flow                                 



Code Optimization Methods

A transformation of program is called “local” if it can 

performed by looking only at the statement in a Basic Block,

Otherwise, it is called “Global”.

Local Transformations:

1- Structure-Preserving Transformation:-

- Common Subexpression Elimination.    

- Dead Code Elimination.



Code Optimization Methods

2- Algebraic Transformations:- This transformations uses to 

change the set of expressions ,computed by a basic block ,with 

an algebraically equivalent set. The useful ones are those that 

simplify expressions or replace expensive operations by cheaper 

one, such as:

x:=x+0;

x:=x*1;     Eliminated

x:=x/1;

x:=y^2       x:=y*y



Code Optimization Methods

Another class of algebraic transformations is Constant Folding,

That is, we can evaluate constant expressions at compiler time 

and replace the constant expressions by their values, for 

example, the expression 2 * 3.14 would be replaced by 6.28 .

Global Transformation:

1- Common Subexpression Elimination

a=b+c a=b+c

c=b+c c=a                       

d=b+c d=b+c



2-Dead Code Elimination: Variable is dead if never used

x=y+1

y=1                     y=1

x=2*λ                  x=2* λ

3- Copy propagation

Origin Copy Propagation Dead Code

x=t3                         x=t3                                      

a[t2]=t5                   a[t2]=t5                    a[t2]=t5

a[4]=x                      a[4]=t3                      a[4]=t3

Goto B2                   Goto B2                     Goto B2



4- Constant propagation

Origin Copy Propagation Dead Code

x=3                          x=3                                      

a[t2]=t5                   a[t2]=t5                    a[t2]=t5

a[4]=x                      a[4]=3                       a[4]=3

Goto B2                   Goto B2                     Goto B2



5- Loop Optimization
- Code Motion: An important modification that decreases the amount 
of code in a loop is Code Motion. If result of expression does not 
change during loop(Invariant Computation),can hoist its computation 
out of the loop.

For(i=0; i<n; i++)

a[i]=a[i]+(x*x)/(y*y);

c=(x*x)/(y*y);

For (i=0; i<n; i++)

a[i]=a[i]+c;



- Strength Reduction: Replaces expensive operations 

(Multiplies, Divides) by cheap ones (Adds, Subs). For example, 

suppose the following expression:

For(i=1; i<n; i++)   { v=4*i; s=s+v; }

Then

v=0;

For(i=1; i<n; i++)    { v=v+4; s=s+v; }    



Thanks for

listening



م وجدان عبد الامير حسن.ا

Basic Language Translator

2nd Class/2nd Sem

Lecture 10



Code Generation

In computer science, code generation is the process by which a compiler’s 
code generator converts some internal representation of source code into 
a form(e.g., machine code)that can be readily executed by a machine.

Issues in the Design of a Code Generator:-

1- Input to the Code Generator: the input to the Code Generator consists 
of the intermediate representation of the source program(Optimized IR), 
together with information in ST(Symbol Table) that is used to determine 
the Run Time Addresses of the data objects denoted by names in .IR.

2-Target Programs: The output of the code generator is the target 
program. The output must be Correct and of high Quality, meaning that it 
should make effective use of the resources of the target machine.



Code Generation

Like the IR this output may take on a variety of forms:

a- Absolute Machine Language//Producing this form as output 

has the advantage that it can placed in a fixed location in 

memory and immediately executed.

A small program can be compiled and executed quickly.

b-Relocatable Machine Language// This form of the output

Allows subprograms to be compiled separately. A set of 

relocated object modules can be linked together and loaded for 

execution by linking-loader.



Code Generation

3-Memory Management: Mapping names in the source program 

to addresses of data objects in run time memory.

4-Major tasks in code generation: In addition to the basic 

conversion from IR into a linear sequence of machine 

instructions, a typical code generator tries to optimize the 

generated code in some way. The generator may try to use 

faster instructions, use fewer instructions, exploit available 

registers, and avoid redundant computations.



Tasks which are typically part of compiler’s code generation 

phase include:

i- instruction selection: Is a compiler optimization that 

transforms an internal representation of program into the final 

compiled code(either Binary or Assembly). The Quality of the 

generated code is determined by its Speed and Size. 

For example, the three address code (x=y+z)can be translated 

into:

MOV al,y

ADD  al,z

MOV  x,al 



If the three-address code is:

a=b+c

d=a+e

Then the target code is:

MOV al,b

ADD al,c

MOV a,al 

MOV al,a

ADD al,e

MOV d,al

.



Finally ,A target machine with “Rich” instruction set may be 

provide several ways of implementing a given operation .For 

Example if the target machine has an “increment”    

instruction(INC), then the IR  a=a+1 may be implemented by the 

single instruction(INC a) rather than by a more obvious 

sequence:

MOV al,a

ADD  al,1

MOV a,al



ii-Instruction Scheduling: In which order to put those 

instructions. Scheduling is a speed optimization. The order in 

which computation are performed can effect the efficiency of 

the target code ,because some computation orders require 

fewer registers to hold intermediate results than others.

ii-Register Allocation: Is the process of multiplexing a large 

number of target program variables onto a small number of CPU 

registers. The goal is to keep as many operands as possible in 

registers to maximize the execution speed of software 

programs(instructions involving register operands are usually 

shorter and faster than those involving operands in memory).  



Thanks for

listening


