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The Electromagnetic Spectrum

Energy of one photon (electron volts)
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FIGURE 2.10 The clkectromagnetic spectrum. The visible spectrum s shown zoomed 1o facilitate explanation,
L but note that the visible spectrum is a rather narrow portion of the EM spectrum.



o For natural images we need a light source (\: wavelength of the source) \
~ E(z,y,2,A): incident light on a point (z,y, world coondinates of the point)

i o Each point in the scene has a reflectivity function.
—(z,3,2,A): reflectivity function

o Light reflects from a point and the reflected light is captured by an imaging device.
—c(z,y,2,A) = B(x,y,2,A) x r(z,y,2,\): reflected light.

© 2002 R. C. Gonz
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Inside the Camera - Projection

Camera(c(x.y.z, 1) = ﬁ
-

e Projection (P) from world coordinates (z,y,2) to camera or image
coordinates (2',v') [c (2", ¥, \) = Ple(z,y, 2, N))].

© 2002 R. C. Gonzalez & R. E. Woods



Projections

o There are two types of projections (P) of interest to us:

1. Perspective Projection
Objects closer to the capture device appear bigger. Most
iImage formation situations can be considered to be under
this category, including images taken by camera and the
human eye.

2. Ortographic Projection

This is “unnatural”. Objects appear the same size re-
gardless of their distance to the “capture device".

o Both types of projections can be represented via mathematical for-
mulas. Ortographic projection is easier and is sometimes used as a
mathematical convenience. For more details see [1].
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Example - Perspective

“Film” “Cover”
“Object1” “Object2”
e .
.r’(_F“Ai‘f ‘Az
“82‘3 S ,’_«-,-."9 l 1 2
- ™ | 2
O, -7
“Pinhole”

e Perspective Projection: A, = Ay, 1) < b — & < 6.

© 2002 R. C. Gonzalez & R. E. Woods
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Example - Ortographic

“Film”

“Object1” “Object2”

s - —————— -
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e Ortographic Projection: A; = Ao, ) < Iy — 82 = 6.
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Inside the Camera - Sensitivity

e Once we have ¢, (2.4, \) the characteristics of the capture device take
over.

e V(A) i1s the sensitivity function of a capture device. Each capture device
has such a function which determines how sensitive it is in capturing
the range of wavelengths (\) present in c,(z'.y', \).

A I A A A
(O3] I @5 V()

—>] > >1
o o

e The result is an “image function” which determines the amount of
reflected light that is captured at the camera coordinates (z',v/).

f(z',y) = /(-,,( ',y N )V(A)dA (1)

© 2002 R. C. Gonzalez & R. E. Woods
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V(4) || N(4) V(A)
| |
> —>2 A
% Ay

Let us determine the image functions for the above sensitivity functions imaging the same scene:

1. This 1s the most realistic of the three. Sensitivity is concentrated in a band around ;.
A= y) = [ el AVi(A)dA

2. This 1s an unrealistic capture device which has sensitivity only to a single wavelength Ay as
determined by the delta function. However there are devices that get close to such “selective”

behavior.
folz', o) ]cp(r'. y', A)Va(A)dA /Cp(r'. Yy, AN)S(A — Ag)dA
Cp(l". ¥, o)

3. This 1s what happens if you take a picture without taking the cap off the lens of your camera.

fa(',y) [ ez, ', A)Va(A)dA [ (', , A) 0 dA
0

© 2002 R. C. Gonzalez & R. E. Woods
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= Sensitivity and Color

&

Camera Sensors

Red
R |
® c (x',v',A)
O b
Green Blue

e For a camera that captures color images, imagine that it has three
sensors at each (27, ) with sensitivity functions tuned to the colors or
wavelengths red, zreen and blue, outputting three image functions:

fo(@,Y) = [(',,(.1". Y, N)Vi (A)dA
fo (@) = [ela, v, \)Va (N)dA
fe (2, v) = [('p(.l". Y, AV, (A)dA

e These three image functions can be used by display devices (such as
your monitor or your eye) to show a “color” image.

© 2002 R. C. Gonzalez & R. E. Woods
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o The image function f.(«",y) (C =R, ., B) is formed as:
fe(@,y) = [ela,y, \)Ve (N)dA (2)

o It is the result of:
1. Incident light E(z,y.2 A) at the point (z,y,2) In the scene,
2. The reflectivity function r(z.y.z. A) of this point,
3. The formation of the reflected light c(z.y.2,)\) = E(z,y,2,)\) x
r(z,y,2,A),

4. The projection of the reflected light c(z,y,2,\) from the three
dimensional world coordinates to two dimensional camera coor-

dinates which forms c,(z’,y/, ),
5. The sensitivity function(s) of the camera V()).

© 2002 R. C. Gonzalez & R. E. Woods



Digital Image Formation

o The image function f,(2,y/) is still a function of 2’ € [2/ . .2/ ]andy €
oy .y ] which vary in a continuum given by the respective intervals.

o [he values taken by the image function are real numbers which again
vary in a continuum or interval f. (2',y/) € [fuins fras).

o Digital computers cannot process parameters/functions that vary in a
continuum.

. . . 54 48 48 52 67 111 144 160 162 158

) We have to d'l-SCTCtZZC. 54 48 48 49 61 106 141 160 164 158
48 45 48 49 56 97 138 160 167 160

50 51 57 56 61 101 135 161 170 162

59 60 61 55 60 103 134 162 172 164

1 lJ y]=>1, y’_ (l:O N -1 ]:0 ,-\]_1) 62 61 55 44 49 96 133 163 174 165
o« Ly i Jj \C yeoeyd ’ yoeoyd 56 45 53 54 41 99 137 163 171 160
55 45 55 56 42 94 136 164 173 163

53 45 58 59 44 86 134 162 173 165

o ‘ T AL Q t t 54 47 61 60 46 79 131 160 172 165

2- fC (l',yj) = f(? (I,yj) uantization. 57 51 63 58 49 75 133 162 174 167
63 57 62 54 52 74 138 166 176 168

70 62 61 49 54 77 139 166 174 164

When x, y, and the amplitude values of fare all finite,

discrete quantities, we call the image a digital image.

© 2002 R. C. Gonzalez & R. E. Woods
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TABLE 1.1 Types of intervals

Finite: (a,

[a,

[a,

(a,

Infinite: (a,

[a,

Notation

b)

b]

b)

b]

00)

00)

(—o0, b)

(-0, b]

(=00, 00)

Set description

{x|]a < x < b}

{x|]a = x = b}

{x|]x = a}
{x|x < b}
{x|x = b}

R (set of all real
numbers)

Type

Open

Closed

Half-open

Half-open

Open

Closed

Open

Closed

Both open
and closed

Picture

v

© 2002 R. C. Gonzalez & R. E. Woods



losse — 0 Digital Image Processing, 2nd ed. _ _
Processing / ‘ www.imageprocessingbook.com

—

U

= Image Sensing and Acquisition
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FIGURE 2.12

(a) Single imaging ' .
SENsor. — Sensing material

Power in

(b) Line sensor.
(c) Array sensor.

Housing—/ {\[U\m- Voltage waveform out

A digital image is nothing more || F 0 0 E I
AN N S N F R R R RS
than data—numboers mndicating EEEEEEERREEN:
variations of red, green, and blue af i EIRIEIRIEIEIR 5 5 5 & % e
> > ..... 59 60 61 55 60 103 134 162 172 164
. . . 62 61 55 44 49 96 133 163 174 165
a particular location on a grid of 56 45 © 340 2 137 10 171 10
pixels.

55 45 55 56 42 94 136 164 173 163
--. 53 45 58 59 44 86 134 162 173 165
-- 54 47 61 60 46 79 131 160 172 165

57 51 63 58 49 75 133 162 174 167
- 63 57 62 54 52 74 138 166 176 168

70 62 61 49 54 77 139 166 174 164

© 2002 R. C. Gonzalez & R. E. Woods
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Image acquisition using a single sensor

y Film

Rotation

==
1T T T n ‘T‘HJ TR AT TPV P ) I

: Linear motion
One image line out

per increment of rotation
and full linear displacement
of sensor from left to right.

FIGURE 2.13 Combining a single sensor with motion to generate a 2-D image.

This 1s an arrangement used in high precision scanning, where a film negative is
mounted onto a drum whose mechanical rotation provides displacement in one
dimension .the single sensor is mounted on a lead screw that provides motion in
perpendicular direction .In this case we generate a 2-D image using single sensor,
where there has a relative displacements in both the x- and y directions between

the sensor and the area to be imaged .
© 2002 R. C. Gonzalez & R. E. Woods
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Image acquisition using line sensor or sensor strips
Medical and Industrial Computerized Axial Tomography (CAT)
Magnetic resonance images (MRI)
Positron Emission Tomography (PET)

One image line out per
increment of linear motion

Imaged area

Cross-sectional images
of 3-D object

Image
reconstruction

Linear motion

Sensor strip

In-line arrangement of sensors in the form of a
sensor strip. The strip provides imaging elements in 3-D object
one direction. Motion perpendicular to the strip
provides imaging in the other direction. This is the
type of arrangement used in the most flat bed
scanners. 4000 in-line sensor is possible. The
number of the sensor in the strip establishes the
sampling limitations in one image direction. But in
single sensor , sampling is accomplished by selecting

. ‘\\
S
me

- \.\.;1\

1)
Sensor ring

the number of individual mechanical increments.
FIGURE 2.14 (a) Image acquisition using a linear sensor strip. (b) Image acquisition using a circular sensor strip.

© 2002 R. C. Gonzalez & R. E. Woods
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Image acquisition using sensor arrays

Illumination (energy)

o
,:’/ l\ source

Output (digitized) image

Imaging system

(Internal) image plane

Scene element

dcde
b

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy (“illumination™) source. (b) An el-
ement of a scene. (¢) Imaging svstem. (d) Projection of the scene onto the image plane. (¢) Digitized image.

© 2002 R. C. Gonzalez & R. E. Woods
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nuous image projected onto a sensor array

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image
sampling and quantization.

© 2002 R. C. Gonzalez & R. E. Woods
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Pixel Values

Each of the pixels that represents an image stored inside a computer has a pixe/
value which describes how bright that pixel is, and/or what color it should be. In
the simplest case of binary images, the pixel value is a 1-bit number indicating
either foreground or background. For a grayscale images, the pixel value is a single
number that represents the brightness of the pixel. The most common pixel format
is the byte image, where this number is stored as an 8-bit integer giving a range of
possible values from 0 to 255. Typically zero is taken to be black, and 255 is taken
to be white. Values in between make up the different shades of gray.

