
Formal Definition of grammar

Computation Theory

2nd Class/1st Sem

Lecture 1

م وجدان عبد الامير حسن.ا

Computation

Theory
First Lecture

* Set:

A set is a collection of objects without

repetition. Each object in a set is called an

element of the set for example D denotes the

set of days

D= {Sun., Mon., Tue., Wed., thru., Fri., Sat.}

D= {X | X is a day of a week}

T= {0,1,2,3,4,5,6,7,8,9}

❖ If an element X is an element of a set A

Then we write X ∈ A and if X is not an

element of A we write X ∉ A thus

Monday ∈ D

May ∉ D

❖We say a set A is a subset of set B

written A С B

{1, 2, 4} С {1, 2, 4, 5, 3}

{1, 2, 6} ₵ {1, 2, 3 ,4 ,5 }

❖ Two sets A and B are sided equal written

A = B iff A and B contain the same

elements.

❖ The Basic operation on sets are

•Unary operation ex. Complement.

•Binary operation ex. Union (), intersection () and

difference.

Aˉ={X | X ∉ A} consist of all elements in the universe are not in

A.

A∪B ={X | X ∈ A or X ∈ B}

A∩B ={X | X ∈ A and X ∈ B}

A\B ={X |X ∈ A and X ∉ B}

2
A the power set of A, is the set of all subset of A.

• A graph denoted G= (V, E), consist of a finite set of

vertices (or node) V and a set of pairs of vertices E

called edges.

• Example:

V= {1, 3, 4}

E= {(1, 3), (3, 4)}

1

3

4

• A directed graph (dgraph), also denoted G= (V, E) consist of a
finite set of vertices V and a set of ordered pairs of vertices E
called arcs.

Example: The digraph G=(V,E) where V={V,W,X} and
E={(V,W),(V,X),(X,V), (W,X)}

V W

X

❖ Products of Sets

Let A1, A2 be two sets then the product of A1 and A2

consist of all the pair (a1, a2) where a1 is in A1 and a2 is in

A2

A1*A2={(a1,a2)| a1 ∈ A1 and a2 ∈ A2 }

Example:

If A1 ={0, 1} and A2={x, y, z}

Then

A1*A2 ={(0,x),(0,y),(0,z),(1,x),(1,y),(1,z)}

❖ concatenation of string:

The concatenation of two strings is the string

formed by writing the first followed by the

second with no intervening space. The

concatenation of x,y over denoted by xy.

abcb is string .

If X=a1 a2 a3 a4….an and Y=b1 b2 b3 b4 ….bn

XY=a1 a2 a3 a4….an b1b2b3b4….bn

YX=b1 b2 b3 b4….bn a1 a2 a3 a4 ….an

Language: A formal language is a set of string of

symbols from some an alphabet.

Closure: concatenation of Σ with itself for all

length of string.

Example

Σ = {a, b, c}

Σ 0= {ϵ}

Σ 1= {a, b, c}

Σ 2={aa,ab,ac,ba,bb,bc,ca,cb,cc}

Σ 3={abc,aaa,aba,aab,baa,bba……}

Σ += Σ 1υ Σ 2 υ Σ 3 υ Σ 4……

Σ *= Σ 0 υ Σ 1υ Σ 2 υ Σ 3 υ Σ 4……

Σ∗= Σ+ υ {ϵ}

Σ + = Σ*- {ϵ}

Thanks for

lessening

Formal Definition of grammar

Computation Theory

2nd Class/1st Sem

Lecture 2

م وجدان عبد الامير حسن.ا

Computation

Theory
Finite State System

Finite State Systems:
The finite automaton is a mathematical model of

system, with discrete inputs and outputs. The system can

be in any one of a finite number of configuration or states.

The state of the system summarizes the information inputs

that are needed to determine the behavior of the system on

subsequent inputs.

In computer science we find many examples of finite state

systems:-

1- Switching circuit, such as the control unit of a computer.

2- The design of several common types of computer

algorithms and programs. For example the lexical analysis

and text editors.

Basic definitions:
A finite automaton (FA) consists of a finite set of states

and a set of transitions from state to state that occur on input

symbols chosen from an alphabet Σ.

for each input symbol there is exactly one transition out of

each state(possibly back to the state itself).

One state, usually denoted q0, is the initial state in which the

automaton starts. Some states are design as final or accepting

states.

A directed graph, called a transition diagram is associated

with a FA as follows. The vertices of the graph correspond to

the states of the FA.

Basic definitions:
If there is a transition from state q to state p on

input a, then there is an arc labeled a from state q to state

p in the transition diagram. The FA accept a string x if the

sequence of transitions correspond to the symbols of x

leads from the start state to an accepting state.

Example:

letter a..z letter a..z

0..9

transition diagram of identifier

q0 q1

Deterministic Finite Automaton (DFA):
Correspond It is an acceptor for any state and input

character has at most one transition state that the acceptor

change to. If no transition state is specified the input string

is rejected.

A DFA is a 5-tuple M= (Q, Σ, δ, q0, F) Where

Q is a set of state.

Σ is an input alphabet.

δ is a transition function δ= Q * Σ = Q

q0 q0 Є Q is the initial state (the initial state is marked

with an incoming arrow

or -

F is a set of final states F С Q

(The final states are depicted using double circles

or

Accepted string → δ (q0, w) =p Є F → w accepted

Else w reject

The language accepted by M, designated L (M),

Language of Automata: L (M) :{ w: δ (q0, w) =p, p Є F}

Example1: Design a DFA that accepted the set of all
strings with an even number of 0's and 1’s
L={11,1111,111111,11111111,….

00,0000,000000,00000000,….
0011,1100,001111,111100,110000,000011,….
0101,1010,010111,…. }

+

Solution: 1-transition Diagram

1
1

0 0 0 0

1
1

Q= {q0, q1, q2, q3}

Σ = {0, 1}

F= {q0}

2-transition function

Suppose the string (110101) is input to M

δ(q0,110101)=δ(δ(qo,1),10101)=δ(δ(q1,1),0101)=𝜹(δ(q0,0),101)=

δ(δ(q2,1)01)=(δ(δ(q3,0),1)= δ (δ(q1,1)=q0 ЄF The string is accepted.
- The path o this string

q0 q1

q2 q3

q0 1 q1 1 q0 0 q2 1 q3 0 q1 1 q0

10Input

State

q1q2-+q0

q0q3q1

q3q0q2

q2q1q3

3-transition table

1

1 1 1

0 1

q0

q3q1
q2

q5 q6

q4

q7 q8

Example2: Design a DFA that accepted the set of all strings that begin

and end with the same double letter, either of the form 00...00,

11...11, Σ= {0, 1}.

