o=l pole pud
Computer Dep.

SV SIVI pudaill
E-Learning

iz azol>
University of Baghdad

polall ads

College of Science

Computation Theory
2nd Class/ 15t Sem
Lecture 1

S
m
O
m
O

S3YNLOTT

Computation
Theory

First Lecture

* Set:

A set is a collection of objects without
repetition. Each object in a set is called an
element of the set for example D denotes the
set of days

D= {Sun., Mon., Tue., Wed., thru., Fri., Sat.}
D={X | X is a day of a week}
T= {0111213141516171819}

s If an element X is an element of a set A
Then we write X € A and if X is not an
element of A we write X € A thus
Monday € D
May ¢ D

** We say a set A is a subset of set B
written ACB
{1) 2) 4} C {1a 2) 4) 5) 3}
{1,2,6}C{1,2,3,4,5}

¢ Two sets A and B are sided equal written
A = B iff A and B contain the same
elements.

“ The Basic operation on sets are
eUnary operation ex. Complement.
eBinary operation ex. Union (), intersection () and
difference.

A ={X | X & A} consist of all elements in the universe a
A.

AUB ={X | X € Aor X € B}

AnB ={X | X€ Aand X € B}

A\B ={X |[X € Aand X ¢ B}

,A the power set of A, is the set of all subset of A.

Example:

If U={0,1,2,3,4,5,6,7,8,9}
A=1{0,1,3,5)
B= {2,3,5} then find
A= {2,4,6,7,8,9}
AUB= {0,1,3,5,2}
ANB= {3,5}
A\B= {0,1}
24 ={@,{0},{13,{3},{5},{0,13,{0,3},{0,5},{{1,33,{1,5},{3,5}
10,1,31,{0,1,5},{1,3,5},{0,3,5},{0,1,3,51}

e A graph denoted G= (V, E), consist of a finite set of

vertices (or node) V and a set of pairs of vertices E
called edges.

e Example:

e A directed graph (dgraph), also denoted G=(V, E) c
finite set of vertices V and a set of ordered pairs of
called arcs.

Example: The digraph G=(V,E) where V={V,W,X} and
E={(V,W),(V,X),(X,V), (W,X)}

% Products of Sets
Let A1, A2 be two sets then the product of A1 and
consist of all the pair (a1, a2) where a1 is in A1 an
A2

A1*A2={(a1,a2)| a1 € A1 and a2 e A2}

Example:

If A1 ={0, 1} and A2={x, vy, z}

Then

A1*A2 ={(0,x),(0,y),(0,2),(1,x),(1,y),(1,2)}

% concatenation of string:

The concatenation of two strings is the string
formed by writing the first followed by the
second with no intervening space. The
concatenation of x,y over denoted by xy.
abcb is string .

If X=a1 a2 a3 a4....an and Y=b1 b2 b3 b4bn

XY=a1 a2 a3 a4....an b1b2b3b4....bn
YX=b1 b2 b3 b4....bn a1 a2 a3 a4an

e Symbol: indivisible item(letter or digit)
e Alphabet is a finite set of element which is called
symbols.
e Astring (or word) is a finite Sequence of symbols
juxtaposed (repeating are allowed).

Example:
a,b,c are symbols and |

abcb is string .

-The empty word denoted by € or A is the string
contains no symbols.

Language: A formal language is a set of string of
symbols from some an alphabet.

Closure: concatenation of X with itself for all
length of string.

Example

> ={a, b, c}

% %= {e}

Y 1={a, b, c}

Y. 2={aa,ab,ac,ba,bb,bc,ca,cb,cc}
Y. 3={abc,aaa,aba,aab,baa,bba......}
=Xl X?2vX3uvZ4..
=YX0uXlwI?uId3vii..

X*= X v {€}
Xt=X"-{e}

Thanks for
\ lessening

o=l pole pud
Computer Dep.

SV SIVI pudaill
E-Learning

iz azol>
University of Baghdad

polall ads

College of Science

Computation Theory
2nd Class/ 15t Sem
Lecture 2

S
m
O
m
O

S3YNLOTT

Computation
Theory

Finite State System

Finite State Systems:
The finite automaton is a mathematical model of
system, with discrete inputs and outputs. The system can
be in any one of a finite number of configuration or states.
The state of the system summarizes the information inputs
that are needed to determine the behavior of the system on
subsequent inputs.
In computer science we find many examples of finite state
systems:-
1- Switching circuit, such as the control unit of a computer.
2- The design of several common types of computer
algorithms and programs. For example the lexical analysis
and text editors.

Basic definitions:
A finite automaton (FA) consists of a finite set of st

and a set of transitions from state to state that occur on in

symbols chosen from an alphabet ZX.

for each input symbol there is exactly one transition out of

each state(possibly back to the state itself).

One state, usually denoted q,, is the initial state in which the

automaton starts. Some states are design as final or accepting

states.

A directed graph, called a transition diagram is associated

with a FA as follows. The vertices of the graph correspond to

the states of the FA.

Basic definitions:

If there is a transition from state q to state p on
input a, then there is an arc labeled a from state q to state
p in the transition diagram. The FA accept a string x if the
sequence of transitions correspond to the symbols of x
leads from the start state to an accepting state.
Example:

letter a..z letter a..z

0..9

transition diagram of identifier

Deterministic Finite Automaton (DFA):
Correspond It is an acceptor for any state and input
character has at most one transition state that the acceptor
change to. If no transition state is specified the input string
is rejected.

A DFAis a 5-tuple M= (Q, Z, O, q,, F) Where
Q is a set of state.