To represent color images, separate red, green and blue components must be
specified for each pixel (assuming an RGB colorspace), and so the pixel "value' is
actually a vector of three numbers. Often the three different components are stored
as three separate "grayscale' images known as color planes (one for each of red,
green and blue), which have to be recombined when displaying or processing.

Multi-spectral images can contain even more than three components for each pixel,
and by extension these are stored in the same kind of way, as a vector pixel value,
or as separate color planes. See satellite images 7 band in TM ........

The actual grayscale or color component intensities for each pixel may not actually
be stored explicitly. Often, all that is stored for each pixel is an index into a
colormap in which the actual intensity or colors can be looked up.

Although simple 8-bit integers or vectors of 8-bit integers are the most common
sorts of pixel values used, some image formats support different types of value, for
instance 32-bit signed integers or floating point values. Such values are extremely
useful in image processing as they allow processing to be carried out on the image
where the resulting pixel values are not necessarily 8-bit integers. If this approach
is used then it is usually necessary to set up a colormap which relates particular
ranges of pixel values to particular displayed colors.
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ﬂE 2 ATLAB CODE TO READ DISPLAY IMAGES
examples

le EGk Yew Inset Lok Deskiop Window Ho

/ A=imread('c:\lena.jpg') Dedée h RANY € 0E =0

e figure

 imshow(A)

* imfinfo('C:\lena.jpg’')

e fori=1:380

onaler
Fichard E. W

 for j=1:380 e

: B(i,380+1-j)=A(i.j); e
 end e~
 end

© 2002 R. C. Gonzalez & R. E. Woods
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A

e figure

e subplot(2,2,1)
 imshow(A)

*  %figure

« subplot(2,2,2)
 imshow(B)

« subplot(2,2,3)
*  %figure
 imshow(A)

« subplot(2,2,4)
e imhist(B)

« size (B)

© 2002 R. C. Gonzalez & R. E. Woods
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LAlﬁll;fw?r 311‘ storage bits for various values of N and k. L=2"K

Nk 1(L=2 2(L=49 3(L=8 4(L=16 51 =32 6( =64 7( =128 8(L = 256)
32 1,024 2,048 3.072 4.096 5.120 6.144 7,168 8.192
64 4,096 8,192 12,288 16.384 20.480 24.576 28.672 32,768
128 16,384 32,768 49,152 65.536 81.920 0R8.304 114.688 131,072
256 65,536 131,072 196,608 262,144 327.680 393.216 458,752 524,288
512 262,144 524,288 786,432 1.048576  1.310.720 1.572.864 1,835008 2,097,152
1024 1,048,576 2,097,152 3,145,728 4.194.304 5.242.880 6.291.456 7,340,032 8,388,608
2048 4194304 8388608 12,582912 16.777.216 20.971.520  25.165.824  29369.128 33,554,432
4096 16,777,216 33554432 50,331,648 67.108864 83.886.080 100.663.296 117440512 134.217.728
8192 67,108,864 134217728 201,326,592 268435456 335.544.320 402.653.184 469,762,048 536,870,912

© 2002 R. C. Gonzalez & R. E. Woods
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Spatial and Intensity Resolution

casure of the smallest discernible detail in an image

— stated with /ine pairs per unit distance, dots (pixels) per unit

— stated with & bits, 12 bits, 16 bits, etc.

© 2002 R. C. Gonzalez & R. E. Woods
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FIGURE 2.20 Typical effects of reducing spatial resolution. Images shown at: (a) 1250
dpi, (b) 300 dpi, (c) 150 dpi, and (d) 72 dpi. The thin black borders were added for
clarity. They are not part of the data.

© 2002 R. C. Gonzalez & R. E.
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FIGURE 2.21

(a) 452 x 374,
256-level image.
(b)—(d) Image
displayed in 128.
64, and 32 gray
levels, while
keeping the
spatial resolution
constant.

© 2002 R. C. Gonzalez& R. E. W\
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FIGURE 2.21

preppny (Continued)
(e)-(h) Image
displaved in 16,8,
4. and 2 gray
levels. (Original
courtesy of
Dr. David
R. Pickens,
Department of
Radiology &
Radiological
Sciences,
Vanderbilt
University
Medical Center.)

72 0
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=4 Basic Relationships Between Pixels

* Neighborhood
« Adjacency

e Connectivity

« Paths

* Regions and boundaries

NEW MEXICO TECH
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Basic Relationships Between Pixels

» Neighbors of a pixel p at coordinates (X,y)

> 4-neighbors of p, denoted by N,(p):
(X_la Y)a (X+19 Y)a (X,Y'l), and (Xa y+1)

»> 4 diagonal neighbors of p, denoted by N(p):
(X_la y_l)a (X+19 y+1)9 (X+19y_1)9 and (X_la y+1)

»> 8 neighbors of p, denoted Ng(p)
Ng(p) = Ny(p) U Np(p)

ndd o

NEW MEXICO TECH

©2002R.C.Gonzalez&R.E.Woods @ SCIENCE-ENGINEERING -RESEARCH -UNIVERSITY
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Basic Relationships Between Pixels

 Adjacency
Let V be the set of intensity values

» 4-adjacency: Two pixels p and q with values from V are 4-
adjacent if q 1s in the set N (p).

» 8-adjacency: Two pixels p and q with values from V are 8-
adjacent 1f q 1s in the set Ng(p).

ndd o

NEW MEXICO TECH

© 2002 R. C. Gonzalez & R. E. Woods SCIENCE-ENGINEERING -RESEARCH -UNIVERSITY



o For natural images we need a light source (\: wavelength of the source) \
- E(I, Uz, A) incident |Ight ona point (z,y, 2 world coordinates of the point)

i o Each point in the scene has a reflectivity function.
—(z,3,2,A): reflectivity function

o Light reflects from a point and the reflected light is captured by an imaging device.
—c(z,y,2,A) = B(x,y,2,\) x r(z,y,2,\): reflected light.

- -Inlecture one

» Image Formation
» Sensors types

= » Image types

——— » Image file size

© 2002 R. C. Gonz
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The Electromagnetic Spectrum

Energy of one photon (electron volts)
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Wavelength (meters)
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Hard X-rays Ultraviolet Infrared Radio waves

Gamma rays Soft X-rays Visible spectrum Microwaves

04x10%  o0s5x10®% o06x10°% o07x10°
Ultraviolet Violet Blue  Green Yellow  Orange Red Infrared

FIGURE 2.10 The clkectromagnetic spectrum. The visible spectrum s shown zoomed 1o facilitate explanation,
L but note that the visible spectrum is a rather narrow portion of the EM spectrum.
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FIGURE 2.12

(a) Single imaging ' .
SENsor. — Sensing material

Power in

(b) Line sensor.
(c) Array sensor.

Housing—/ {\[U\m- Voltage waveform out

A digital image is nothing more || F 0 0 E I
AN N S N F R R R RS
than data—numboers mndicating EEEEEEERREEN:
variations of red, green, and blue af i EIRIEIRIEIEIR 5 5 5 & % e
> > ..... 59 60 61 55 60 103 134 162 172 164
. . . 62 61 55 44 49 96 133 163 174 165
a particular location on a grid of 56 45 © 340 2 137 10 171 10
pixels.

55 45 55 56 42 94 136 164 173 163
--. 53 45 58 59 44 86 134 162 173 165
-- 54 47 61 60 46 79 131 160 172 165

57 51 63 58 49 75 133 162 174 167
- 63 57 62 54 52 74 138 166 176 168

70 62 61 49 54 77 139 166 174 164
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Introduction

hat is Digital Image Processing?

Digital Image

— A two-dimensional function f(¥,Y) xand y are spatial
coordinates

The amplitude of £ is called intensity or gray level at the point (x, y)

Digital Image Processing

— Process digital images by means of computer, it covers low-, mid-
, and high-level processes

low-level: inputs and outputs are images
mid-level: outputs are attributes extracted from input images
high-level: an ensemble of recognition of individual objects

Pixel
— The elements of a digital image

© 2002 R. C. Gonzalez & R. E. Woods
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* An 1mage may be defined as a two —
dimensional function, 7(x, y), where x and y
are spatial (plane) coordinates, and the
amplitude of fat any pair coordinates (x, y) 1s
called the intensity or gray level of the image
at that point.

 When x, y, and the amplitude values of fare
all finite, discrete quantities, we call the 1image
a digital image.

© 2002 R. C. Gonzalez & R. E. Woods
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Digital image representation

FIGURE 2.18
Coordinate
convention used
in this book to
represent digital
images.

L e o s s s e o Adigital image is nothing more
t * ¢ s e ¢ o than data—numbers indicating

variations of red, green, and blue
. ... ..... . ataparticularlocationona grid

M-=—1¢ » o ¢ o o & o s o @ OfPIXCIS-
One pixel /S flxy)

© 2002 R. C. Gonzalez & R. E. Woods
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Digital image representation

drigin FIGURE 2.18
2 3. oo N=-1 Coordinate
y convention used

in this book to
represent digital
images.

:0‘.'0'00“..

M=—14 o o |e¢ »

* &
One pixel _/

© 2002 R. C. Gonzalez & R. E. Woods
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Digital image Array representation

£(0,0) F(O,1) e, £(0,N-1)|
FL0) FLD oo, f(,N-1)
fx,y)=|:
f(M-10) f(M-LD) .. f(M-1LN-1) |
_aoo R T T T T T RO PPPPR S a, N_l_
Ao QU] coeeeermmmiriiiiiiniiin. a; v

S, py)=|:

© 2002 R. C. Gonzalez & R. E. Woods — —
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Images as Matrices

e An image matrix (N x M):
[ A(0,0) A(0,1) A(0,

) L AOM-1) ]
) ALM-Y iy ows @

A(1,0) A(1,1) AL

B D

CAN-1,M-1)

| A(N -1,0) AN-1,1) AN-12) ..

o Ai,j) € {0,1,...,255).

o Ali,]):
- “"Matrix case:” The matrix element (i, j) with value A(i, j).

~ “Image case:” The pixel (i, ;) with value A(i, j).
~ Will use both terminologies.

© 2002 R. C. Gonzalez & R. E. Woods
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el Sources for Images

* Electromagnetic (EM) energy spectrum
e Acoustic

e Ultrasonic

« Electronic

* Synthetic 1images produced by computer

© 2002 R. C. Gonzalez & R. E. Woods
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Electromagnetic (EM) energy spectrum

Processing _A¥gt///
‘rf
)
£

Energy of one photon (electron volts)

: 10°  10* 10° 10* 10t 10° 107! 1002 107 107* 107° 10® 1007 107® 1077

| I | I I | I I | | I | I I | I
k3 B _J = R -

Gamma rays X-rays Ultraviolet Visible Infrared Microwaves Radio waves

FIGURE 1.5 The electromagnetic spectrum arranged according to energy per photon.