L= {0000,00000,000000,0000000, …

00100,001100,0011111100,001111000, …

1111,11111,111111,11111111, …

11011,110011,1100000011, 110000111…}

1 0

0 0 0 0

Example3: Design a DFA that accepted the set of all strings that have number of b's

divisible by 3, Ɛ= {a, b}.

L= {bbb,bbbbbb,bbbbbbbbb,abbb,abbba,aabbb,aabbbbbba,…}

b b

a a a

q0 q1 q2

b

Example4: Design a DFA that accepted the set of all strings that
have total number of 0's divisible by 3, Ɛ= {0, 1}

Example5: Design a DFA that accepted the set of all strings
that ending with double letter Ɛ= {a, b}

Example6: Design a DFA that accepted the set of all strings

that ending in 00.

Example7: Design a DFA that accepted the set of all strings

that all zero must be 3 consecutive 0’s

Example8: Design a DFA that accepted the set of all strings

that does not contain 3 consecutive 1's.

Thanks for

lessening

Formal Definition of grammar

Computation Theory

2nd Class/1st Sem

Lecture 3

م وجدان عبد الامير حسن.ا

Computation

Theory
Finite State System

Non Deterministic Finite Automata

(NFA)

Non Deterministic Finite Automaton (NFA):

It is the FA that allows one or more transition from a state on the

same input symbol.

NFA is a 5-tuple M= (Q, Σ, δ, q0, F) Where

Where Q, Σ and F have the same meaning as for a DFA, but δ is a

map from

Q * Σ to 2Q.

(2Q is the power set of Q, the set of all subset of Q)

-Transition diagram

a a

a a

q1q0

Non Deterministic Finite Automaton (NFA):

-Transition Table

Σ

Q

-Transition Function

δ ({q0, q1}, a) = δ (q0, a) υ δ (q1, a)

Example1: NFA accept all string with either two consecutive 0's or

two consecutive 1’s?

0,1 0,1

0 0

1

Q= {q0, q1, q2, q3, q4}

Σ = {0, 1}

1 F={q2,q4}

0,1 Transition Diagram

q0 q3 q4

q1

q2

10Σ

Q

{q0,q1}{q0,q3]-q0

{q2}∅q1

{q2}{q2}+q2

∅{q4}q3

{q4} {q4}q4+

-Transition Function

Suppose (01001) input to machine

δ (q0,01001)= δ(δ(q0,0),1001)= δ({q0,q3},1001)= δ(δ(q0,1) υ δ(q3,1),001)

= δ({q0,q1},001)= δ(δ(q0,0) υ δ(q1,0),01)= δ({q0,q3},01)= δ(δ(q0,0) υ

δ(q3,0),1)= δ({q0,q3,q4},1)= δ(q0,1) υ δ(q3,1) υ δ(q4,1)={q0,q1,q4}

-An input string is accepted by NFA if there exists a sequence of transition

for the given string that leads from the initial state to some final state

{W Є Σ* | δ (q0, w) ∩ F ≠Ø}

{q0, q1, q4}∩ {q2,q4} ≠Ø

Transition Table

The equivalence of DFA's and NFA's

For every NFA can construct an equivalent DFA (one which accepts the same

language).

Definition
Let L be a set accepted by a non deterministic finite automata. Then there exists
deterministic finite automata that accept L.

1
1 0 1

0

2
A={Ø,{A},{B},{C},{X},{A,B},{A,C},{A,X},{B,C},{B,X},{C,X},{A,B,C},{A,B,x},{B,C,

x},{A, C, X}, {A, B, C, X}}

δ ({A}, 0) = Ø

δ ({A}, 1) ={A,B}

δ ({A,B}, 0) ={A,C}

δ ({A,B}, 1) ={A,B}

δ ({A,C}, 0) = Ø

δ ({A, C}, 1) = {A, B, X}

δ ({A, B, X}, 0) = {A, C}

δ ({A, B, X}, 1) = {A, B}

A B C DX
NFA

1

{A,B}

{A,C}

{A,B,

X}
{A}

1

1

1

1

0 0

{Ø}

0

0

0,1

S A

CB

δ ({S}, a) = {A}

δ ({S}, b) = {B}

δ ({A}, a) = {A,C}

δ({A}, b) = Ø

δ ({B}, a) = Ø

δ ({B}, b) = {B,C}

δ ({A,C}, a) = {A,C}

δ({A,C}, b) = Ø

δ ({B,C}, a) = Ø

δ ({B,C}, b) = {B,C}

a

a

a

bsol : b

b

Example 2:

S A

B

{A,C}

{B,C}

a

a a

b

b

b

Ø
a

a

bb

NFA

DFA

HW:- Convert the following NFA to the DFA

a

b

b a

b

b a

BA

C D

a a

Thanks for

lessening

Formal Definition of grammar

Computation Theory

2nd Class/1st Sem

Lecture 4

م وجدان عبد الامير حسن.ا

Computation

Theory
Finite State System

Non Deterministic Finite Automata with

ϵ - moves

Finite Automata with ϵ - moves
Transition of NFA may be extended to include empty input ϵ.
NFA accepts a siring w if there is some path labeled w from the

initial state to a final state.
Of course, edges labeled ϵ may be included in the path, although

the ϵ's do not appear explicitly in w.

Example:-
Consider an NFA with ϵ-moves which accepts the language

consisting of any number (including zero) of 0's followed by any

number of 1's followed by any number of 2’s.

ϵ ϵ

0 1 2

q0 q2q1

Definition
Nondeterministic finite automata with ϵ -moves to be 5-tuple (Q, Ɛ, δ,

q0, F) the transition function map Q*(Ɛ υ {ϵ}) to 2
Q

ϵ ϵ

0 1 2

The transition function δ can be extended to a function δ˄ that map
Q * Ɛ * to 2

Q .

- We use ϵ-closure (q) to denote the set of all P such that there is a path

from q to P labeled ϵ.

ϵ-closure (q0) = {q0, q1, q2}

q0 q2q1

ϵ210

{q1}ØØ{q0}-q0

{q2}Ø{q1}Øq1

Ø{q2}ØØ+q2

Transition

diagram

Transition

table

Equivalence of NFA's with and without ϵ -moves

Theorem: If L is accepted by NFA with ϵ-transition, then L is accepted by an NFA

without ϵ-transitions.