X is an input alphabet.

d is a transition function 0=Q*2=Q
do 9o € Q is the initial state (the initial state is marked
with an incoming arrow

0w O

F is a set of final states F C Q
(The final states are depicted using double circles

O o

Accepted string — 0 (g0, w) =p € F —» w accepted
Else w reject

The language accepted by M, designated L (M),
Language of Automata: L (M) :{ w: 0 (q0, w) =p, p € F}

Examplel: Design a DFA that accepted the set of all
strings with an even number of O's and 1’s
1={11,1111,111111,111111113,....
00,0000,000000,00000000,....
0011,1100,001111,111100,110000,000011,....
0101,1010,010111,.... }

Solution: 1-transition Diagram

Q= {q0, q1, g2, q3;}

X ={0, 1}

F={q0}

2-transition function

Suppose the string (110101) is input to M
4(q0,110101)=6(6(qo,1),10101)=06(6(q1,1),0101)=86(8(q0,0),101)=
0(6(q2,1)01)=(6(6(q3,0),1)= 0 (6(q1,1)=q0 EF The string is accepted.
- The path o this string

——0q0_1 9l _1 ,90_0 . 921 g3 O ql_1 qO

3-transition table

Example2: Design a DFA that accepted the set of all strings that

and end with the same double letter, either of the form 00...00,

11...11, 2= {0, 1}.

L= {0000,00000,000000,0000000, ...
00100,001100,0011111100,001111000, ...
111,11111,111111,11111111, ...
11011,110011,1100000011, 110000111...}

Example3: Design a DFA that accepted the set of all strings that have nu
divisible by 3, €= {a, b}.

L= {bbb,bbbbbb,bbbbbbbbb,abbb,abbba,aabbb,aabbbbbba,...}

Example4: Design a DFA that accepted the set of all stri
have total number of O's divisible by 3, €= {0, 1}

Exampleb: Design a DFA that accepted the set of all
that ending with double letter €= {a, b}

Exampleé: Design a DFA that accepted the set of all st
that ending in 00.

Example7: Design a DFA that accepted the set of all stri
that all zero must be 3 consecutive 0’s

Example8: Design a DFA that accepted the set of all string
that does not contain 3 consecutive 1's.

Thanks for
\ lessening

o=l pole pud
Computer Dep.

SV SIVI pudaill
E-Learning

iz azol>
University of Baghdad

polall ads

College of Science

Computation Theory
2nd Class/ 15t Sem
Lecture 3

S
m
O
m
O

S3YNLOTT

Computation
Theory

Finite State System
Non Deterministic Finite Automata
(NFA)

Non Deterministic Finite Automaton (NFA): \
It is the FA that allows one or more transition from a state on the
same input symbol.

NFA is a 5-tuple M= (Q, Z, 9, q,, F) Where

Where Q, X and F have the same meaning as for a DFA, but d is a
map from

Q*Xto 22

(2Qis the power set of Q, the set of all subset of Q)

-Transition diagram

Non Deterministic Finite Automaton (NFA):
-Transition Table

2

-Transition Function

6 ({0, g1}, a) =6 (g0, a) u 6 (g1, a)

Examplel: NFA accept all string with either two consecdtive O's

two consecutive 1’s?

Q= {q0, q1, g2, q3, q4}
> ={0, 13

F=192,q4;

0,1 Transition Diagram

-q0 {q0,q3] {q0,q1}

q1 0 192} Transition Table
+q2 {92} {92}

q3 {q4} 0)
*q4 {q4} {q4}

-Transition Function

Suppose (01001) input to machine
0 (q0,01001)= 6(6(qg0,0),1001)= 6({g0,93},1001)= 6(6(q0,1) v 6(q3,1),001)
= 0({q0,91},001)= 6(6(q0,0) v 6(q1,0),01)= 6({q0,q3},01)= 6(5(q0,0) u
0(93,0),1)= 0({q0,93,94},1)= 6(q0,1) v 6(q3,1) u 6(q4,1)={q0,q1,q4;}

-An input string is accepted by NFA if there exists a sequence of transitio
for the given string that leads from the initial state to some final state
fWeEX | 6(q0, w)NF =@}

190, q1, q4}1 {q2,q4; =0

The equivalence of DFA's and NFA's

For every NFA can construct an equivalent DFA (one which accepts th
language).

Definition
Let L be a set accepted by a non deterministic finite automata. Then there exist

deterministic finite automata that accept L.
1

1 0 1
0000
0 1

"={0,{A},{B},{C},{X},{A,B},{A,C},{A,X},{B,C},{B,X},{C,X},{A,B,C},{A,B,X},{B
X}HiA, C, X}, {A, B, C, X3}

0 ({A}, 0) =

0 ({A}, 1) ={A,B;

(1A,B}, 0) ={A,C}
(1A,B}, 1) ={A,B}
(1A,C}, 0)=0
(
(
(

A, C, 1) =1{A, B, X}
1A, B, X}, 0) ={A, C}

6
0
0
6
6
0 ({A, B, X}, 1) = {A, B}

Example 2:

sol : b

6 ({S}, a) = {A}

6 ({S}, b) = {B}

6 ({A}, a) = {A,C}
6({A}, b) =0

6 ({B},a)=9

({B}, b) = {B,C}
({A,C}, a) = {A,C}
{A,C}, b)=0
{B,C},a)=0

B,C}, b) = {B,C}

HW:- Convert the following NFA to the DFA

Thanks for
lessening

o=l pole pud
Computer Dep.