Major fields in which digital image processing is widely used

Gamma-ray imaging: nuclear medicine and astronomical observations
X-rays: medical diagnostics (X-rays of body), industry, and astronomy, etc.
Ultraviolet: lithography, industrial inspection, microscopy, lasers, biological
imaging, and astronomical observations

Visible and infrared bands: light microscopy, astronomy, remote sensing,
industry, and law enforcement

Microwave band: Radar imaging

Radio band: medicine (such as MRI) and astronomy

© 2002 R. C. Gonzalez & R. E. Woods
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ﬂEx ¥ Pixels 1n 1image
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How the pixels are stored:

O 1 2 3 4 S 6 7 8 9
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. Assume a window or image with a given WIDTH and HEIGHT.

. We then know the pixel array has a total number of elements equaling
WIDTH * HEIGHT.

3. For any given X, Y point in the window, the location in our 1 dimensional
pixel array is: LOCATION = X + Y*WIDTH

Pixel 13 has an x value of 3 and y value of 2.
l: 5678 9

2 10 11 12 13 14

>

+ (y * width)
3+ (2%5)
3 + 10

13

|

3 15 16,17 18 19

"

4 |20 21 |22 23 24
«—width=5—
How the pixels are stored:

O 1 2 3 4 S 6 7 8 9
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Image f(x, y)
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field

Digital image processing deals with manipulation
of digital images through a digital computer. It is
a subfield of sighals and systems but focus
particularly on images. DIP focuses on
developing a computer system that is able to
perform processing on an image. The input of
that system is a digital image and the system
process that image using efficient algorithms,
and gives an image as an output. The most
common example is Adobe Photoshop. It is one
of the widely used application for processing
digital images.

www.imageprocessingbook.com
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that's gives its Processed image
ouput as an

a particular system to
focus on a water drop,

and sent to
3d world around us by

In the above figure, an
image has been captured by
a camera and has been sent
to a digital system to
remove all the other details,
and just focus on the water
drop by zooming it in such a
way that the quality of the
image remains the same.

http://www.tutorialspoint.com/dip/

© 2002 R. C. Gonzalez & R. E. Woods
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« Note that a digital image is composed of a finite number of
elements, each of which has a particular location and
value. These elements are referred to as picture element,
image element, pek, and pixeh.|[1]

¢ Interest in digital image processing methods stems
from two principal application areas:

1- improvement of pictorial information for human
interpretation; and

2- processing of 1mage data for storage, transmission,
and representation for autonomous machine perception.

© 2002 R. C. Gonzalez & R. E. Woods
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Image Recorder

Output Image
Storage

The digital image produced by the digitizer goes into temporary storage on a
suitable device. In response to instructions from the operator, the computer
calls up and executes image processing programs from library.

During the execution, The input image is read into the computer
line by line .Operating upon one or several lines, the computer
generates the output image, pixel by pixel, and store it on the
output data storage device, line by line.

© 2002 R. C. Gonzalez & R. E. Woods
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During the processing, the pixels may be
modified. After processing, the final product is displayed
by a process is the reversed of digitization:

The gray level of each pixel is used to determine the
brightness of the corresponding point on a display screen.
The processed image is thereby made visible, and once
again amenable to human interpretation.

the brightness of each pixel is represented by a numeric
value. Gray-scale images typically contain values in the
range from 0 to 255, with 0 representing black, 255
representing white and values in between representing
shades of gray

© 2002 R. C. Gonzalez & R. E. Woods
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Types of Computerized Processes

e ]1-Low Level Process
e 2-Mid Level Process
« 3-High Level Process

 I-low Level Process 1nvolves primitive
operations, such as image processing to reduce
noise, contrast, enhancement and 1mage
sharpening. In this level, both its mput and
output are digital images

© 2002 R. C. Gonzalez & R. E. Woods
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Original Imadjust
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* Involves tasks such as ,segmentation
(partitioning an image into regions or
objects), description these objects to reduce
them to a form suitable to computer, and
classification (recognition ) of individual
objects. The inputs are digital images and
the outputs are attributes extracted from
those images (i.e, edges, contours, and the
identity of individual objects.

© 2002 R. C. Gonzalez & R. E. Woods
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' PEARS COLOR IMAGE
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" Pears GRAY IMAGE
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Lrgb supénmposed transparéntly on onginal image
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3-High Level Process

* Involves making sense of a recognized objects as in
image analysis , for example : 1if a digital 1mage
contains a number of objects , a program may
analyzed the image and extract the objects.

e So the digital image process encompasses
processes whose inputs and outputs are images
and in addition, encompasses processes that
extract attributes from images up to and including
recognition of individual objects.

© 2002 R. C. Gonzalez & R. E. Woods
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Consider the area of automated analysis of text:

* The processes of acquiring an 1image of the
area containing the text.

* Preprocessing the image.

» Extracting (segmentation ) the individual
characters.

* Describing the characters in away suitable for
computer.

* Recognizing these characters.

© 2002 R. C. Gonzalez & R. E. Woods
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* Medicine(diagnostics, brain images x-rays
* Web sites

* Books and magazine

* TV, movies, graphics,

* Digital camera

» Official application forms

* ID

* Licence

o Satellite

© 2002 R. C. Gonzalez & R. E. Woods
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The Electromagnetic Spectrum

Energy of one photon (electron volts)

ot 100 102 10! 1 ! 10?2 10 104 10 10 107 10% 107
| | | | | | | | | | | | | |

Frequency (Hz)

1020 102 10" 108 107 10 10 10 108 102 10t 10! 102 108 107 100 108
| | | | | | | | | | | | ] | | | |

Wavelength (meters)

1072 10" 101 10° 10% 107 10 10° 10% 10 10?2 107! 1 ot 102 108
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Hard X-rays Ultraviolet Infrared Radio waves

Gamma rays Soft X-rays Microwaves

Visible spectrum

04x107% 05x10% 06x10° 07x10°°
Ultraviolet Violet Blue  Green Yellow  Orange Red Infrared

FIGURE 2.10 The electromagnetic spectrum. The visible spectrum is shown zoomed to facilitate explanation,
- but note that the visible spectrum is a rather narrow portion of the EM spectrum.
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Examples Of Fields That Use Digital Image Processing

FIGURE 1.6
Examples of
gamma-ray
imaging. (a) Bone
scan. (b) PET
image. (¢) Cyvgnus
Loop. (d) Gamma
radiation (bright
spot) from a
reactor valve.
(Images courtesy
of (a) G.E.
Medical Systems.
(b) Dr. Michael
E. Caseyv.CTI
PET Systems.

(c) NASA.

(d) Professors
Zhong He and
David K. Wehe.
University of
Michigan.)

1-Gamma rays

© 2002 R.
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FIGURE 1.7 Examples of X-ray imaging. (a) Chest X-ray. (b) Aortic angiogram. {(c) Head
CT. (d) Circuit boards. (e¢) Cygnus Loop. (Images courtesy of (a) and (c) Dr. David
R. Pickens. Dept. of Radiology & Radiological Sciences. Vanderbilt University Medical
Center. (b) Dr. Thomas R. Gest. Division of Anatomical Sciences. University of Michi-
gan Medical School. (d) Mr. Joseph E. Pascente. Lixi. Inc.. and () NASA.)

age

d
(=

© 2002 R. C. Gorizaicz o n. . vvuuus



Digital Image Processing, 2nd ed.

www.imageprocessingbook.com

5 FIGURE 1.8
g Examples of
ultraviolet
imaging.
(a) Normal corn.
(b) Smut corn.
(c) Cygnus Loop.
(Images courtesy
of (a) and
(b) Dr. Michael
W. Davidson,
Florida State
University.
(c) NASA)

3-Ultraviolet imaging

©2002R.C
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Satellite Imaging

Fichard E. Woods

ABLE 1.1

. Band No. Name Wavelength (um)  Characteristics and Uses
Thematic bands
in NASA's l Visible blue 0.45-0.52 Maximum water
LANDSAT penetration
satellite. 2 Visible green 0.52-0.60 Good for measuring plant
vigor
3 Visible red 0.63-0.69 Vegetation discrimination
iEspectral bands 4 Near infrared 0.76-0.90 Biomass and shoreline
mapping
5 Middle infrared 1.5-1.75 Moisture content of soil
and vegetation
b Thermal infrared 10.4-12.5 Soil moisture; thermal
mapping
] Middle infrared 208-235 Mineral mapping

© 2002 R. C. Gonzalez & R. E. Woods
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M Band Wavelength (um)

104 -12.5 Thermal Infrared

2.08 - 2. Shortwave Infrared

1.55-1.7¢ Shortwave Infrared

0.76 - 0.9 Near Infrared

Red

Green

Blue

© 2002 R. C. Gonzalez & R. E. Woods
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Landsat satellite images in TM Bands

FIGURE 1.10 LANDSAT satellite images of the Washington, D.C. area. The numbers refer to the thematic
bands in Table 1.1. (Images courtesy of NASA.)

© 2002 R. C. Gonzalez & R. E. Woods
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M Band Wavelength (um)

10.4 -12.5 S Thermal Infrared

2.08 - 2.35 Shortwave Infrared

1.55-1.75 ' Shortwave Infrared

0.76 - 0.90 Near Infrared

0.63 - 0.69 Red

0.52 -0.60 Green

0.45-0.52 Blue

© 2002 R. C. Gonzalez & R. E. Woods
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Shortwave Infrared

Near Infrared

Combining TM bands 5, 4, & 2 to make an image

© 2002 R. C. Gonzalez & R. E. Woods
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Satellite Images Examples: Basra-IRAQ ,
Aril 4,2003 L7, 742

© 2002 R. C. Gonzalez & R. E. Woods
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FIGURE 1.11
Multispectral
image of
Hurricane
Andrew taken by
NOAA GEOS
(Geostationary
Environmental
Operational
Satellite) sensors.
(Courtesy of
NOAA.))

www.imageprocessingbook.com
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FIGURE 1.14
Some examples
of manufactured
goods often
checked using
digital image
processing.

(a) A circuit
board controller.
(b) Packaged pills.
(c) Bottles.

(d) Air bubbles
in a clear-plastic
product.

(e) Cereal.