M= (Q, Ɛ, δ, q0, F) be an NFA with ϵ-transition

Mˉ= (Q, Ɛ, δˉ, q0, Fˉ) where

F υ {q0} if ϵ-closure (q0) contains a state of F

Fˉ={
F otherwise

- δ˄ (q0, ϵ) = ϵ-closure (q0)

- δ˄ (q0, 0) = ϵ-closure (δ (δ˄ (q0, ϵ), 0))

= ϵ-closure (δ ({q0, q1, q2}, 0))

= ϵ-closure (δ (q0, 0) υ δ (q1, 0)

υ δ (q2, 0))
= ϵ-closure ({q0} υ Ø υ Ø)

= ϵ-closure (q0) = {q0, q1, q2}

Example1 :- Construct DFA equivalent the following NFA with ϵ

ϵ ϵ

0 1 2

δ˄ (q0, ϵ) = ϵ-closure (q0) = {q0, q1, q2}

δ˄ (q1, ϵ) = ϵ-closure (q1) = {q1, q2}

δ˄ (q2, ϵ) = ϵ-closure (q2) = {q2}

δ˄ (q0, 0) = ϵ-closure (δ (δ˄ (q0, ϵ), 0))

= ϵ-closure (δ ({q0, q1, q2}, 0))

= ϵ-closure (δ (q0, 0) υ δ (q1, 0) υ δ (q2, 0))

= ϵ-closure ({q0} υ Ø υ Ø)

= ϵ-closure (q0) = {q0, q1, q2}

δ˄ (q0, 1) = ϵ-closure (δ (δ˄ (q0, ϵ), 1))

= ϵ-closure (δ ({q0, q1, q2}, 1))

= ϵ-closure (δ (q0, 1) υ δ (q1, 1) υ δ (q2, 1))

= ϵ-closure (Ø υ {q1} υ Ø)

= ϵ-closure (q1) = {q1, q2}

q0 q2q1

δ˄ (q0, 2) = ϵ-closure (δ (δ˄ (q0, ϵ), 2))

= ϵ-closure (δ ({q0, q1, q2}, 2))

= ϵ-closure (δ (q0, 2) υ δ (q1, 2) υ δ (q2, 2))

= ϵ-closure (Ø υ Ø υ {q2})

= ϵ-closure (q2) = {q2}

δ˄ (q1, 0) = ϵ-closure (δ (δ˄ (q1, ϵ), 0))

= ϵ-closure (δ ({q1, q2}, 0))

= ϵ-closure (δ (q1, 0) υ δ (q2, 0))

= ϵ-closure (Ø υ Ø)

= ϵ-closure (Ø) = {Ø}

δ˄ (q1, 1) =

δ˄ (q1, 2) =

δ˄ (q2, 0) =

δ˄ (q2, 1) =

δ˄ (q2, 2) =

210

{q2}{q1,q2}{q0,q1,q2}-+q0

{q2}{q1,q2}Ø+q1

{q2}ØØ+q2

q0 q1 q2

0 1 2

0,1 1,2

0,1,2

NFA with out ϵ

210

{q2}{q1,q2}{q0,q1,q2}+-q0

{q2}{q1,q2}{q0,q1,q2}+{q0,q1,q2}

{q2}{q1,q2}Ø+{q1,q2}

{q2}ØØ+{q2}

NFA without ϵ to DFA

{q0,q1,q2}

{q1,q2}

{q2}{q0}

0 2

2 1

1 2

1

0

2

DFA

Thanks for

lessening

Formal Definition of grammar

Computation Theory

2nd Class/1st Sem

Lecture 5

م وجدان عبد الامير حسن.ا

Computation

Theory
Regular Expression

Regular Expression:

- The languages accepted by finite automata are easily described by

simple expressions called Regular Expressions.

- Let Σ be an alphabet. The regular expressions over Σ and the sets

that they denote are defined recursively as follows

1- Ø is a regular expression and denotes the empty set {}.

2- ϵ is a regular expression and denotes the set { ϵ }

3- For each a in Σ, a is regular expression and denotes the set {a}.

4- If r and s are regular expressions denoting the language R and S,

respectively then (r+s), (rs), and (r*) are regular expressions denote

the sets RυS, RS and R* respectively.

Regular Expression:

- In writing regular expressions we can omit many parentheses if we

assume that * has higher precedence than concatenation or +, and

that concatenation has higher precedence than +, for example

((0(1*)) +0) may be written 01*+ 0.

We may abbreviate the expression rr* by r+ .

r* ={ϵ,r, rr, rrr, rrrr,…}

r+ ={r, rr, rrr, rrrr,…}

rr*= r(ϵ,r, rr, rrr, rrrr,…)= r,rr,rrr,rrrr,…= r+

𝐿∗ = σ𝑖=0
∞ 𝐿𝑖

𝐿+ = σ𝑖=1
∞ 𝐿𝑖

𝐿0= ϵ

Language Example

example1:

Let L1= {10, 1} and L2= {011, 11}

L1L2 = {10011, 1011, 111}

L1+L2= {10, 1, 011, 11}

L1*= {ϵ, 10, 1, 1010, 11, …}

L1+= {10, 1, 1010, 11,…}

example2:

L1= {01, 0}, L2= {ϵ, 0, 10}

L1L2= {01, 010, 0110, 0, 00}

L2L1= {01, 0, 001, 00, 1001, 100}

L1ϵ=L1= {01, 0}

L1*={ϵ, 01,0,0101,00,010,001,…}

Examples of Regular Expression

❖ 00 is a regular expression representing {00}.

L={00}

❖ (0+1) * is a regular expression denotes all strings of 0's and

1's.

L= {ϵ, 0, 1, 00, 11, 01, 10, …}

q1q0 q2

q2

0 0
FA

q0

q2

0,1

❖ 0*+1* is a regular expression denotes all strings of 0's and 1's

0*= {ϵ, 0, 00, 000,…}

1*= {ϵ, 1, 11, 111,…}

L= 0*+1*= {ϵ ,0, 1, 00, 11, 000, 111,…}

❖ 0*1*2* is a regular expression denotes the language of any number

of 0's followed by any number of 1's followed by any number of

2’s.

❖ (0+1)*011 is a regular expression denotes the language of mixed

group of 0's and 1's ended by 011.