SV SIVI pudaill
E-Learning

iz azol>
University of Baghdad

polall ads

College of Science

Computation Theory
2nd Class/ 15t Sem
Lecture 4

S
m
O
m
O

S3YNLOTT

Computation
Theory

Finite State System
Non Deterministic Finite Automata with
€ - moves

Finite Automata with € - moves
Transition of NFA may be extended to include empty input e.
NFA accepts a siring w if there is some path labeled w from th
initial state to a final state.
Of course, edges labeled € may be included in the path, althou
the €'s do not appear explicitly in w.

Example:-
Consider an NFA with e-moves which accepts the language
consisting of any number (including zero) of O's followed by any
number of 1's followed by any number of 2’s.

\ﬂi -4

Definition
Nondeterministic finite automata with € -moves to be 5-tuple (Q, €
do, F) the transition function map Q*(€ u {e}) to ,2

—Q @ 9 o

il a0} 0 '} Transition
q1 0 {q1} ? {q2} table
raz Z 0 {2} 0

he transition function & can be extended to a function &" that map
Q*€&" to, .

We use e-closure (q) to denote the set of all P such that there is a path
om g to P labeled e.
losure (q0) = {q0, q1, q2}

Equivalence of NFA's with and without e -moves

Theorem: If L is accepted by NFA with e-transition, then L is ac
without e-transitions.

M= (Q, €, 6, q,, F) be an NFA with e-transition

M™=(Q, &, &7, qy F) where

F u {q0} if e-closure (g0) contains a state of F

-

F otherwise

0" (g0, €) = e-closure (q0)

0" (g0, 0) = e-closure (0 (0" (g0, €), 0))
= e-closure (0 ({q0, q1, g2}, 0))
= e-closure (0 (q0, 0) u 0 (g1, 0)
u 0 (g2, 0))
= e-closure ({q0} u @ v 9)
= e-closure (q0) = {q0, q1, q2}

Example1 :- Construct DFA equivalent the following NFA with €

€ €
0 1 2
0" (q0, €) = e-closure (q0) = {q0, q1, q2}
0" (q1, €) = e-closure (q1) = {q1, q2}
0" (g2, €) = e-closure (q2) = {q2}
0" (q0, 0) = e-closure (0 (6" (q0, €), 0))

(
= e-closure (0 ({q0, q1, g2}, 0))

= e-closure (0 (q0, 0) u 6 (g1, 0) u & (g2, 0))

= e-closure ({q0} v @ u @)

= e-closure (q0) = {q0, q1, q2}
*(q0, 1) = e-closure (& (0" (q0, €), 1))
= e-closure (0 ({q0, q1, g2}, 1))
= e-closure (0 (q0, 1) ud (q1, 1) u 0 (g2, 1))
= e-closure (@ v {q1} u Q)
= e-closure (q1) = {q1, q2}

6" (g0, 2) = e-closure (6 (6" (q0, €), 2))
= e-closure (5 ({90, g1, g2}, 2))
= e-closure (5 (40, 2) v & (g1, 2) u & (g2, 2))
= e-closure (O v O v {g2})
= e-closure (92) = {q2}

0" (q1, 0) = e-closure (0 (0" (g1, €), 0))
= e-closure (0 ({q1, g2}, 0))
= e-closure (0 (q1, 0) u & (g2, 0))
= e-closure (@ v Q)
= e-closure (@) = {@}

-+q0 {q0,q1,q92} {q1,q2} {q2}
+q1 Y {q1,92} {q2}
+q2 1) 1) {q2}

NFA with out €

NFA without € to DFA

I T N

+-q0 {q0,q1,q92} {q1,q2} {q2}

+{q0,q1,q92} {q0,q1,q2} {a1,q2} {q2}
+{q1,q2} 7] {q1,q2} {q2}
+{q2} @ @ {q2}

s

DFA

Thanks for
lessening

o=l pole pud
Computer Dep.

SV SIVI pudaill
E-Learning

iz azol>
University of Baghdad

polall ads

College of Science

Computation Theory
2nd Class/ 15t Sem
Lecture 5

S
m
O
m
O

S3YNLOTT

Computation
Theory

Regular Expression

Regular Expression:

- The languages accepted by finite automata are easily describe
simple expressions called Regular Expressions.
- Let X be an alphabet. The regular expressions over ¥ and the s
that they denote are defined recursively as follows

1- @ is a regular expression and denotes the empty set {}.
2- € is a regular expression and denotes the set { € }

3- For each ain X, a is regular expression and denotes the set {

4- If r and s are regular expressions denoting the language R an
respectively then (r+s), (rs), and (r’) are regular expressions d

the sets RuS, RS and R™ respectively.

Regular Expression:

- In writing regular expressions we can omit many parentheses if
assume that * has higher precedence than concatenation or +, a
that concatenation has higher precedence than +, for example
((0(1*)) +0) may be written 01*+ 0.

We may abbreviate the expression rr* by r* .

r* ={e,r, rr, rrr, rrrr,...}

rt={r, rr, rrr, rrrr,...}

rr*=r(e,r, rr, rrr, rrrr,...)= 6Lrorenreeer,..= rt

L* =y, L

Lt =32, L

1°=¢

Language Example

example1:

Let L1= {10, 1} and L2= {011, 11}
L1L2 = {10011, 1011, 111}
L1+L2= {10, 1, 011, 11}

L1"= {e, 10, 1, 1010, 11, ...}

L1+= {10, 1, 1010, 11,...}
example2:

L1= {01, 0}, L2= {e, O, 10}

L1L2= {01, 010, 0110, O, 00}
L2L1= {01, O, 001, 00, 1001, 100}
L1e=L1= {01, 0}

L1"={e, 01,0,0101,00,010,001,...}

Examples of Regular Expression

¢ 00 is a regular expression representing {003.
L={00}

0 0
000 -

% (0+1) *is a regular expression denotes all strings of 0's and
1's.
L= {e, O, 1, 00, 11, 01, 10, ...}

@)

<+ 0*+1* is a regular expression denotes all strings of 0's and 1°
0= {e, 0, 00, 000,...}

1*=fe, 1, 11, 111,..}
L= 0*+1*={e ,0, 1, 00, 11, 000, 111,..}

s 0*1*2* is a regular expression denotes the language of any nu
of O's followed by any number of 1's followed by any number o
2’s.