(f) Image of
intraocular
implant.

(Fig. (f) courtesy
of Mr. Pete Sites,
Perceptics
Corporation.)

©2002 R. C. Gonzalez & R. E. Woc
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Examples: Automated Visual Inspection

v’ B o gy 3 S(D @) ab
C

d
FIGURE 1.15

Some additional
examples of
imaging in the
visual spectrum.
(a) Thumb print.
(b) Paper
currency. (¢) and
(d) Automated
license plate
reading.

(Figure (a)

- o B courtesy of the

\HH P K 4 I 96 5 I . National Institute

e ———————————— of Standards and

AES57148129A

st REDED |
assh

Technology.
Figures (c) and
(d) courtesy of
Dr. Juan Herrera,
Perceptics
Corporation.)

© 2002 R. C. Gonzalez & R. E. Woods
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FIGURE 1.17 MRI images of a human (a) knee. and (b) spine. (Image (a) courtesy of
Dr. Thomas R. Gest, Division of Anatomical Sciences, University of Michigan Medical
School. and (b) Dr. David R. Pickens. Department of Radiology and Radiological Sci-
ences. Vanderbilt University Medical Center.)

© 2002 R. C. Gonzalez & R. E. Woods
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FIGURE 1.20
Examples of
ultrasound
imaging. (a) Baby.
(2) Another view
of baby.

(¢) Thyroids.

(d) Muscle layers
showing lesion.
(Courtesy of
Siemens Medical
Systems, Inc..
Ultrasound
Group.)



Lect 3 DIP steps

1-from lecture 2:—Digital Image Definition

An image can be defined as a two-
dimensional function 1x, y)

X, Y. Spatial coordinate

54 48 48 52 67 111 144 160
54 48 48 49 61 106 141 160
48 45 48 49 56 97 138 160
50 51 57 56 61 101 135 161
59 60 61 55 60 103 134 162
62 61 55 44 49 96 133 163
56 45 53 54 41 99 137 163
55 45 55 56 42 94 136 164
53 45 58 59 44 86 134 162
54 47 61 60 46 79 131 160
57 51 63 58 49 75 133 162
63 57 62 54 52 74 138 166
70 62 61 49 54 77 139 166

F: the amplitude of any pair of coordinate
X, Y, which is called the intensity or gray

level of the image at that point.

X, y and F, are all finite and discrete

guantities.




Fundamental Steps in Digital Image Processing:

Outputs of these processes generally are images

Restoration

Image
Enhancement

A

Image

Acquisition

|

Problem Domain

Colour Image Wavelets & Imaqge
) 9 Multiresolution > 9 .
Processing orocessing Compression
33 $:
Image

Knowledge Base

| Morphological |

Processing

© ]

< Segmentation
Representation

& & Description

Object
& Recognition

Ouputs of these processes generally are image attributes



Fundamental Steps in DIPg

Step 1: Image Acquisition

The image is captured by a sensor (eg.
Camera), and digitized if the output of the
camera or sensor is not already in digital
form, using Analogue-to-Digital convertor

. Digital Image Processing
> System

a particular system to that's gives its Processed image
focus on a waler drop,  Ouputasan

a camera and sent fo

3d world around us oy



Image Acquisition equipment




Cont. Fundamental Steps in DIP:

Step 2: Image Enhancement

The process of manipulating an image so that
the result is more suitable than the original for
specific applications.

The idea behind enhancement techniques is
to bring out details that are hidden, or simple
to highlight certain features of mterest In an

image. r

Filtering with morphological operators
*Histogram equalization.

*Noise removal using a Wiener filter.
Linear contrast adjustment.
*Median filtering.

*Unsharp mask filtering.







Cont. Fundamental Steps in DIP:

Step 3: Image Restoration

- Improving the appearance of an image

- Tend to be mathematical or probabilistic
models. Enhancement, on the other hand, is
based on human subjective preferences
regarding what constltutes a good
enhancement result. %,\ 3

——
e 4
2 ,



What is Image Restoration?

* Image restoration attempts to restore images that have been

degraded

v’ Identify the degradation process and attempt to reverse it.

v" Almost Similar to image enhancement, but more objective.

Fig: Degraded image Fig: Restored image



Cont. Fundamental Steps in DIP:

Step 4: Colour Image Processing

Use the colour of the image to extract
features of interest in an image




Color to grey and negative

origin gray




Color Issue of an Image

Red, Green and Blue Color cube

* Consider Each element=8 bit
RG,B ~0to 255
+ Greyscale f(x,y,L)

+ 256 Grey shades
Color Scale f(x ,y, r, g, b)-24 bit

2hHx255x255=16777216 colors




CMY and CMYK Color Model

Cyan(C), Magenta(M) and are the secondary colors of light.
* Or CMY are Primary colors of pigments.
RGBtoCcMY
ks 1 R
M|=(1|-|G
Y| |1] | B

Magenta = White - Green

Black=Cyan + Magenta + Yellow Gyan = White - Red

Yellow = White - Blue

Printing Industry used to four color Printing.

Cyan, Magenta, plus Black.



HIS Color Model

RGB to HSI Conversion

I=§(R+G+B), wherd <I,R,G,B<1

L{R-6)+(R-B))
H=cos {—=—x—x——ox—1}, ifg>h,
(R-G)* +(R-B)(G-B)

H=360"-H, if g,<b, where g, =G/1, by=B/1

S=1-

in{R,G,B
R+G+Bx(mm{ )

-Hue : Range [0, 360]
-Saturation : Range[0, 1]
-Intensity : Range[O, 1]

White

Green Yellow
[20)

o

agenta 0
240




Cont. Fundamental Steps in DIP:

Step 5: Wavelets

Are the foundation of representing images
In various degrees of resolution. It is used
for image data compression.



Fundamental Steps in DIP:

Step 6: Compression

Techniques for reducing the storage
required to save an image or the
bandwidth required to transmit it.



Image Compression?

How we stored the image: Reduce the size for storage .

How analog image world is relate to digital processing world.
Compression-Remove redundancies.

Transmission with minimum bandwidth.

Lossy Compression=redundancy +some information, but still acceptable.

Original Im | Compressed Image ‘ Co!npressed Image
Sife-us :ge Size-12.9 KB, 11 % Size-1.95KB, 1 6 %



Fundamental Steps in DIP:

Step 7: Morphological Processing

Tools for extracting image components
that are useful in the representation and
description of shape.

In this step, there would be a transition
from processes that output images, to
processes that output image attributes.



Morphological Image Processing

Extract image components that are useful in the representation and
description of region shape, such as-

a. Origisal fisgerprint b Skeletoasred fingerprint
*Boundaries extraction ?N P
s V7NN
Pleletons /// N
| /{7 /I;",r:::- RN
*Convex hull ///" ?’7;??///@%\;‘\:\\&
ical filteri | (TN
*Morphological filtering it m i 34{(1}1”\‘\
. . 1 b ol ” [LANA A LI
*Thinning o
*Pruning...many More e e e S i e e i




Fundamental Steps in DIP:

Step 8: Image Segmentation

Segmentation procedures partition an image into its constituent
parts or objects.

Important Tip: The more accurate the segmentation, the more
likely recognition is to succeed.



In computer vision, Image Segmentation is
the process of partitioning a digital
image into multiple segments. The goal of
segmentation is to simplify and/or change
the representation of an image into

something that is more meaningful and

dllite image
infgrmation
allows

e related tc

easier to analyze . | I§ N
S grouncr SSiRformation Is
frequently used for calibration of

FCN nyN

Input image Ground-truth

cgmpares
th

Ground truths are “true and accurate
segmentations that are typically made by
one or more human experts, sa

Fully convolutional network :Classify the
object class for each pixel within an image.
That means there is a label for each pixel.



Fundamental Steps in DIP:

Step 9: Representation and Description

- Representation: Make a decision whether the data
should be represented as a boundary or as a complete
region. It is almost always follows the output of a
segmentation stage.

- Boundary Representation: Focus on external
shape characteristics, such as corners and
inflections (lslial)

- Region Representation: Focus on internal
properties, such as texture or skeleton (<) shape



Extracted the three regions

Selected three regions on the original image

QZ':?

Calculated edge map of the segmented regions



Fundamental Steps in DIP:

Step 9: Representation and Description

- Choosing a representation is only part of the solution
for transforming raw data into a form suitable for
subsequent computer processing (mainly recognition)

- Description: also called, feature
selection, deals with extracting attributes
that result in some information of interest.



Fundamental Steps in DIP:

Step 9: Recognition and Interpretation

Recognition: the process that assigns
label to an object based on the mformatlon
provided by its description. & 3

All the pixels in region 1,
Have label 1, and so on for
other regions, according

to some criteria




As a Conclusion:

Image Representation & Description

* Image representation & description: After an image is
segmented into regions; the resulting aggregate of segmented
pixels is represented & described for further computer
processing.

* Representation and Description
— Representing regions in 2 ways:
— Based on their external characteristics (its boundary):
— Shape characteristics
e Based on their internal characteristics (its region):
— Regional properties: color, texture, and ...
e Both

o
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AGURE 11.5 (a) Noisy image. (b) Image smoothed with a 9 X 9 averaging mask. (¢) Smooftied image,
thresholded using Otsu's method. (d) Longest outer boundary of (¢). (¢) Subsampled boundary (the points
are shown enlareed for claritv). (N Connected ooints from (¢).
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Object Recognition

=Object Detection is the process of finding instances of objects in
images. .This allows for multiple objects to be identified and located
within the same image.

= Object recognition can be termed as identifying a specific object
in a digital image or video. Object recognition have immense of
applications in the field of monitoring and surveillance, medical
analysis, robot localization and navigation etc.

wall




Fundamental Steps in DIP:

Step 10: Knowledge Base

Knowledge about a problem domain is
coded into an image processing system in
the form of a knowledge database.



The DIP steps can be
summarized as:

Representation
and description

Segmentation

Preprocessing

Recognition | Result
and
interpretion

Problem

domain
Image
acquisition

Knowledge base

Fig 1. Fundamental steps in digital image processing



Elements of digital image processing systems:

e The basic operations performed in a digital image
processing systems i1nclude (1) acquisition, (2)
storage, (3) processing, (4) communication and (5)
display.