❖ ((0+1)* 00 (0+1) * is a regular expression denotes the language of

all string of 0's and 1’s with at least two consecutive 0’s.

❖ Finite Language L that contains all the strings of a's of b's of length

exactly three L= {aaa, aab, aba, abb, bab, bba, bbb,baa}. The

first letter of each word in L is either a or b, the second letter of

each word in L is either is either a or b, the third letter of each

word in L is either a or b so we may write L=((a+b)(a+b)(a+b)).

❖ a(a+b)*b is a regular expression denotes the language of all words

that begin with a and end with b .

❖ (a+b)*aa(a+b)* is a regular expression denotes the language all

words over the alphabet Σ= {a,b} with at least two consecutive a's

❖ (a+b)*abb is a regular expression denotes the language of all

string of a's and b's ending in abb.

❖ The language defined by the regular expression a*b* is the set of

all the string of a's and b's L={ ϵ, a, b, aa, bb, ab, aaa, aab, abb,

bbb, aaaa,…}.

❖ Language of expressions a*b* ≠(ab)*

Since the language defined by the expression on the right contains

the word abab, which the language defined by the expression on

the left does not.

❖ Consider the language T defined over the alphabet Σ= {a, b, c} ,

T= {a, c, ab, cb, abb, cbb, abbb, cbbb, abbbb, cbbbb, abbbbb,

cbbbbb,…}.

All the words in T begin with an a or c and then are followed by

some number of b’s.

Symbolical we may write this as T= ((a+c) b*).

❖ (b+ba)* is a regular expression denotes the language of all string of

a's and b's beginning with b and not having two consecutive a’s.

❖ (a+b)*(aa+bb)(a+b) * is a regular expression denotes the language

of all words over the alphabet Σ = {a,b} with at least two.

consecutive a’s or two consecutive b’s

❖The language defined by the regular expression ab*a is the set of

all string of a’s and b's that have at least two letters, that begin

and end with a’s
b* ={ϵ,b,bb,bbb,bbbb,…}

L={aa, aba, abba, abbba, abbbba,…}

Thanks for

lessening

Formal Definition of grammar

Computation Theory

2nd Class/1st Sem

Lecture 6

م وجدان عبد الامير حسن.ا

Computation

Theory
Equivalence of finite automata and

regular expression

Equivalence of finite automata and regular expression:

Non Deterministic

Finite

automata(NFA)

Deterministic Finite

Automata(DFA)

NFA with ϵ-

transition

Regular Expression

(RE)

Theorem

Let r be a regular expression. Then there exists an NFA with ϵ-transitions

that accepts L(r).

Case 0 (zero operation)

q0

(a) r= ϵ

qfq0

(b) r= Ø

q0 qf

(C) r=a

a

Regular Expression:

Case 1 (one or more operators)

r=r1+r2

q1

f0

f1

q2 f2

q0

M1

M2

ϵ ϵ

ϵ ϵ

M1=(Q1, Σ1,𝛿1,q1,f1)

M1=(Q2, Σ2,𝛿2,q2,f2) let q0 be a new initial state and f0 anew final state

M=(Q1∪ Q2 ∪{q0,f0}, Σ1∪ Σ2, 𝛿,q0,f0}

r1

r2

Case 2
r=r1r2

Case 3

r=r1*

q1 f1 q2 f2M1 M2

M=(Q1∪ 𝑄2, Σ1∪ Σ2, 𝛿,q1,f2}

f0

M=(Q1∪ {𝑞0, 𝑓𝑜}, Σ 1,𝛿,q0,f0}

ϵ

ϵ

q1 f1M1q0
ϵϵ

ϵ

Case 3

r=r1+

q1 f1M1q0 f0

M=(Q1∪ {𝑞0, 𝑓𝑜}, Σ1,𝛿,q0,f0}

ϵ

ϵϵ

Example1

Construct an NFA with ϵ for the following regular expression

r2=1

r1= 01*

q1

q4q3

q8

1

1

RE=01*+1

r= r1 +r2

ϵ

0 1

q2

q7 q5 q6

q5 q6

ϵ

ϵ

ϵ

1*

Example1:

Construct an NFA with ϵ for the following regular expression

RE=01*+1

1

RE=01*+1

ϵ

ϵ

q3 q4 q7 q5 q6 q8

ϵ

ϵ

q3 q4 q7 q5 q6
q8

ϵ

q0

q2q1

qf

ϵ
ϵ

ϵ

0 ϵ ϵ 1 ϵ

0 ϵ ϵ ϵ

q1 q2

r1= 01*

1
r2= 1

1

Example2

Construct an NFA with ϵ for the following regular expression

RE=(ba+ab*)

ϵ

ϵ

q5
q6 q9 q7 q8

q10

ϵ

q0

q3q1

qfϵ

ϵ

ϵ

a ϵ ϵ b ϵ

q4q2
b ϵ a

Example3

Construct an NFA with ϵ for the following regular expression

RE=(01+10)+ 11*

ϵ

ϵ

q13 q14 q17 q15 q16

ϵ

q9

q3q1

q18

ϵ

ϵ

ϵ
q4q2

0

ϵ

1

q11

q5 q6 q7 q81 0ϵϵ

q10 q12
ϵ

1
ϵ 1

ϵ

ϵϵ

Thanks for

lessening

Formal Definition of grammar

Computation Theory

2nd Class/1st Sem

Lecture 7

م وجدان عبد الامير حسن.ا

Computation

Theory
Transition Graph (TG)

Transition Graph:
A transition graph abbreviated TG is a collection of

(Q,Σ, δ, 𝑞0, 𝐹)
Q is a set of states

Σ is an input alphabet

δ A finite set of transition that show how to go from

one state to another based on reading specified

substring of input letters(possibly even the null

string Є).

q0 q0 ∈ Q is the initial state.

F is a set of final states F⊆ 𝑄(may be none)

Example1:

abba

baa

Example2:

b

a,b

q0 q1

q0

q1

q2 q3

Example3: the following TG accept a language of all words that begin and end

with different letter.

a

b

Example 4: Design a TG for that recognize all words that contain double letter

Σ={a,b}

aa,bb

a,b

q2
q1

q4q3

q0
a

b

a,b

a,b

q0
q1

a,b

Transition Graph (TG)

It is the FA that allows one or more transition from a state on the same

input symbol.

NFA is a 5-tuple M= (Q, Σ, δ, q0, F) Where

Where Q, Σ and F have the same meaning as for a DFA, but δ is a map

from

Q * Σ to 2Q.