% (0+1)'011 is a regular expression denotes the language of mixe
group of O's and 1's ended by 011.

% ((0+1)* 00 (0+1) * is a regular expression denotes the language
all string of 0's and 1’s with at least two consecutive 0’s.

% Finite Language L that contains all the strings of a's of b’s of |
exactly three L= {aaa, aab, aba, abb, bab, bba, bbb,baa}.
first letter of each word in L is either a or b, the second lett
each word in L is either is either a or b, the third letter of
word in L is either a or b so we may write L=((a+b)(a+b)(a+b)).

< a(a+b)’b is a regular expression denotes the language of all wo
that begin with a and end with b .

% (a+b)’aa(a+b)” is a regular expression denotes the language
words over the alphabet X= {a,b} with at least two consecutive

% (a+b)*abb is a regular expression denotes the language of
string of a's and b's ending in abb.

% The language defined by the regular expression a’b" is the
all the string of a's and b's L={ ¢, a, b, aa, bb, ab, aaa, aab,
bbb, aaaa,...}.

% Language of expressions a*b* z(ab)*
Since the language defined by the expression on the right cont
the word abab, which the language defined by the expression
the left does not.

< Consider the language T defined over the alphabet 2= {a, b, ¢},

T={a, ¢, ab, cb, abb, cbb, abbb, cbbb, abbbb, cbbbb, abbbb
cbbbbb,...}.
All the words in T begin with an a or ¢ and then are followed b
some number of b’s.

Symbolical we may write this as T= ((a+c) b*).

s (b+ba)* is a regular expression denotes the language of all st
a's and b's beginning with b and not having two consecutive a

% (a+b)’(aa+bb)(a+b) " is a regular expression denotes the langu
of all words over the alphabet X = {a,b} with at least two.

consecutive a’s or two consecutive b’s

“ The language defined by the regular expression ab*a is the set
all string of a’s and b's that have at least two letters, that begin
and end with a’s
b* ={e,b,bb,bbb,bbbb,...}
L={aa, aba, abba, abbba, abbbba,...}

Thanks for
lessening

o=l pole pud
Computer Dep.

SV SIVI pudaill
E-Learning

iz azol>
University of Baghdad

polall ads

College of Science

Computation Theory
2nd Class/ 15t Sem
Lecture 6

S
m
O
m
O

S3YNLOTT

Computation
Theory

Equivalence of finite automata and
regular expression

Equivalence of finite automata and regular expr

Theorem

Let r be a regular expression. Then there exists an NFA with e-transiti

that accepts L(r).

Case 0 (zero operation)

O

(b) r=@

oo

(C) r=a

(@) r=¢

Regular Expression:

Case 1 (one or more operators)
r1
4 A
€
- Y
4 A
€ €
M2
- Y
r2

M1=(Q1, =1,51,q1,f1)

M1=(Q2, £2,62,92,f2) let q0 be a new initial state and fO anew final state
M=(Q1u Q2 u{q0,f03}, 21U X2, §,q0,f0}

r=r1+r2

Case 2

r=rir2

0~ 0}0 -0

M=(Q1uU Q2, 21U 32, §,q1,f2}

Case 3

r=r1*

€

k

=(Q1uU {q0, fo}, 21,6,q0,f0}

M=(Q1u {q0, fo}, £1,5,q90,10}

Example1

Construct an NFA with € for the following regular expression

RE=01*+1
r=r1 +r2

Example1:

Construct an NFA with e for the following regular expression RE=01*

q3 q4

RE=01*+1

Example2

Construct an NFA with € for the following regular expression

RE=(ba+ab¥*)

Example3

Construct an NFA with € for the following regular expression

RE=(01+10)* 11*

) gs L»M 0 qs €
€

Thanks for
lessening

o=l pole pud
Computer Dep.

SV SIVI pudaill
E-Learning

iz azol>
University of Baghdad

polall ads

College of Science

Computation Theory
2nd Class/ 15t Sem
Lecture 7

S
m
O
m
O

S3YNLOTT

Computation
Theory

Transition Graph (TG)

Transition Graph:
A transition graph abbreviated TG is a col
(Q,%, 6,490, F)

Q is a set of states

Y is an input alphabet

& A finite set of transition that show how to
one state to another based on reading sp
substring of input letters(possibly even the
string €).

g0 g0 € Qs the initial state.

F is a set of final states FS Q(may be none)

Example1:

Example2:

Example3: the following TG accept a language of all words that
with different letter. a,b

Y={a,b}
a,b

Transition Graph (TG)

It is the FA that allows one or more transition from a state on th
input symbol.

NFA is a 5-tuple M= (Q, Z, 9, q,, F) Where

Where Q, X and F have the same meaning as for a DFA, but d is a
from

Q*Xto 29
(2Qis the power set of Q, the set of all subset of Q)

-Transition diagram

90
)

Thanks for
\ lessening

o=l pole pud
Computer Dep.