Storage
Optical disks
Tape
Videotape
Mag disks

t Display Unit
Image acquisition « TV monitors

equipments Processing Unit  Printers
= Video « Computer  Slide

e Scanner * Workstation projectors

« Camera 1 -
-t -

Communication
channel

Fig 2. Basic fundamental elements of an image processing
system



Components of an Image
Processing System

Network

N

Vv

Image displays <

:::> Computer

4

P —-

Mass storage

N/
Specialized image Image processing
Hardcopy processing software
hardware

7\

Problem Domain |:>

_{;

Image sensors

Typical general-
purpose DIP
system




Components of an Image Processing System

1. Image Sensors

Two elements are required to acquire
digital images. The first is the physical
device that is sensitive to the energy
radiated by the object we wish to image
(Sensor). The second, called a digitizer,
Is a device for converting the output of the
phvsical sensina deV|ce into diaital form.

= 3 [===]
—— =]

1
Storage mage Recorder




Components of an Image

Processing System

2. Specialized Image Processing Hardware

Usually consists of the digitizer, mentioned before, plus
hardware that performs other primitive operations, such as
an arithmetic logic unit (ALU), which performs arithmetic and
logical operations in parallel on entire images.

This type of hardware somelimes is called a front-end
subsystem, and its most distinguishing characteristic iIs
speed. In other words, this unit performs functions that
require fast dala throughputs that the typical main computer
cannot handle.



Components of an Image
Processing System

3. Computer

The computer in an image processing system is a
general-purpose computer and can range from a PC to a
supercomputer. In dedicated applications, sometimes
specially designed computers are used to achieve a
required level of performance.



Components of an Image

Processing System

4. Image Processing Software

Software for image processing consists of specialized
modules that perform specific tasks. A well-designed
package also includes the capability for the user to write
code that, as a minimum, utilizes the specialized modules.



Components of an Image
Processing System
5. Mass Storage Capability

Mass storage capability is a must in a image processing
applications. And image of sized 1024 * 1024 pixels
requires one megabyte of storage space if the image is
not compressed.

Digital storage for image processing applications falls into
three principal categories:

1. Short-term storage for use during processing.
2. on line storage for relatively fast recall
3. Archival storage, characterized by infrequent access



Components of an Image

Processing System
5. Mass Storage Capability

One method of providing short-term storage is computer memory.
Another is by specialized boards, called frame buffers, that store
one or more images and can be accessed rapidly.

The on-line storage method, allows virtually instantaneous image
zoom, as well as scroll (vertical shifts) and pan (horizontal shifts).
On-line storage generally takes the form of magnetic disks and
optical-media storage. The key factor characterizing on-line
storage is frequent access to the stored data.

Finally, archival storage is characterized by massive storage
requirements but infrequent need for access.



Components of an Image

Processing System
6. Image Displays

The displays in use today are mainly
color (preferably flat screen) TV monitors.
Monitors are driven by the outputs of the
image and graphics display cards that are
an integral part of a computer system.



Components of an Image
Processing System

7. Hardcopy devices

Used for recording images, include laser
printers, film cameras, heat-sensitive
devices, inkjet units and digital units,
such as optical and CD-Rom disks.



Components of an Image
Processing System

8. Networking

Is almost a default function in any computer
system, In use today. Because of the large
amount of data inherent in image processing
applications the key consideration in image
transmission is bandwidth.

In dedicated networks, this typically is not a
problem, but communications with remote sites
via the internet are not always as efficient.



Images as Matrices
¥ 5 palaall Al ja

e Recalling the image formation operations we have discussed, note that
the image f,., (i.j) is an N x M matriz with integer entries in the range

| P 255.

e From now on suppress ( )__ and denote an image as a matrix “A” (or
B,..., etc.) with elements A(i,j) € {0,...,255} for i =0,...,. N-1,j=

e So we will be processing matrices!
54 48 48 52 67 111 144 160 162 158
54 48 48 49 61 106 141 160 164 158

=~ Origia _ N 48 45 48 49 56 97 138 160 167 160
My v v v v v v v v v e 50 51 57 56 61 101 135 161 170 162
U .. 59 60 61 55 60 103 134 162 172 164

N S 62 61 55 44 49 96 133 163 174 165
E S 56 45 53 54 41 99 137 163 171 160
---------- 55 45 55 56 42 94 136 164 173 163
---------- 53 45 58 59 44 86 134 162 173 165
N 54 47 61 60 46 79 131 160 172 165
: 57 51 63 58 49 75 133 162 174 167
petl s s v s upon s 63 57 62 54 52 74 138 166 176 168
Oe pixel — Fe 70 62 61 49 54 77 139 166 174 164



Fundamental Steps in Digital Image Processing:

¥ 5_alaal) daal e

Outputs of these processes generally are images

Image
Enhancement @

&

|

Problem Domain

Colour Image Wavelets & Image
Processing | Multiresolution Com regssion
9 processing p,\
hY 33 $:
Image
Restoration @

Knowledge Base

| Morphological |

Processing

© ]

< Segmentation
Representation

& & Description

Object
& Recognition

“/Ouputs of these processes generally are image attributes
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Example - |

e T he image of a ramp (256 x 256):

(012 ... 255 ]
0 1 2 .o 2909 _
A = ) » 2006 rows
01 2 0 J
>> forz=1:256
for 7 = 256
A(z,7) =7 —1

- image(A):

- colormap(gray(256));

V VvV V
V V V

- axis(’image’);

A colormap is real numbers between 0.0 and 1.0. Each row is an
RGB vector that defines one color. The kth row of the colormap defines the kth color,
where map(k,:) = [r(k) g(k) b(k)]) specifies the intensity of red, green, and blue.
colormap(map) sets the colormap to the matrix map. If any values in map are outside
the interval [0 1], MATLAB returns the error Colormap must have values in [0,1].




2"d example

e The image of a circle (256 x 256) of radius 80 pixels —— C /" =

centered at (128, 128):

[ 255 if /(i — 128)2 + (j — 128)2 < 80

B(i.j) =4 )
(4,7) i(l otherwise

>> fori=1:256

256

for j = 1:256
dist = ((z — 128)"2 4+ (7 — 128)"2)7(.5):
if (dist < 80)
B(z, 7) = 255;

(128 x 128) else
256 . B(3,7) =0;
end
end

end
>> image(B):
>> colormap(gray(256)):

>> axis(’image’);



Example 3

e The image of a “graded” circle (256 x 256):

C(i,§) = A(i, §) x B(i, j)/255

>> fori=1:256
for § =1 :256
C(i,7) = A(i, ) * B(i, ) /255;

end

end
>> image(C);
>> colormap(gray(256)):

>> axis(’image’):




Images as Matrices

o An image matrix (N x M):

A(0,0)
A(1,0)

e Ai,5) € {0,1,...,2
o Al1,7):

A(0,1)
A1, 1)

55).

A
A

(0

2)

g

(1,2)

AN —1,0) A(N-1,1) AN -1,

2

—

L A(0,M =1)
O A(LM=1)

) ... AN=1,M—1)

' N rows

— "Matrix case:” The matrix element (i, j) with value A(i, j).
— “Image case:” The pixel (i,5) with value A(i, ;).

— Will use both terminologies.



54 48

48

52

67

111 144 160 162 158

54 48 48 49 61 106 141 160 164 158
° ° 48 45 48 49 56 97 138 160 167 160

Ima e StatIStlcs 50 51 57 56 61 101 135 161 170 162

59 60 61 55 60 103 134 162 172 164

62 61 55 44 49 96 133 163 174 165

. . 3 valaal 56 45 53 54 41 99 137 163 171 160

> ArlthmEtIC Mean; ¢ dra ‘ 55 45 55 56 42 94 136 164 173 163

53 45

> Standard Deviation, 1. s, gall iilasyl ailadll 54 47

57 s1

> and Variance 63 57

58
61
63
62

59
60
58
54

44
46
49
52

86 134 162 173 165
79 131 160 172 165
75 133 162 174 167
74 138 166 176 168
77 139 166 174 164

. .. daadaiil) . . 70 62 61 49 54
Useful statistical featu‘f’e%ﬁn image are its arithmetic mean,

standard deviation, and variance. These are well known
mathematical constructs that, when applied to a digital image, can
reveal important information.

The arithmetic mean is the image's average value.

The standard deviation is a measure of the frequency distribution,
or range of pixel values, of an image. If an image is supposed to be
uniform throughout, the standard deviation should be small. A
small standard deviation indicates that the pixel intensities do not
stray very far from the mean; a large value indicates a greater

range.
The standard deviation is the square root of the variance.

The variance is a measure of how spread out a distribution is. It is computed as the
average squared deviation of each number from its mean =" emeiemen (m) ofan image & (¥ A7)

No1Mo1
> ¥ A(Lg)
j=0
NM
« The sample variance (03) of A:
N-1M-1 : "
> ¥ (A(E,J)—ma)”
-0 jo

2
Op =

NM
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Simple Image Statistics - Sample Mean and Sample
Variance

o The sample mean (m,) of an image A (N x M):
N-1M-1

> X Al,)
i=0 =0

NM

my=

o The sample variance (%) of A:
N-1M-1

Y Y (A(i,) - ma)’
y) =0 j=0
NM

Q

o The sample standard deviation, o, = \/a_:i.



THE VARIANCE

 The variance is a measure of how spread out a distribution
is. It is computed as the average squared deviation of each
number from its mean. For example, for the numbers 1, 2,
and 3, the mean is 2 and the variance is (1+2+3)/3=2

0-2 — (]_2)2 + (2—2.)2 + (3_2)2 - 667

3 .
The formula (in summation notation) for the variance in a
population is , ZIX - 12

o N

where u is the mean and N is the number of scores.

e [ he sample variance (¢%) of A:

N—1 M-—1 o -
> X (A(z,3) —my)”

» =0 1 —0)

NM



L,

Simple Image Statistics - Histogram

Let S be a set and define 45 to be the cardinality of this set,
.e., #5 is the number of elements of .
o The histogram hy(l) (1=0....,255) of the image A is defined as:
hall) = #{(i,5) | AG,j) =1, i=0,....N=1,j=0,...M=1} (3)
o Note that:

255

Y h(l) = Number of pixels in A (4)
(=0
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Calculating the Histogram

>> h=zeros(256,1);
>> for[=0:255
fori=1:N
forj=1: M
if (A(z,5) ==1)

h(l+1) = h(l+1) + 1;

end
end
end

end

>> bar(0:255,h);

OR

>> h=zeros(256,1);

>> forl=0:255
h(l + 1)=sum(sum(A == 1));
end

>> bar(0:255,h):

~|efe[efe[efe[e]o]

|o|ofelolefelefe] -




The vertical flipped image B (N xM) of A (N x M) can be obtained
asB(iM+1-j)=A(i,j)(i=0, ]

clear B;
A=imread('c:\lena.jpg');
fori=1:380
forj=1:380

B(i, 380+ 1-j) =A(, j);
end

figure
subplot(1,2,1)
imshow(A)
subplot(1,2,2)
imshow(B)



The cropped image B (N1xN2) of A (N xM), starting from (n1, n2), can be
obtained as B(k, /) = A(n1+k, n2+/) (k = 0,......... ,N1-1;/=0,..... ,N2-1).