(2Q is the power set of Q, the set of all subset of Q)

-Transition diagram

a a

a a

q1q0

Thanks for

lessening

Formal Definition of grammar

Computation Theory

2nd Class/1st Sem

Lecture 8

م وجدان عبد الامير حسن.ا

Computation

Theory
Kleene's Theorem

Kleene's theorem
Any language that can be defined by

1-Regular Expression

2-Finite Automata

3-Transition Graph

Part1:-Every language that can be defined by a

finite automata can also be defined by a transition

graph.

Every finite automata is itself a transition graph.

therefore, any language that has been defined by a

finite automata has already been defined by a

transition graph.

Part2:-Every language that can be defined by a

transition graph can also be defined by a regular

expression.

This means that we present a procedure that stars

out with a transition graph and ends with a regular

expression that defined the same language.

First want to simply T so that it has only one start

state

q1 q2

q3

q5

q4

start

start

start q5

q3 q4

q2q1

q0

becomes

b
b

ab ab

aa
aa

Є

Є

Є

Another simplification we can make in TG is that it

can be modified to have a unique final state without

changing the language it accepts.

It should be clear that the addition of these two new states

does not affect the language that TG(transition graph)

accepts. Any word accepted by old TG is also accepted by

the new TG, and any word rejected by the old TG is also

rejected by the new TG.

q8
becomes

b b

aba

aa
Є

Є

q9

q8

q9

aa

aba

qf

Pass operation:- If three states in arrow connected by edges labeled with

regular expression, we can eliminate the middleman and go directly from

one outer state to the other by a new edge labeled with a regular

expression that is the concatenation of the two previous labels.

We can replace this with

becomes

q1 q2 q3

r1

q1 q3

r3

r1r3

q1 q2 q3
r3r1

r2

q1 q3

r1r2*r3

Example:-TG which accepts all words that begin and end with double

letters

Є

q0 q1

q2
aa

aa,bb

q3

a,b

q4

bb

q2

q3

q0 q1

aa,bb

a,b

aa

bb
Є

Є

q0

q2

q3

q1
aa+bb

a+b

q4

Є

Є

aa

bb

Example:-TG which accepts all words that begin and end with

double letters

q0 q1

aa
aa+bb

q3

a+b

q4

bb

q0 q1

aa+bb

a+b

aa

bb

q0

(aa+bb)(a+b)*aa

q4

(aa+bb)(a+b)*bb

q4

q0
q4

(aa+bb)(a+b)*aa + (aa+bb)(a+b)*bb

Re=(aa+bb)(a+b)*aa + (aa+bb)(a+b)*bb = (aa+bb)(a+b)* (aa+bb)

Є

homework:-The following TG which accepts all words with an

even number of a’s and even number of b’s

What is the regular expression of the above diagram ?

ab,ba

aa,bb

q2

ab,ba
aa,bb

Part 3:- Every language that can be defined by a

regular expression can also be defined by a finite

automata.

If there is an FA called FA1 that accepts the language

defined by regular expression r1 and there is an FA

called FA2 that accepts the language defined by the

regular expression r2, then there is an FA called FA3

that accepts the language defined by regular

expression (r1+r2).

x1 x2

Example:Find FA1+FA2

x3 y1 y2

a
a

b

a,b
b a

a

b

b

ba

Z3=[x1,y2]z2=[x2,y1]-Z1=[x1,y1]

Z3=[x1,y2]Z4=[x3,y1]Z2=[x2,y1]

Z3=[x1,y2]Z2=[x2,y1]+Z3=[x1,y2]

Z5=[x3,y2]Z4=[x3,y1]+Z4=[x3,y1]

Z5=[x3,y2]Z4=[x3,y1]+Z5=[x3,y2]

z1 z2

z3 z4

z5b

b

a b

b

a

a

a

b

a

FA1 FA2

FA1+FA2

FA1 =the machine that accepts only strings with a double a in them

FA2 =the machine that accepts all words that end in the letter b

-If there is an FA called FA1 that accepts the

language defined by regular expression r1 and there

is an FA called FA2 that accepts the language defined

by the regular expression r2, then there is an FA

called FA3 that accepts the language defined by

regular expression (r1.r2).

x1 x2

Example:Find FA1.FA2

x3 y1 y2

a a

b

a,b
b a

a

b

b

ba

Z1=[x1]z2=[x2] -Z1=[x1]

Z1=[x1]Z3=[x3,y1]Z2=[x2]

Z4=[x3,y1,y2]Z3=[x3,y1]Z3=[x3,y1]

Z4=[x3,y1,y2]Z3=[x3,y1]+Z4=[x3,y1,y2]

solution

z1 z2 z3 z4

b b

ba

a

a

a

FA1 FA2

b

FA1.FA2

FA1 =the machine that accepts only strings with a double a in them

FA2 =the machine that accepts all words that end in the letter b

Thanks for

lessening

Formal Definition of grammar

Computation Theory

2nd Class/1st Sem

Lecture 9

م وجدان عبد الامير حسن.ا

Computation

Theory

Grammar

The formal definition of Grammar
G=(V,T,P,S) Where
V is a Finite set of Variable(non-terminal)(represented by upper case

letters)

T is a Finite set of terminal (represent by lower case letter)

P is a Finite set of production

S is called the start symbol (non-terminal)

Example:
G=({S,A,B},{a,b},P,S} consist of production

S→ 𝑨|𝑩
A→aA|a Production

B →bB |b

Derivation:- is used to generate(determine)sentence of the

given language,(and it is sequence of application the rule to

produce the finished string of terminal from S.

→ denotes derivation

Definition :- The language generated by G [denoted L(G)] is

{w | w in T* and S → w} that is, a string is L(G) if:

1) The string consists solely of terminals.

2) The string can be derived from S.

Example: Consider the following grammar G=({S},{a},P,S)

where P consist of

S → aS|a P

S → aaa

S →a

S → aS → aa

S → aS → aaS → aaa

*

*
G

Example:
G=({S,A,B},{a,b},P,S) consist of production

S→ 𝑨|𝑩
A→aA|a

B →bB |b

S→ A → a

S→ A →aA →aa

S→ A →aA →aaA →aaa

S → A →aA →aaA →aaaA →aaaa

S → B → b

S→B→bB→bb

S→B→bB→bbB →bbb

S→B→ bB→bbB →bbbB→bbbb

L(G)={a
n |n>=1} ∪{b

n |n>=1}

P

Leftmost and rightmost derivations:-

If at each step in a derivation a production is applied to

the left most variable, then the derivation is said to be

leftmost.