SV SIVI pudaill
E-Learning

iz azol>
University of Baghdad

polall ads

College of Science

Computation Theory
2nd Class/ 15t Sem
Lecture 8

S
m
O
m
O

S3YNLOTT

Computation
Theory

Kleene's Theorem

Kleene's theorem

Any language that can be defined by

1-Regular Expression

2-Finite Automata

3-Transition Graph
Part1:-Every language that can be defin
finite automata can also be defined by a tr
graph.
Every finite automata is itself a transition 'g
therefore, any language that has been define
finite automata has already been defined
transition graph.

Part2:-Every language that can be def
transition graph can also be defined by
expression.

This means that we present a procedure tl
out with a transition graph and ends with ¢
expression that defined the same language.

First want to simply T so that it has only one
state

becomes
startM ‘ qo
aa

o ©

art

Another simplification we can make in T(
can be modified to have a unique final state
changing the language it accepts.

b €

qd
becomes aa qf \
—> e

aba

q9

It should be clear that the addition of these two new s
does not affect the language that TG(transition gr
accepts. Any word accepted by old TG is also accept
the new TG, and any word rejected by the old TG
rejected by the new TG.

Pass operation:- If three states in arrow connected by edg
regular expression, we can eliminate the middleman and g
one outer state to the other by a new edge labeled with a
expression that is the concatenation of the two previous lab

r1 r3

We can replace this with

0o -0

r2
-Q
becomes
G r1r2*r3 °

Example:-TG which accepts all words that begin and end

letters
aa,bb /‘

0 K?,:Q

Example:-TG which accepts all words that begin an
double letters

a+b

aa

a+b

‘_0 aa+bb 6
(aa+bb)(a+b)*aa

& (aa+bb)(a+b)*bb
Q (aa+bb)(a+b)*aa + (aa+bb)(a+b)*bb ‘

Re=(aa+bb)(a+b)*aa + (aa+bb)(a+b)*bb = (aa+bb)(a+b)* (aa+bb

bb

homework:-The following TG which accepts all word
even number of a’s and even number of b’s

aa,bb

aa,bb
ab,ba

0 O
ab,ba

What is the regular expression of the above diagram ?

Part 3:- Every language that can be defined
regular expression can also be defined by
automata.

If there is an FA called FA1 that accepts the |
defined by regular expression r1 and there i
called FA2 that accepts the language defined
regular expression r2, then there is an FA call
that accepts the language defined by reg
expression (r1+r2).

Example:Find FA1+FA2
b FA1

b

FA1 =the machine that accepts only strings with a double a in them
FA2 =the machine that accepts all words that end in the letter b

-Z1=[x1,y1] z2=[x2,y1]
Z2=[x2,y1] Z4=[x3,y1]
+Z3=[x1,y2] 22=[x2,y1]
+Z4=[x3,y1] Z4=[x3,y1]
+25=[x3,y2] Z4=[x3,y1]

Z3=[x1,y2]
Z3=[x1,y2]
Z3=[x1,y2]
25=[x3,y2]
25=[x3,y2]

FA1+FA2

-If there is an FA called FA1 that acc
language defined by regular expression r1 a
is an FA called FA2 that accepts the language
by the regular expression r2, then there i
called FA3 that accepts the language defi
regular expression (r1.r2).

Example:Find FA1.FA2Z =~ ---ccoommmeoo o,

b FA1
a

b

FA1 =the machine that accepts only strings with a double a in them
FA2 =the machine that accepts all words that end in the letter b

-Z1=[x1] z2=[x2] Z1=[x1]
Z2=[x2] Z3=[x3,y1] Z1=[x1]
Z3=[x3,y1] Z3=[x3,y1] Z4=[x3,y1,y2]

+Z4=[x3,y1,y2] Z3=[x3,y1] Z4=[x3,y1,y2]

b

a

FA1.FA2

Thanks for
\ lessening

woawl=d| pole ouud
Computer Dep.

SV SIVI pudaill
E-Learning

iz azol>
University of Baghdad

polall ads

College of Science

Computation Theory
2nd Class/ 15t Sem
Lecture 9

\
1
|
|
)

S3ANLOAT

S
m
O
m
O

Computation
Theory

Grammar

The formal definition of Gram
G=(V,T,P,S) Where

V is a Finite set of Variable(non-terminal)(represented
letters)

T is a Finite set of terminal (represent by lower case letter)
P is a Finite set of production
S is called the start symbol (non-terminal)

Example:

G=({S,A,B},{a,b},P,S} consist of production

S— A|B |
—aA | d | Production

—bB |b|

Derivation:- is used to generate(determine)sen
given language,(and it is sequence of application
produce the finished string of terminal from S.

— denotes derivation

Definition :- The language generated by G [denote
{w | winT*and S > w} that is, a string is L(G) if:

1) The string consists solely of terminals.

2) The string can be derived from S.

Example: Consider the following grammar G=({5},{
where P consist of
S—>aS|a }P

S - aaa

S —a

S—-aS—aa

S - aS — aaS — aaa

Example:
G=({S,A,B},{a,b},P,S) consist of production

S— A|B
A—aA|a }P
B—-bB |b

S—>A-a

S— A —-aA —aa

S— A —»aA —»aaA —aaa

S - A »aA —»aaA —aaaA —aaaa

S->B-b

S—»B—-bB—bb

—B—-bB—bbB —bbb

—B— bB—»bbB —bbbB—bbbb

G)={a" In>=1} U{," |In>=1}

Leftmost and rightmost derivations:-
If at each step in a derivation a production i
the left most variable, then the derivation i
leftmost.
Similarity a derivation in which rightmost v
replaced at each step is said to be rightmost.
Example:-
Consider the grammar G=({5,A},{a,b},P,S),
consist of
S—>aAS | a
A ->SbA | SS | ba the word aabbaa
Leftmost derivation
S — aAS — aSbAS — aabAS — aabba$S — aabbaa
Rightmost derivation

S — aAS —» aAa —» aSbAa — aSbbaa — aabba

Derivation Trees:-
If is useful to display derivations as tr
pictures, called derivation(or gene
production or syntax)trees.