-
A=imread('c:\lena.jpg');
fork=1:64
forj=1:128
B(k,j) = A(220+Kk,220+j);
end
end
figure
subplot(1,2,1)
imshow(A)
subplot(1,2,2)
imshow(B)
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Intensity Transformations and Spatial Filtering:

Intensity transformation Functions

Making changes in the intensity is done
through Intensity Transformation Funi

54 48 48 52 67 111 144 160 1
54 48 48 49 61 106 141 160 1
48 45 48 49 56 97 138 160 1
50 51 57 56 61 101 135 161 1
59 60 61 55 60 103 134 162 1
62 61 55 44 49 96 133 163 1
56 45 53 54 41 99 137 163 1
55 45 55 56 42 94 136 164 1
53 45 58 59 44 86 134 162 1'
54 47 61 60 46 79 131 160 1
57 51 63 58 49 75 133 162 1
63 57 62 54 52 74 138 166 1
70 62 61 49 54 77 139 166 1

ephotographic negative (using imcomplement)
egamma transformation (using imadjust)
elogarithmic transformations (using c*log(1+f))

econtrast-stretching transformations
(using 1./(1+(m./(double(f)+eps)).*E)



Representing digital image

Origin

01 2 3- N -1
oOr——r—r—r—r—+—+r—r+r—+— y
14 o o o o o o o o o o
2¢ ¢ o o o o © o o o @
3¢ ¢ o o o o o o o° o o

M—1¢ o o o o o o o o o o
. One plxel—/ f(x,y)
x

value f(x,y) at each x, y is called intensity level or gray level



Intensity Transformations and Filters

g(x,y)=TI[f(x,y)]

f(x,y) — input image,
g(x,y) — output image
T is an operator on f defined over a neighborhood of point (x,y)

FIGURE 3.1 A g

g Ongm_\ | p
neighborhood
about a poi[?l ] (x,y)
(x, y) in an image.

Image f(x, y)




Intensity Transformation

* 1x1isthe smallest possible neighborhood.

* |n this case g depends only on value of f at a
single point (x,y)
and we call T an intensity (gray-level
mapping) transformation and write
s = T(r)

where s and r denotes respectively the
intensity of g and f at any point (x, y).



Spatial Domain Methods

* |In these methods a operation (linear or non-
linear) is performed on the pixels in the
neighborhood of coordinate (x,y) in the input
image F, giving enhanced image F’

* Neighborhood can be any shape but generally
it is rectangular ( 3x3, 5x5, 9x9 etc)

a(x,y) = Tlf(x,y)]



Grey Scale Manipulation

Simplest form of window (1x1)

Assume input gray scale values are in range [0, L-1] (in 8 bit images
L = 256)

nth root Transformation
s=c(r)"

S is output image, r input im

A=imread('d:\flowers.jpg');

A=rgb2gray(A);

C=1;

n=.5; N -

B=C*double(A).*n; before

figure

subplot(1,2,1)

imshow(A,[])

subplot(1,2,2)

imshow(B,[])




Some intensity transform functions

FIGURE 3.3 Some
basic gray-level
transformation
functions used for
image
enhancement.

* Linear: Negative, Identity
*  Logarithmic: Log, Inverse Log
*  Power-Law: nth power, nth root

L=1

3L /4

-
e
2
-é‘l
5 L
]
(=9
5
o
L/4

Negative

nth root

nth power

Inverse log

|

L/4

L2

Input gray level. r

3L/

L—=1



Brain image and its Image Negatives




Power Law Transformation

s=crY
C, v : positive
constants

Gamma
correction

Output gray level. s

FIGURE 3.6 Plots

3L/4

L2

L4

0

of the equation
s = cr’ for

v = 0.04 . .
. various values ol
y = 0.10 v(c = 1inall
cases).
y = 0.20 B
y = 040
y = 0.67
= 1 .
vy=1.5
=25
v = 5.0 T
y = 10.0
/ y =250
| ] | J
L/4 L/2 3L/4 L—-1

Input gray level. r



A=imread('d:\flowers.jpg');

A=rgb2gray(A);

C=1;

gammal=0.6;

B=C*double(A).*gammal;

figure

subplot(1,2,1) before using Gamma
imshow(A,[])
subplot(1,2,2)
imshow(B,[])




In Matlab gamma transformation
(using imadjust)

* imadjust(f, [low_in high_in], [low_out high_out], gamma)

With Gamma Transformations,
you can curve the grayscale
components either to brighten the
intensity (when gamma is less
than one) or darken the intensity
(when gamma is greater than
one).



imadjust(f, [low_in high_in], [low_out high_out], gamma)

fis the input image, gamma controls the curve,
and [low_in high_in] and [low_out high_out] are
used for clipping. Values below low in are
clipped to low_out and values above high_in are
clipped to high out. For the purposes of this lab,
we use [] for both [low_in high_in] and [low_out
high_out]. This means that the full range of the
input is mapped to the full range of the output




Contrast Stretching

* To increase the dynamic range of the gray
levels in the image being processed.

L-1




contd...

» The locations of (ri,sl) and (r,,s,) control the
shape of the transformation function.

— If r,=s;and r,= s, the transformation is a linear function and
produces no changes.

— If r,=r,, s,=0 and s,=L-1, the transformation becomes a
thresholding function that creates a binary image.

— Intermediate values of (r,,s,) and (r,,s,) produce various
degrees of spread in the gray levels of the output image, thus
affecting its contrast.

— Generally, r;<r, and s;<s, is assumed.
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3L/A4

L2

L/4
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Example

T(r)

(r1.s1)

|
L/A L2 3L/

Input gray level.r

ab

cd

FIGURE 3.10
Contrast
stretching.

(a) Form of
transformation
function. (b) A
low-contrast
image. (¢) Result
of contrast
stretching.

(d) Result of
thresholding.
(Original image
courtesy of

Dr. Roger Heady.
Research School
of Biological
Sciences,
Australian
National
University.
Canberra,
Australia.)



In MATLAB Contrast stretching
transform

 g=1./(1+ (m./(double(f) + eps)).~E)
* [=imread('tire.tif');

12=im2double(l);
m=mean2(l2)

e contrastl=1./(1+(m./(12+eps)).74);

contrast2=1./(1+(m./(12+eps)).*5);
contrast3=1./(1+(m./(12+eps)).*10);
imshow(12)
figure,imshow(contrastl)
figure,imshow(contrast2)
figure,imshow(contrast3)
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Again Some Intensity Transformation Functions

FIGURE 3.3 Some L-1 : - T
basic gray-level
transformation )
functions used for Negative
image
enhancement. nth root
3L/ g
o Log
L
3 nth power
z
o L2 ’
=
=
— |
o
L/a o
Identity Inverse log
" / |
0 L/4 LR 3L/4 =1

Input gray level, r



Power—Law (Gamma)

curve the grayscale components either to brighten the intensity (when y < 1)

transformation

s =crY, ¢,y —positive constants

or darken the intensity (when y > 1).

L-1

~

e

(8]
1

Output gray level, s

3L/4 (/ Y -
Y 8
p .. ]
y=15
':/

=25
LA y=50 n
y =100
/ i
0 ] ] 1 4/
0 L/4 L2 3L/4 L-1

Input gray level, r

FIGURE 3.6 Plots
of the equation

s = cr' for
various values of
¥(c =1linall
cases).



Power —Law (Gamma) transformation

ab
cd

FIGURE 3.8

(a) Magnetic
resonance (MR)
image of a
fractured human
spine.

(b)—(d) Results of
applying the
transformation in
Eq. (3.2-3) with

¢ =1and

v = 0.6,0.4, and
0.3, respectively.
(Original image
for this example
courtesy of Dr.
David R. Pickens,
Department of
Radiology and
Radiological
Sciences,
Vanderbilt
University
Medical Center.)




Power —Law (Gamma) transformation

ab
cd

FIGURE 3.9

(a) Aerial image.
(b)—(d) Results of
applying the
transformation in
Eq. (3.2-3) with

¢ = 1and

y = 3.0,4.0,and
5.0, respectively.
(Original image
for this example
courtesy of
NASA.)




Contrast stretching

Contrast stretching is a process that expands the range of intensity levels in a image

so that it spans the full intensity range of the recording medium or display device.

Contrast-stretching transformations increase the contrast between the darks and the lights

L-1

s

. 3L/4

L2

Ouput gray level

L/4

I I I

(r2,52)

~—T(r) .

(r1,51)

| | 1

L/4 LR 3L/ L-1
Input gray level, r

ab
Gd

FIGURE 3.10
Contrast
stretching.

(a) Form of
transformation
function. (b) A
low-contrast
image. (¢) Result
of contrast
stretching.

(d) Result of
thresholding.
(Original image
courtesy of



Thresholding function

s = T(r)
A
|
|
S I
) *
”_]— I
— T(r) “
|
|
|
_:‘ |
E |
A |
|
L > !
m
Dark Light




Log Transformations

s =clog(1+r), c—const, r 20
Maps a narrow range of low intensity values in the input into a wider range of
output levels. The opposite is true for higher values of input levels.

ab

FIGURE 3.5

(a) Fourier
spectrum.

(b) Result of
applying the log
transformation
given in

Eq. (3.2-2) with
c=1.




In MIATLAB code Logarithmic
transformation

|I=imread('tire.tif');
imshow(l)
2=im2double(l);
J=1*log(1+12);

J2=2*log(1+12);

J3=5*|og(1+12);

figure, imshow(J)
figure, imshow(J2)
figure, imshow(J3)




Some intensity transform functions

FIGURE 3.3 Some L-1

basic gray-level
transformation
functions used for Negative
image
enhancement. nth root

3L/A |

Linear: Negative, Identity
Logarithmic: Log, Inverse Log °

Power-Law: nth power, nthroot - nth power

~
IS
I

Output gray level. s

L
Identity Inverse log

0 L/4 Lj2 JL/A
Input gray level. r



A=imread('d:\flowers.jpg');
A=rgb2gray(A);

C=1. - From previous lecture
gammal=0.6;

B=C*double(A).*gammal;

figure

subplot(1,2,1) before using Gamma
imshow(A,[])
subplot(1,2,2)
imshow(B,[]) |




lmage processing course
Lecture 5

Color System , number system and
Filters

Dr. Nassir H. Salman



No. of colors and image file size

2color resolution

colors number=

image size=image resolution x color resolution

Color resolution = no. bits used to record each
pixel , if it is 1 give us binary image, if it is 8
give gray image etc...