Similarity a derivation in which rightmost variable is

replaced at each step is said to be rightmost.

Example:-

Consider the grammar G=({S,A},{a,b},P,S), where P

consist of

S → aAS | a

A →SbA | SS | ba the word aabbaa

Leftmost derivation

S → aAS → aSbAS → aabAS → aabbaS → aabbaa

Rightmost derivation

S → aAS → aAa → aSbAa → aSbbaa → aabbaa

Derivation Trees:-
If is useful to display derivations as trees. These

pictures, called derivation(or generation or

production or syntax)trees.

Leaf: a vertex which has no sons, usually represent

a terminal.

Interior vertex: a vertex which has one or more

sons usually ∈ 𝑉.
Yield of the derivation tree: if we read the label

of the leaves from left to right, we have a

sentential form, we call this string the yield.

Example:-
Consider the grammar G=({S,A},{a,b},P,S}, where P consist of

S → aAS | a

A →SbA | SS | ba

Draw the derivation tree of the string(aabbaa)

S → aAS → aSbAS → aabAS → aabbaS → aabbaa

S

Sa A

AS b

aba

a

Root(non terminal)

Example:-
Consider the grammar G=({E},{id,(,),*,+},P,E}, where P consist of

E → E+E | E*E |(E) |id

Draw the derivation tree of the string((id+id)*id)

E →E*E →(E)*E →(E+E)*E →(id+E)*E →(id+id)*E →(id+id)*id)

E Root(non terminal)

E E

E

E E

id id

id

()
terminal

*

+

Thanks for

lessening

Formal Definition of grammar

Computation Theory

2nd Class/1st Sem

Lecture 10

م وجدان عبد الامير حسن.ا

Computation

Theory

Type of Grammar

A phrase Structure Grammar(PSG)
Is a 4 tuple (V,T,P,S) Where

V :Finite set of non-terminals.

T :is a Finite set of terminals such that V ∩T =∅.

P :is a Finite set of production of the form 𝛼 → 𝛽
,where 𝛼 the string on the left hand side of the

production, is such that 𝛼 ∈ (𝑉 ∪ 𝑇)+ and 𝛽 the

string on the right hand side of the production, is

such 𝛽 ∈ (𝑉 ∪ 𝑇) *.

S ∈ V is symbol designed as the start symbol of the

grammar.

Example1:

Consider the PSG,G1=({S,A,B},{a,b},P,S) with production

S→ 𝐴 S→ 𝐵
A →aA A →a

B → bB B → b
The above productions can be abbreviated

S→ 𝐴|𝐵
A →aA|a

B → bB|b

L(G1)={a
n |n>=1} ∪{b

n |n>=1}

p

Example2:
Consider the PSG,G2 with production

S→ 𝑎S𝐵𝐶|𝑎𝐵𝐶
CB → BC

aB → ab

bB → bb

bC → bc

cC → cc

In this example the left side of the production are not all single

non terminal.

S→ 𝑎𝑎𝑏𝑏𝑐𝑐
S →aBC →abC →abc

S→aSBC→aaBCBC→aabCBC→aabBCC →aabbCC →aabbcC→aabbcc

L(G2)={a
n

b
n

c
n |n ≥ 1}

*

p

Some time ,it ma be that two different grammar G

and G` generate the same language L(G)=L(G `).
In this case the grammars are said to be equivalent .

An example of a grammar equivalent to G1 is G3

with productions

S → aA|bB|a|b

A →aA|a

B →bB|b

PSG is also known as unrestricted grammar.

p

Context Sensitive Grammar(CSG)
Suppose a restriction is placed on productions

𝜶 → 𝜷 𝜶 ≤ 𝜷 that 𝛽 𝑏𝑒 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑎𝑠 𝑙𝑜𝑛𝑔 𝑎𝑠 𝛼 .
Then the resulting grammar is called Context-

Sensitive grammar(CSG)and the language a Context

Sensitive language(CSL).

The term “Context-Sensitive” comes from a normal

form for these grammar, where each production is of

the form 𝛼1𝐴𝛼2 → 𝛼1B𝛼2, with B≠ 𝜖, they permit

replacement of variable A by string B only in the

"context"𝛼1𝛼2.

Example:
Consider the CSG,G=({S,B,C},{x,y,z},P,S} with production

S→ 𝐁𝐲𝐳
B → x|xBc

cy → yc

cz → yzz

S→ xxxyyyzzz

S →Byz →xyz

S →Byz →xBcyz → xxBccyz →xxxccyz →xxxcycz →xxxyccz →
xxxycyzz →xxxyyczz → xxxyyyzzz

L(G)={x
n

y
n

z
n |n ≥ 1}

*

p

Context Free Grammar(CFG)
A limiting to the left-hand sides of each production

𝛼 → 𝛽 in a CSG to be a single nonterminal A → B

where A ∈ 𝑉 𝑎𝑛𝑑 𝛽 ∈ 𝑉 ∪ 𝑇
∗
.

Example1: Consider a grammar G=({S},{a,b},P,S)and P

is the following set

S → aSb|ab

S →ab

S → aSb →aabb

S → aSb →aaSbb →aaabbb

S → aSb →aaSbb →aaaSbbb →aaaabbbb

L(G)={a
n

b
n |n>=1}

p

Example2: Consider a grammar G=({S},{a,b},P,S)and P

is the following set

S → aSb|𝝐 𝑷
S → 𝜖
S → aSb →ab

S → aSb →aaSbb →aabb

S → aSb →aaSbb →aaaSbbb →aaabbb

L(G)={a
n

b
n |n>=0}

Example3: Consider a grammar G=({S},{a,b},P,S)and P

is the following set

S → aB|bA

A → aS|a|bAA P

B → bS|b|aBB

S → abba

S → aB → abS → abbA → abba

S → bababa

S → bA → baS → babA → babaS → bababA → bababa

S → baabba

S → bA → baS → baaB → baabS → baabbA → baabba

The language L(G) is the set of all words in T

consisting of equal number of a’s and b’s.