Leaf: a vertex which has no sons, usually r
a terminal.

Interior vertex: a vertex which has one o
sons usually € V.

Yield of the derivation tree: if we read the
of the leaves from left to right, we ha
entential form, we call this string the yield.

Example:-
Consider the grammar G=({5,A},{a,b},P,S}, where P
S—aAS | a

A ->SbA | SS | ba

Draw the derivation tree of the string(aabbaa)
S - aAS - aSbAS — aabAS — aabba$S — aabbaa

Root(non terminal)

Example:-
Consider the grammar G=({E},{id,(,),*,+},P,E}, wher
E—- E+E | E*E | (E) |id
Draw the derivation tree of the string((id+id)*id)
E -E*E —-(E)*E —»(E+E)*E —(id+E)*E —(id+id)*E —(id+i

Root(non terminal)

terminal

Thanks for
\ lessening

woawl=d| pole ouud
Computer Dep.

SV SIVI pudaill
E-Learning

iz azol>
University of Baghdad

polall ads

College of Science

Computation Theory
2nd Class/ 15t Sem
Lecture 10

\
1
|
|
)

S3ANLOAT

S
m
O
m
O

Computation
Theory
Type of Grammar

A phrase Structure Grammar(
Is a 4 tuple (V,T,P,S) Where

V :Finite set of non-terminals.

T :is a Finite set of terminals such that V NnT
P :is a Finite set of production of the form «
,where a the string on the left hand side
production, is such that a € (V UuT)* and
string on the right hand side of the producti
suchg e (V UT) ™.

S € V is symbol desighed as the start symbol of
grammatr.

Example1:
Consider the PSG,G1=({S,A,B},{a,b},P,S) with
S—» A S— B

A —aA A —a

B — bB B—-b
The above productions can be abbreviated
S— A|B 7
A —aAla +p
B — bB|b_

(G1)={" [n>=1} U{," [n>=1}

Example2:
Consider the PSG,G2 with production
S— aSBC|aBC —
CB - BC
aB — ab _
bB — bb P
bC — bc
cC - cc —
In this example the left side of the production are not 2
non terminal.
S= aabbcc
S -aBC —abC _)g

—aSBC—aaBCBC—aabCBC—aabBCC —aabbCC —aabbcC-

(GZ)={an b ¢ n = 1}

Some time ,it ma be that two different g
and G’ generate the same language L(G)=L(
In this case the grammars are said to be equ
An example of a grammar equivalent to G
with productions

S — aA|bBla|b]
A —aA |a P
B -bB|b _
PSG is also known as unrestricted grammar.

Context Sensitive Grammar(C

Suppose a restriction is placed on productio
a - B |al < |B| (thatp be at least as long a
Then the resulting grammar is called
Sensitive grammar(CSG)and the language a
Sensitive language(CSL).

The term “Context-Sensitive” comes from a
form for these grammar, where each productio
the form alda2 —» al1Ba2, with B# ¢,they p
replacement of variable A by string B only in the
‘context’ala?.

Example:
Consider the CSG,G=({S,B,C},{x,y,z},P,S} with prod
S— Byz]
B - x|xBc
cy — ycC
CZ — yzZ

- P

S XXXYYYZZZ

S »Byz —»xyz

S »Byz -»xBcyz — xxBccyz —XXXCCyzZ —XXXCYCZ —XXXY

xxxy CYZZ —XXXYYCZZ — XXXYYYZZZ
{xn "Sn = 1}

Context Free Grammar(CFG)
A limiting to the left-hand sides of each pro
a— B in a CSG to be a single nontermin
where AeVand B e (V UT) .

Examplel: Consider a grammar G=({5},{a,b},P,
is the following set
S - aSb|ab |p

S —ab

S —» aSb —aabb
S —» aSb —aaSbb —aaabbb

S —» aSb —aaSbb —aaaSbbb —aaaabbbb
L(G)={,"" In>=1]

Example2: Consider a grammar G=({5},{a,b
is the following set

S—>aSb|e} P

S > €

S - aSb —ab

S - aSb —aaSbb —aabb

S - aSb —aaSbb —aaaSbbb —aaabbb
L(G)={," " In>=0}

Example3: Consider a grammar G=({5},{a,b
is the following set
S —» aB|bA
A - aS|a|bAA|P
B—- bS|b|aBB
S - abba

S - aB —» abS — abbA — abba
S - bababa

S - bA — baS — babA — babaS — bababA — bab
S - baabba
S - bA — baS — baaB — baabS — baabbA — baab
The language L(G) is the set of all words in T~
onsisting of equal number of a’s and b’s.

Example 4: Consider a grammar
G=({S5,A},{a,b,c,d},P,S)and P is the following
S — aSd|aAd
A - bAc|bc |
S - aSd —aaAdd —|aabcdd
S - aSd —aaAdd —aabAcaa —aabbccdd
S —» aSd—aaSdd—aaaSddd—aaaaAdddd —|aaaabcd
S - aSd—aaSdd—aaaSddd—aaaaAdddd — aaaabAcd

—|aaaabbccdddd

The language L(G)={.",\" " 4" |In = 1, m = 1}

P

*»Palindrome
S - aSa|bSb|blale v

S —-b
S —a
S—>¢€

S — aSa —aba
S - aSa —aaa
S - aSa —aca —aa

S —aSa —a
S —alSa —a
S —alSa —a

DS
DS

DS

ba — abbba
ba —ababa

ba —abeba —abba

S — bSb —»bbb
S —- bSb —» bab

S - bSb —» beb —bb

Thanks for
\ lessening

woawl=d| pole ouud
Computer Dep.