Image resolution=rows x columns=M x N =
no. of pixels in the image
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Fundamentals of Multimedia, Chapter 4 Li & Drew Prentice Hall 2003

Primary and Secondary Colors

e Colors are seen as variable combinations of the the so-called primary
colors R, G and B.

Mixture of lights (additive primaries)

e The primary colors of light can be added to produce the secondary
colors of light : magenta (M=R+B), cyan (C=G+B), and yellow
(Y=R+G)

e Mixing the three primaries in the right intensities produces white
light.

Mixture of Pigments (Subtractive primaries)

e Primary color of pigments is defined as one that subtracts or absorbs
a primary color of light and reflects or transmits the other two.

e The primary colors of pigments are magenta, cyan, and yellow. And
the secondary colors are R,G and B.

e The proper combinations of the three pigments primaries, produces
black.



Fundamentals of Multimedia, Chapter 4 Li & Drew Prentice Hall 2003

e Fig. 4.16: color combinations that result from combining primary
colors available in the two situations, additive color and subtractive
color.

Fig. 4.16: Additive and subtractive color. (a): RGB is used to specify additive color. (b):
CMY is used to specify subtractive color



3 gu) ) ABLSYL RGB AUl 8 Al o) oY)
sl g

The Red Green |Blue
color
Red 255 0 0
Green |0 255 0
Blue 0 0 255
White 255 255 255
Black 0 0 0
C 0 255 255 G+B
M 255 0 255 B+R
Y 255 255 0 R+G




CMY System

The Y M C
color
Red 255 255 0 Absorb C and reflect Y. M
Green 255 0 255
Blue 255 0 0
White 0 0 0
Black 255 255 255 | ol gaad) A5 jEa pa sLid) CN Al
C 0 0 255 | C=255-R
M 0 255 0 M=255-G
Y 255 0 0 Y=255-B




dad J8) Jiad L dua CMY (¢ CMYK a ludal

CMY pall (s
- c - L

255 — L
v _ M — L

255 — L

v _ Y — L

255 — L
K = =




CMYK abaill 1 RGB alalll ¢ (96,134,200) Al Jsa
' CMY (e ad CMY padl) ) RGB aUalll (sa Jagadll 5 s oY g

CMYK aUaill
o C-L _159-55 C=255—-R=255-96=159
255—L 255-55 M =255—-G =255-134 =121
— 121 -
m=2E 217 g33 vy 255 B=255-200 =55

- 255—L  255-55
Y-L  55-55
255-L 255-55
L 55
255 255

5 CMYK = (52%,33%,0%,21.6%)

. CMY = (159,121,55)

~0.216




CMY (A sill sladll 1) #7AB50F &l Jsa sl
éﬁd\emﬂ‘uﬂ RGBeLB.U ' 1 (Mf "\dgjﬁgeﬂ

(74),, =7X16+10=122 = red
(BS),, =11X16+5=181= green
(0F),, =0X16+15=15 = blue

C=255—R=255-122=133
M =255-G=255-181=74
Y =255— B =255-15 = 240
- CMY = (133,74,240)
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Using filters

Values outside bound
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Filter and image
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Filter and image

Dutsde piek
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4 b 13 20 22 4 6 13 20 2
10 12 19 21 3 10 12 19 21 3
nw s 2|9 nm || 25 2 9




Lecture 6

Spatial Filtering process

For spatial domain filtering, we are performing
filtering operations directly on the pixels of an
image.

Spatial filtering is a technique that uses a pixel
and its neighbors to select a new value for the
pixel

Original Image




. There are two main types of filtering applied to
Images:

. spatial domain filtering
. frequency domain filtering

In a later lab we will talk about frequency domain
filtering, which makes use of the Fourier Transform.

For spatial domain filtering, we are performing filtering
operations directly on the pixels of an image.

e Spatial filtering is a technique that uses a pixel and its
neighbors to select a new value for the pixel. The
simplest type of spatial filtering is called linear filtering

* [t attaches a weight to the pixels in the neighborhood
of the pixel of interest, and these weights are used to
blend those pixels together to provide a new value for
the pixel of interest



* Linear filtering can be uses to smooth, blur,
sharpen, or find the edges of an image. The
following four images are meant to
demonstrate what spatial filtering can do. The
original image is shown in the upper left-hand

corner.

e Smooth  blur sharpen find the edges



e Such non-linear filters are useful for

smoothing only smooth areas, enhancing only
strong edges or removing speckles from
Images.

In signal processing, it is often desirable to be able to
perform some kind of noise reduction on an image or signal.
The median filter is a nonlinear digital filtering technique,
often used to remove noise. Such noise reduction is a typical
pre-processing step to improve the results of Ilater
processing (for example, edge detection on an image).
Median filtering is very widely used in digital image
processing because, under certain conditions, it preserves
edges while removing noise



What are the mean and median filters®

* The mean filter is a simple sliding-window
spatial filter that replaces the center value
in the window with the average (mean) of
all the pixel values in the window. The
window, or kernel, is usually square but can
be any shape. An example of mean filtering
of a single 3x3 window of values is shown
below.



Mean filter

unfiltered values

5 3 6
2 1 9
8 4 7

5+3+6+2+1+9+8+4+7=45
45 /9=5



mean filtered % % %

Center value (previously 1) is replaced by the mean of all
nine values (5).



median filter

* The median filter is also a sliding-window
spatial filter, but it replaces the center value
in the window with the median of all the
pixel values in the window. As for the mean
filter, the kernel is usually square but can be
any shape. An example of median filtering
of a single 3x3 window of values is shown
below.



unfiltered values

6 2|0
3 |97 4
19 3 |10

in order:

023,3,4,6,10, 19, 97



median filtered

Center value (previously 97) is replaced by
the median of all nine values (4).



* This illustrates one of the celebrated features
of the median filter: its ability to remove
'impulse' noise (outlying values, either high or
low).

* The median filter is also widely claimed to be
'edge-preserving' since it theoretically
preserves step edges without blurring.

* However, in the presence of noise it does blur
edges in images slightly.



Basic idea of Spatial Filtering

* Spatial Filtering is sometimes also known as
neighborhood processing. Neighborhood processing is
an appropriate name because you define a center point
and perform an operation (or apply a filter) to only
those pixels in predetermined neighborhood of that
center point.

* The result of the operation is one value, which
becomes the value at the center point's location in the
modified image. Each point in the image is processed
with its neighbors. The general idea is shown below as
a "sliding filter" that moves throughout the image to
calculate the value at the center location



Image Data

Filter
0.110.110D0.11

s 0.110.110.11

0.110.110.11




The following diagram is meant to illustrate in further details
how the filter is applied. The filter (an averaging filter) is

applied to location 2,2.
Filter Applied at (2, 2)

Original Image Filtered Image
S.EH M.
e B E
8 B

Averaging Filter

251 255 250 ” 0.1111 | 0.1111 | 0.1111 27.8 28.3333 | 27.7777
251 244 255 : 0.1111 | 0.1111 | 0.1111 | = | 27.8888 | 27.1111 | 283333 | | ) | 25
255 255 | 240 0.1111 | 0.1111 | 0.1111 28.3333 | 28.3333 | 26.6666




Notice how the resulting value is placed at location 2,2
in the filtered image.

The breakdown of how the resulting value of 251
(rounded up from 250.66) was calculated
mathematically is:

=251%0.1111 + 255*0.1111 + 250*0.1111 +
251*0.1111 + 244*0.1111 + 255*%0.1111 + 255*0.1111
+255*0.1111 + 240*0.1111

= 27.88888 + 28.33333 + 27.77777 + 27.88888 +
27.11111 + 28.33333 + 28.33333 + 28.33333 +
26.66666

= 250.66



The following illustrates the averaging filter applied to
location 4,4.
Filter Applied at (4, 4)

Original Image Filtered Image

Averaging Filter

290 | 183 | o | [oamn1[oannr [oannn | [266666[203333] o0 |
20 | 12 | 87 | *[ o111 |0.1111 | 01111 | = [27.7777 | 1.3333 | 9_5666_::)'1;455'
255 | 0 94 101111 | 01111 | 01111 |  [283333| 0 | 104444 | T



Once again, the mathematical breakdown of
how 125 (rounded up from 124.55) was
calculated is below:

=240*0.1111 +183*0.1111 + 0*0.1111 +
250*%0.1111 +12*0.1111 +87*0.1111 +
255*%0.1111 + 0*0.1111 + 94*0.1111

= 26.6666 + 20.3333 + 0+ 27.7777 + 1.3333 +
9.6666 + 28.3333 + 0 + 10.4444

=124.55



Boundary Options

e See section 3.5. in your textbook.

* The example above deliberately applied the
filter at location 2,2. This is because there is
an inherent problem when you are working
with the corners and edges. The problem is
that some of the "neighbors" are missing.
Consider location 1,1:



Filter Applied at 1,1
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245 248



* |n this case, there are no upper neighbors or
neighbors to the left. Two solutions, zero
padding and replicating, are shown below. The
pixels highlighted in blue have been added to
the original image:



Zero Padding

255 254 255 255 242

*,.‘

231 24? 255'244 ‘255 | 255 {252

_4_.-_,._

255,240;255

_., e

249 | zqslzss*zso

_______ —_1" 7' Y_
243{255.39f : 88 | O 12 8 | 77 239“255 251'253
)

255 (248 | |255 | 255

250 255 249 255 255 g 7 : i 19 pA3 R 252,255 255]241 ZSS

-f,,.--4-,,---,4-..-~r*.+‘4‘

-._‘f.-, .,_r-‘-g-’ﬂ--f

ZSS 2461255 1252 | ZSS:ﬁﬁﬁ AR 150 249 255 |25S | 239!255 ZSS
' 1

254;255 i g 12 3 53 9 66 2 0 8 255 | zss 238

254£255 174 C W 175 : 2ss|2475255

B T

232 | ZSS 254 7 - 2491255 ZSS

___¢_,-.u,_____

255 246 | 253 o | i 255 | 245 248

‘—'T'—“

e s of ----+

253|255 ; s | o 'f‘:‘zss 255 |251 §
_-“-Y —_— . -

255 | 255'246 255 255 254 253 253 1255 | 255 248!255 252‘242‘255 254

‘-__4_-,‘_.',_‘,‘.