*

*

*

+

Example 4: Consider a grammar

G=({S,A},{a,b,c,d},P,S)and P is the following set

S → aSd|aAd

A → bAc|bc
S → aSd →aaAdd → aabcdd

S → aSd →aaAdd →aabAcaa →aabbccdd

S → aSd→aaSdd→aaaSddd→aaaaAdddd → aaaabcdddd

S → aSd→aaSdd→aaaSddd→aaaaAdddd → aaaabAcdddd

→ aaaabbccdddd

The language L(G) ={a
n

b
m

c
m

d
n |n ≥ 1,m ≥ 1}*

p

❖Palindrome

S → aSa|bSb|b|a|𝝐
S →b

S →a

S → 𝜖
S → aSa →aba

S → aSa →aaa

S → aSa →a𝜖a →aa

S →aSa →abSba → abbba

S →aSa →abSba →ababa

S →aSa →abSba →ab𝜖ba →abba

S → bSb →bbb

S → bSb → bab

S → bSb → b𝜖b →bb

p

Thanks for

lessening

Formal Definition of grammar

Computation Theory

2nd Class/1st Sem

Lecture 11

م وجدان عبد الامير حسن.ا

Computation

Theory
Properties of Grammar

Properties of grammar
1-If G1 and G2 are CFG then the union

(CFG1+CFG2)is also CFG.

2-If G1 and G2 are CFG then their

concatenation (CFG1.CFG2) is also CFG.

3- If G1 is a CFG then the closure of

CFG1(CFG1)* is also CFG.

Properties of Context Free Language(CFL)

1-If L1 and L2 are CFL then the union

(CFL1+CFL2)is also a CFL.

2-If L1 and L2 are CFL then their

concatenation (CFL1.CFL2) is also CFL .

3- If L1 is a CFL then the closure of CFL1

(CFL1)* is also CFL.

Example
Let L1={a

n
b
2n |n>=1}be a CFL for the following CFG1

S→ 𝒂𝑺𝒃𝒃|𝒂𝒃𝒃
And

L2=palindrome on {a,b} be a CFL with the following CFG2

S → aSa|bSb|a|b|𝝐
Then L1+L2 (CFG1+CFG2)

S → S1|S2

S1 → 𝑎𝑆1𝑏𝑏|𝑎𝑏𝑏
S2 → aS2a|bS2b|a|b|𝜖
And L1.L2 (CFG1.CFG2)

S → S1.S2

S1 → 𝑎𝑆1𝑏𝑏|𝑎𝑏𝑏
S2 → aS2a|bS2b|a|b|𝜖
and L1

∗
(CFG1)

∗

S → S1S| 𝜖
S1→ 𝑎𝑆1𝑏𝑏|𝑎𝑏𝑏

Ambiguity:
a CFG is said to be ambiguous grammar

if there exist some word w with two parse

tree or equivalently has more than one

leftmost or rightmost derivation for a

particular word w.

A CFL for which every CFG is ambiguous is

said to be inherently ambiguous CFL.

Example
(Non ambiguous CFL)

S → aAS | a

A →SbA | SS | ba

Find S →aabbaa

Leftmost derivation

S → aAS → aSbAS → aabAS → aabbaS → aabbaa

Rightmost derivation

S → aAS → aAa → aSbAa → aSbbaa → aabbaa

*

S

S

S

A

A

a a

a

a

b

b

Example(ambiguous CFL)
S → SbS |ScS|a

Find S →abaca

Leftmost derivation

S → SbS → abS → abScS → abacS → abaca

S → ScS → SbScS → abScS → abacS → abaca

Rightmost derivation

S → SbS → SbScS → SbSca → Sbaca → abaca

S → ScS → Sca → SbSca → Sbaca → abaca

*

S

S

a

c S

S

S

b

aa

S S

S

b

S Sca

a a

Simplification of Context Free Grammar
If L is a nonempty CFL then it can be generated

by a CFG G with the following properties

1-Each variable and terminal of G appears in the

derivation of some word in L.

2-There are no production of the form A →B

where A and B are variables.

3-If 𝜖 is not in L, there need no production of the

form A → 𝜖 .

Useless Symbols:-
Let G=(V,T,P,S) be a grammar. A symbol X is

useful if there is a derivation S → 𝛼𝑋𝛽 →w for

some 𝛼, 𝛽 And w, where w ∈ 𝑇 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 X is

useless.

There are two aspect to usefulness.

First some terminal string must be derivable

from X.

Second X, must occur in some string derived

from S.

**

*

*

Useless Symbols:-
Lemma1:-Given a CFG G=(V,T,P,S) with

L(G)≠ ∅ we can fined an equivalent CFG G

(V,T,P,S) such that for each A in V there is

some w ∈ T for which A → w.

Lemma2:-Given a CFG G=(V,T,P,S)we can find

an equivalent CFG G=(V,T,P,S) such that for

each X in (V∪T) there exist 𝛼 𝑎𝑛𝑑 𝛽 in (V∪T)
For which S → 𝛼 𝑋 𝛽.

Note:- you first have to applying lemma1 then

Lemma2.

*

*

~

~ ~

*

~ ~ ~ ~

~~ ~ ~

*

Example:-
G=({S,A,B},{a},P,S)

S → AB|a

A →a

By apply Lemma1

S →a

A →a

G1=({S,A},{a},P1,S)

By apply Lemma2

G2=({S},{a},P2,S)

S →a

P1

P2

P

Example2: G=({S,X,C,A},{a,b},P,S)

S → AX|𝑩𝑨
X → 𝑿𝑩|𝑨𝑿
B →aXe|b

C → a|abx

A →a

By applying Lemma1 G1=({S,B,C,A},{a,b},P1,S)

S →BA

B →b

C →a

A →a

By applying Lemma2 G2=({S,A,B},{a,b},P2,S)

S →BA

B →b

A →a

P

P2

P1

Thanks for

lessening

Formal Definition of grammar

Computation Theory

2nd Class/1st Sem

Lecture 12

م وجدان عبد الامير حسن.ا

Computation

Theory
Simplification of Context

Free Grammar

Simplification of Context Free Grammar
If L is a nonempty CFL then it can be generated

by a CFG G with the following properties

1-Each variable and terminal of G appears in the

derivation of some word in L.

2-There are no production of the form A →B

where A and B are variables.

3-If 𝜖 is not in L, there need no production of the

form A → 𝜖 .

Useless Symbols:-
Let G=(V,T,P,S) be a grammar. A symbol X is

useful if there is a derivation S → 𝛼𝑋𝛽 →w for

some 𝛼, 𝛽 And w, where w ∈ 𝑇 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 X is

useless.

There are two aspect to usefulness.

First some terminal string must be derivable

from X.

Second X, must occur in some string derived

from S.