SV SIVI pudaill
E-Learning

iz azol>
University of Baghdad

polall ads

College of Science

Computation Theory
2nd Class/ 15t Sem
Lecture 11

\
1
|
|
)

S3ANLOAT

S
m
O
m
O

Computation
Theory

Properties of Grammar

Properties of grammar

1-1f G1 and G2 are CFG then the u
(CFG1+CFG2)is also CFG.

2-1f G1 and G2 are CFG then their
concatenation (CFG1.CFG2) is also

3- If G1is a CFG then the closure of
CFG1(CFG1) is also CFG.

Properties of Context Free Language

1-If L1 and L2 are CFL then the union
(CFL1+CFL2)is also a CFL.

2-1f L1 and L2 are CFL then their
concatenation (CFL1.CFL2) is also CFL .

3- If L1 is a CFL then the closure of CFL1
(CFL1) is also CFL.

Example
Let L1={_" 2" |n>=1}be a CFL for the following CFG1
S— aSbb|abb
And
L2=palindrome on {a,b} be a CFL with the following C
S —» aSa|bSb|a|b]|e
Then L1+L2 (CFG1+CFG2)
S — 51|52

S1 — aS1bb|abb

S2 — aS2a|bS2blalb|e
And L1.L2 (CFG1.CFG2)
S — $1.52

1 - aS1bblabb

2 — aS2a|bS2bla|b|e
nd L1° (CFG1)~

— S1S| €

— aS1lbb|abb

Ambiguity:

a CFG is said to be ambiguous
if there exist some word w with t
tree or equivalently has more th
leftmost or rightmost derivation
particular word w.

A CFL for which every CFG is ambigu
said to be inherently ambiguous CFL.

Example

(Non ambiguous CFL)

S—>aAS | a

A ->SbA | SS | ba

Find S -aabbaa

Leftmost derivation

S —» aAS - aSbAS — aabAS — aabbaS — aabbaa
Rightmost derivation

S - aAS —» aAa — aSbAa — aSbbaa — aabbaa

Example(ambiguous CFL)
S — SbS |ScS|a

Find S —abaca

Leftmost derivation

S — SbS — ab$ — ab5cS —» abacS — abaca

S - S¢S - SbScS — abScS — abacS — abaca
Rightmost derivation

S - SbS — SbScS — SbSca — Sbaca — abaca
S - ScS - Sca —» SbSca — Sbaca — abaca

Simplification of Context Free Gra
If L is a nonempty CFL then it can be ¢
by a CFG G with the following properties

1-Each variable and terminal of G appears i
derivation of some word in L.

2-There are no production of the form A —B
where A and B are variables.

3-I1f eis not in L, there need no production of t
formA - €.

Useless Symbols:-
Let G=(V,T,P,S) be a grammar. A sym
useful if there is a derivation S = aXp :
some «, 8 And w, where w € T otherwi
useless.

There are two aspect to usefulness.
First some terminal string must be deriv
from X.

Second X, must occur in some string deriv
rom S.

Useless Symbols:-
Lemma1:-Given a CFG G=(V,T,BS
L(G)+ @ we can fined an equivalent
(V,T,PS) such that for each A in V th
some w €T for which A = w.
Lemma2:-Given a CFG G=(V,T,P,5)we can
an equivalent CFG G=(V,T,P,S) such that
each X in (VUT) there exist « and g in (VUT
For whichS > a X .

ote:- you first have to applying lemma1 t
emmaZ.

Example:-
G=({5,A,B},{a},P,5)
S - AB| a}

A —a P

By apply Lemmat

S —a

A —a P1
G1=(15,A},{a},P1,5)
By apply LemmaZ2
G2=({5},{a},P2,5)

—>a}P2

Example2: G=({5,X,C,A},{a,b},P,S)
S - AX|BA
X - XB|AX
B »aXe|lb P
C - alabx
A —a

By applying Lemmal G1=({5,B,C,A},{a,b},P1,95)
S -BA
B —-b
C —a
—a
y applying Lemma2 G2=({S,A,B},{a,b},P2,S)
—BA
—b - P2

—a

P

—

Thanks for
\ lessening

woawl=d| pole ouud
Computer Dep.

SV SIVI pudaill
E-Learning

iz azol>
University of Baghdad

polall ads

College of Science

Computation Theory
2nd Class/ 15t Sem
Lecture 12

\
1
|
|
)

S3ANLOAT

S
m
O
m
O

Computation
Theory

Simplification of Context
Free Grammar

Simplification of Context Free Grammar
If L is a nonempty CFL then it can be generated
by a CFG G with the following properties

1-Each variable and terminal of G appears in the
derivation of some word in L.

2-There are no production of the form A —»B
where A and B are variables.

3-1f eis not in L, there need no production of the
formA - €. (

Useless Symbols:-
Let G=(V,T,P,S) be a grammar. A symbol X 1is

useful if there is a derivation S = aXp Sw for
some a, 8 And w, where w € T otherwise X is
useless.

There are two aspect to usefulness.

First some terminal string must be derivable
from X.

Second X, must occur in some string derive’d
from S.

Useless Symbols:-

Lemma1:-Given a CFG G=(V,T,BS) with
L(G)# @ we can fined an equivalent CFG

G” (V,T,P’,S) such that for each Ain V there is
some w € T for which A = w.