**

*

*

Useless Symbols:-
Lemma1:-Given a CFG G=(V,T,P,S) with

L(G)≠ ∅ we can fined an equivalent CFG

G´ (V´,T,P´,S) such that for each A in V there is

some w ∈ T for which A → w.

Lemma2:-Given a CFG G=(V,T,P,S)we can find

an equivalent CFG G´=(V´,T´,P´,S) such that for

each X in (V´ ∪T´) there exist 𝛼 𝑎𝑛𝑑 𝛽 in

(V´ ∪T´) For which S → 𝛼 𝑋 𝛽.

Note:- you first have to applying lemma1 then

Lemma2.

*
*

*

Example1:-
G=({S,A,B},{a},P,S)

S → AB|a

A →a

By apply Lemma1

S →a

A →a

G1=({S,A},{a},P1,S)

By apply Lemma2

G2=({S},{a},P2,S)

S →a

P1

P2

P

Example2: G=({S,X,C,A},{a,b},P,S)

S → AX|𝑩𝑨
X → 𝑿𝑩|𝑨𝑿
B →aXe|b

C → a|abx

A →a

By applying Lemma1 G1=({S,B,C,A},{a,b},P1,S)

S →BA

B →b

C →a

A →a

By applying Lemma2 G2=({S,A,B},{a,b},P2,S)

S →BA

B →b

A →a

P

P2

P1

∈ −production:-
If L=L(G) for some CFG, G=(V,T,P,S) then L- {∈}

is L(G´)for a CFG G´ with no useless symbols

or ∈ productions.

We can determine the nullable symbols of G

by the following:-

If A → ∈ is a production then A is nullable

symbols. If 𝛽 → 𝛼 is a production and all

symbols of 𝛼 have been found nullable then

𝛽 is nullable.

Example1: for the following grammar remove

∈ −𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
Let G have productions

S → (𝑬)|𝑬
E →T|E+T|E-T

T → F|T*F|T/F

F →a|b|c|∈
Nullable=(F,T,E,𝑆)

S →(E)|E|()

E →T|E+T|E-T|E+|E-|+T|-T|+|-

T →F|T*F|T/F|T*|T/|*F|/F|*|/

F →a|b|c

Example2: for the following grammar remove

∈ −𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

A → 𝑬|𝑪𝑬|BC

B →CD

C → c|∈
D →d|∈
E →eE|e

Nullable=(A,B,C,D)

A →E|CE|BC|B|C

B →CD|C|D

C → c

D → d

E → eE|e

Unit production:-
If a grammar have production of the form

A →B whose right hand side consist of a single

variable we call these production by unit

production.

All other production of the form A → a and

∈ -productions are non unit productions.

For CFG defined by G=(V,T,P,S) where G has no ∈ -

productions construct a new set of production P´

from P by first including all non unit production of

P.

Then A → B for A and B in V add to P all

productions of the form A → 𝛼 is a non unit

production.

∗

Example1: for the following grammar remove unit

production

A →E|CE|B|C|BC

B →C|D|CD

C → c

D → d

E → Ee|e

Solution

A →Ee|e|CE|c|d|CD|BC

B →c|d|CD

C → c

D → d

E → Ee|e

Example2: for the following grammar remove unit

production

S →A|ABA

A →aA|a|B

B → bB|b

Solution

S→aA|a|bB|b|ABA

A →aA|a|bB|b

B→ bB|b

H.W:-Remove unit production from the

following grammar

S → D

D → AB

A → c

C → ac|a

B → M

M → bM|b

Thanks for

lessening

Formal Definition of grammar

Computation Theory

2nd Class/1st Sem

Lecture 14

م وجدان عبد الامير حسن.ا

Computation

Theory
Canonical Form of Context

Free grammar

Canonical form of Context Free Grammar
In the Context Free Grammar(CFG) there are two

canonical form

1-Chomsky Normal Form(CNF).

2-Greibach Normal Form(GNF).

This formal form prove that all CFG are equivalent to

grammar with restrictions on the forms of

productions.

Greibach Normal Form(GNF):-
Every Context Free Language without ∈ can be

generated by grammar for every productions is of the

form A → a𝜶 where A is a variable and 𝜶 is a(possibly

empty)string of variables.

Lemma1:

Define an A-production to be a production with variable

A on the left. Let G=(V,T,P,S)be a CFG.

Let A → 𝛼1B𝛼2 be a production in p and

B → B1|B2|B3|..|Br be the set of all B-productions.

Let G1=(V,T,P1,S)be obtained from G by deleting the

production A → 𝛼1B𝛼2 and adding the production

A → 𝛼1B1𝛼2|𝛼1B2𝛼2|𝛼1B3𝛼2|.. 𝛼1Br𝛼2 then

L(G)=L(G1).

Greibach Normal Form(GNF):-
Lemma2:

Let G=(V,T,P,S) be a CFG. Let A → 𝐴𝛼1 𝐴𝛼2 . . 𝐴𝛼𝑟 be

the set of A-productions. For which A is the leftmost

symbol of the right-hand side. Let A → B1|B2|..BS be

the remaining A-production.

Let G1=(V∪{B},T,P1,S)be the CFG formed by adding

the variable B to V and replacing all the A-

productions by the productions

1)A → Bi 1<=i<=s 2) B → 𝛼𝑖 <=i<=r

A → BiB B → 𝛼𝑖B
Then L(G1)=L(G)

Example: Convert to Greibach normal form the grammar

G=({A1,A2,A3},{a,b},P,A1)

Where P consist of following A → a𝜶
A1 → A2A3

A2 → A3A1|b

A3 → A1A2|a

Solution

A3 →A2A3A2|a

A3 →A3A1A3A2|bA3A2|a B3 →A1A3A2|A1A3A2B3

A3 →bA3A2B3|aB3|bA3A2|a

B3 →A1A3A2|A1A3A2B3

A2 →bA3A2B3A1|aB3A1|bA3A2A1|aA1|b

A1 →bA3A2B3A1A3|aB3A1A3|bA3A2A1A3|aA1A3|bA3

B3 →A1A3A2|A1A3A2B3
B3 → bA3A2B3A1A3A3A2|aB3A1A3A3A2|bA3A2A1A3A3A2|aA1A3|bA3A3A2|

bA3A2B3A1A3A3A2B3|aB3A1A3A3A2B3|bA3A2A1A3A3A2B3|aA1A3A3A2B3|b

A3A3A2B3

Thanks for

lessening