Lemma2:-Given a CFG G=(V,T,P,S)we can find
an equivalent CFG G'=(V',T",P’,S) such thatifor
each X in (V' UT’) there exist a and f in

(V' UT") For whichS 5> a X B.

Note:- you first have to applying lemmar the(m
LemmaZ.

Example1:-
G=({5,A,B},{a},P,5)
S - AB| a}

A —a P

By apply Lemmat

S —a

A —a P1
G1=(15,A},{a},P1,5)
By apply LemmaZ2
G2=({5},{a},P2,5)

—>a}P2

Example2: G=({5,X,C,A},{a,b},P,S)
S - AX|BA4
X - XB|AX
B »aXe|b P
C - alabx
A —a

By applying Lemma1 G1=({S,B,C,A},{a,b},P1,S
S -BA
B —-b
C —a
—a
y applying Lemma2 G2=({S,A,B},{a,b},P2,S)
—-BA
—b - P2

—a

P1

—

€ —production:-
If L=L(G) for some CFG, G=(V,T,P,S) then L- {€}

is L(G")for a CFG G~ with no useless symbols
or € productions.

We can determine the nullable symbolstotf G
by the following:-

If A - € is a production then A is nullable
symbols. If f - a is a production and fall
symbols of o« have been found nullable the

S is nullable. {]

Example1: for the following grammar remo
€ —production

Let G have productions

S - (E)|E

E->T|E+T|E-T

T->F|T*F|T/F

F —-a|b|c|€e

Nullable=(F,T,E,S)

S—=(E)IEI()
EST|E+T|E-T|E+|E-|+T|-T|+]-
TF|T*FIT/FIT*|T/1*FI/F|*|/
—alb|c

Example2: for the following grammar remo
€ —production

A - E|CE|BC

B -CD

C-c|e

D -»d|e

E —eE|e
Nullable=(A,B,C,D)
A-E|CE|IBC|B|C
B->CD|C|D

— C

- d

— ek|e

Unit production:-

If a grammar have production of the form

A —B whose right hand side consist of a single
variable we call these production by unit
production.

All other production of the form A — a and

€ -productions are non unit productions.

For CFG defined by G=(V,T,P,S) where G has n@ € -
productions construct a new set of production P
from P by first including all non unit production i}f
P.

Then A > B for A and B in V add to P all
productions of the form A — a is a non unit
production.

Example1: for the following grammar remo

production
A-E|CE|B|C|BC
B-C|D|CD
C-o c
D- d
E - Eele
Solution
A —-Ee|e|CE|c|d|CD|BC
B —-c|d|CD
C-oc

- d

— Eele

Example2: for the following grammar remo
production
S -A|ABA
A —-aAla|B
B— bB|b

Solution
S—aA|a|bB|b|ABA
A —aAla|bB|b

B— bB|b

H.W:-Remove unit production from th
following grammar
S->D

D > AB

A-cC

C - acla

B-M

M - bM|b

Thanks for
\ lessening

woawl=d| pole ouud
Computer Dep.

SV SIVI pudaill
E-Learning

iz azol>
University of Baghdad

polall ads

College of Science

Computation Theory
2nd Class/ 15t Sem
Lecture 14

\
1
|
|
)

S3ANLOAT

S
m
O
m
O

Computation
Theory

Canonical Form of Context
Free grammar

Canonical form of Context Free Gra
In the Context Free Grammar(CFG) there
canonical form

1-Chomsky Normal Form(CNF).
2-Greibach Normal Form(GNF).

This formal form prove that all CFG are equivale
grammar with restrictions on the forms
productions.

Greibach Normal Form(GNF):-

Every Context Free Language without
generated by grammar for every production
form A - aa where A is a variable and «a is
empty)string of variables.

Lemma1:

Define an A-production to be a production with
A on the left. Let G=(V,T,P,S)be a CFG.

Let A—> a1Ba2 be a production in p and

B—- B1|B2|B3]..|Br be the set of all B-productions
Let G1=(V,T,P1,5)be obtained from G by deleti
production A - a1Ba2 and adding the producti
A- alBla2|a1B2a2|a1B3a2|..a1Bra2 the
L(G)=L(G1).

the

Greibach Normal Form(GNF):-

Lemmaz2:
Let G=(V,T,P,S) be a CFG. Let A - Aal|Aa?2|.
the set of A-productions. For which A is the |
symbol of the right-hand side. Let A - B1|B2|
the remaining A-production.

Let G1=(VU{B},T,P1,5)be the CFG formed by a
the variable B to V and replacing all th
productions by the productions

1)A = Bi |1<=i<=s 2) B - ai |<=i<=r
A — BiB B - «aiB
hen L(G1)=L(G)

Example: Convert to Greibach normal form the g
G=({A1,A2,A3},{a,b},P,A1)

Where P consist of following A- aa

A1 — A2A3

A2 —» A3A1|b

A3 - A1A2]a

Solution

A3 -A2A3A2|a

A3 -A3A1A3A2 |bA3A2|a B3 -A1A3A2 | A1A3A2B3
A3 -bA3A2B3|aB3|bA3A2]|a

B3 -A1A3A2|A1A3A2B3

A2 -bA3A2B3A1|aB3A1|bA3A2A1[aA1|b

1 ->bA3A2B3A1A3|aB3A1A3 | bA3A2A1A3 |aA1A3 | bA3

3 -A1A3A2|A1A3A2B3
3 = bA3A2B3A1A3A3A2 | aB3A1A3A3A2 |bA3A2A1A3A3A2|aA1A3 | bA
3A2B3A1A3A3A2B3|aB3A1A3A3A2B3 |[bA3A2A1A3A3A2B3 |aA1A3
A3A2B3

Thanks for
\ lessening