Zero padding is the default. You can also specify a value other
than zero to use as a padding value.

Another solution is replicating the pixel values along the edges:

Replicating

253 |25S |2SS |25S |2S5S |25S |253 |251 |25S |250 |2S5S |25S

1253 |25S5 [255 |25S5 |255 |255 {253 |251 {255 |250 {255 |255

25S |254 |255S 242

255 255 |248 [25S5 |[25S5 (254 (254

=255 1255 1255 240; 231 (247 (255 |244 ] 24l |25S ({252 |252

54 .254 255 |250 255

255 240 253 1255 |239 |255 |255

-

42 242 247 2SS 254 254 241

25S (255 |248 [247 |247

255 1255 1255 |[250 249 1245 |255 (250|250

255 1255 ({243 |25S5 } ;239‘255 251 1253 |253

+ - SR | - - - -

255 255 (1248 | 2S5S 25S |25S |242 |25S5 |255

250 1250 1255 (249 1255 |255

255 1255 |241 (255 |255

255 1255 |246 252 1255 i 239 |25S [255 |255

254 254255 [165 B8 255 |255 {238 |238

201 (252

=254 1254 2SS 2SS |247 |125S |255

. - -1

214¢214‘

S5 2SS 238 249 |25S5 (255 |255

213 236 | 232 |2S5S

225 214

55 12585 [25S 255 246 255 245 248 ZA4s8

53 2s3i!2ss 164

1?8;255 2ss | 167 I il 183 255 255 255 255

PR ————

55 (255|255 |246 1255 (255 (254 (1253 |253 |25S5 (255 /1248 (255 |252 (1242 (255 [254 |254

S5 |255 (255 (246 (255 (2551254 (253 1253 255 255 (248255 252 1242 (1255254 (254




* As a note, if your filter were larger than 3x3,
then the "border padding” would have to be
extended. For a filter of size 3x3, 'replicate’
and 'symmetric' yield the same results.

* The following images show the results of the
four different boundary options. The filter
used below is a 5x5 averaging filter that was
created with the following syntax:
h=fspecial('average',5)






The following MATLAB function
demonstrates how spatial filtering may
be applied to an image

* function img = myfilter(f, w)
* %MYFILTER Performs spatial correlation

* % I=MYFILTER(f, w) produces an image that has undergone
correlation.

* % f1is the original image

* % w is the filter (assumed to be 3x3)

* % The original image 1s padded with 0's
* %Author: Nova Scheidt

* % check that w 1s 3x3

* [mmn]=size(w);

* 1fm~=3|n~=3

. error('Filter must be 3x3')
* end



%get size of f

[x,y]=size(f);
%create padded f (called g)
%first, fill with zeros

g=zeros(x+2,y+2); wil [wi2 [wis
%then, store f within g w2l (w22 | w23
for i=1:x w31 | w32 [ w33
for j=1:y
g(i+1,j+1)=f(1,));
end
end

%ocycle through the array and apply the filter
for i=1:x

for j=1:y
img(i,j)=g(i,j)*w(1,1)+g(i+1,j)*w(2,1)+g(i+2,j)*w(3,1) ... Yofirst column
+ g(L,j+1)*w(1,2)+g(i+1,j+1)*w(2,2)+g(i+2,j+1)*w(3,2)... Yosecond column
+ g(L,j+2)*w(1,3)+g(i+1,j+2)*w(2,3)+g(i+2,j+2)*W(3,3);... %third column
%img(i,j)=g(i,j)*w(1,1)+g(i+1,j)*w(2,1)... %first column
% + g(i,j+1)*w(1,2)+g(i+1,j+1)*w(2,2); %second column
end
end
%Convert to uint--otherwise there are double values and the expected
%range is [0, 1] when the image is displayed
img=uint8(img);



example

clear
sw=1/9*[111; 111;111];
sw=[010;, 1-41;010];
w=[111;1-81;111];
$w=[-12 -1; 2 -4 2;-1 2 -1];
¥w=[1 0; 0 -1];
w= 1/16*[1 2 1; 2 4 2;1 2 1];
=l 13 —8.3 p-U.9 3 -0 =03 -U.3];
w=[-355;-30 5;-3 -3 -3];%kirsch detection
Sw= [ 14 1; 4 -20 4; 1 4 1];%Laplacian oproximation more dense spatial kernal
Ww=[1-21; -24-2;1-21];
sw=[0 0 0;0 1 0;0 0 0]
$w=[0 00;01 0,0 0 -1]
sw=[00000;,01110;,01110;,01110;,0000 0]
f=imread('D:\lenal.jpg');



examples

filtered image

filtered image




Fourier Transforms
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The Fourier transform is a representation of an image as a sum of
complex exponentials of varying magnitudes, frequencies, and
phases.

1 M-1N-1

Z Z f(\ 1')8‘]'2,*:'(1& M +vy/N)

F(u,v)=
A/[j\r x=0 y=0

- Fourier components: sinusoidal patterns

F(u, v) Fourier Coefficients
fix, y) isan image



« The Fourier Transform is an important image processing tool which is used to
decompose an image into its sine and cosine components. The output of
the transformation represents the image in the Fourier or frequency domain,
while the input image is the spatial domain equivalent.

« The DFT is used to convert an image from the spatial domain into frequency
domain, in other words it allows us to separate high frequency from low frequency
coefficients and neglect or alter specific frequencies leading to an image with less
information but still with a convenient level of quality .

* Fourier transform is a mathematical formula by which we can extract out the
frequency domain components of a continuous time domain signal. Using fourier
transform we can process time domain signal in frequency domain. We can use various
Frequency domain filters to process the signal.

« If signal is descrete, Discrete Fourier Transform use to analyse discrete signal

 The Fast Fourier Transform (FFT) is commonly used to transform

an image between the spatial and frequency domain. Unlike other domains such as
Hough and Radon, the FFT method preserves all original data. Plus, FFT fully
transforms images into the frequency domain, unlike time-frequency or wavelet
transforms.



Difference between spatial domain and frequency

domain In spatial domain, we deal with images as it
is. The value of the pixels of the image

input image el oututimage change with respect to scene. Whereas in

Al - mattX frequency domain, we deal with the rate at
which the pixel values are changing in
spatial domain.

: frequency = :
Input image ﬁ > rocessing
Friineg distribution |

Output image <: nyerse
transformation

Frequency domain
We first transform the image to its frequency distribution. Then our black box

system perform what ever processing it has to performed, and the output of the
black box in this case is not an image, but a transformation. After performing
inverse transformation, it is converted into an image which is then viewed in spatial

domain.
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time

Time domain
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signal
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FIGURE 4.1 The function at the bottom is the sum of the four functions above it.
Fourier’s idea in 1807 that periodic functions could be represented as a weighted sum
of sines and cosines was met with skepticism.

Background

The frequency domain refers
to the plane of the two
dimensional discrete Fourier
transform of an image.

The purpose of the Fourier
transform is to represent a
signal as a linear

combination of sinusoidal
signals of various frequencies.

54 48 48 52 67 111 144 160 162 158
54 48 48 49 61 106 141 160 164 158
48 45 48 49 56 97 138 160 167 160
50 51 57 56 61 101 135 161 170 162
59 60 61 55 60 103 134 162 172 164
62 61 55 44 49 96 133 163 174 165
56 45 53 54 41 99 137 163 171 160
55 45 55 56 42 94 136 164 173 163
53 45 58 59 44 86 134 162 173 165
54 47 61 60 46 79 131 160 172 165
57 51 63 58 49 75133 162 174 167
63 57 62 54 52 74 138 166 176 168
70 62 61 49 54 77 139 166 174 164




* The one-dimensional Fourier transform and its inverse
— Fourter transform (continuous case)

F(u) = I: f(x)e™ ™ dx where j=+—1
— Inverse Fourier transform: 2% = cos 6+ jsin 6
f(x)= j_iF(u)ejzmdu Euler formula
* Thetwo-dimensional Fourier transform and its inverse
— Fourier transform (continuous case)

F(u,v) = J': J'_"; 7(x.3)e 1= gy

— Inverse Fourier transform:

f(x,y)= j: .[:F (u,v)e’** ™™ dudy



2D Fourier transform for digital image

1 M-1N-1

)2 M,V)Z f(x,y)e—jZﬂ(ux/Mﬂy/N) u=0,1,2,....M-1 andv=0,1,2,...,N-1
( MN ny—O
X=FyXFy forimage f (x, y) of size M x N

IDFT inverse discrete Fourier Transform

M-1N-1
—j2 / M+vy/ =0,1,2,....M-1and y=0,1, 2,..., N -1
[ y) =D Flu,v)e i :
u=0 v=0 11 1 1 . 1] 1 1 1 .
R S X 4
N P R S Wy Wy
1 * wru¥ W=— 1 W P
X=—F,XF, "l z S
N" .1 *_,‘.j"' *. *\. N ,\'-:‘ 1 W\l\‘\T Wij(l-t\‘) o




The Fourier transform
* The Fourier transform plays a critical role in a
broad range of image processing applications,
including enhancement, analysis, restoration,
and compression.

 Example:

* |f f{lm, n) is a function of two discrete spatial
variables m and n, then the two-dimensional
Fourier transform of f(m, n) is defined by the
relationship

Flon,0) = Z Z f(m,n)e” Joym -jon.

N ==} ==



The variables w, and w, are frequency variables; their
units are radians per sample.

F(w,,w,) is often called the frequency
domain representation of f(m, n).

F(w,,w,) is a complex-valued function that is periodic both
in w, and w,, with period . Because of the periodicity,
usually only the range =T SO, 71

Note that F(0,0) is the sum of all the values of f(m,n). For
this reason, F(0,0) is often called the constant
component or DC component of the Fourier transform.

Flan,mp) = Z Z f(m,n)e 7" e JMR

TP = J) = e



* The inverse of a transform is an operation that
when performed on a transformed image
produces the original image. The inverse two-
dimensional Fourier transform is given by

flm,n) = .L.J:: ) JH Floy,0 o /M g JO4N doydw,.
1=

* Roughly speaking, this equation means that f(m,
n) can be represented as a sum of an infinite
number of complex exponentials (sinusoids) with
different frequencies. The magnitude and phase
of the contribution at the frequencies (w,,w,) are
given by F(w,,w,).



2D DFT and Inverse DFT (IDFT)

] M-1N-1

F(u,v) = UN > S f(x, y)e 2/ M1vy/N)
x 0 v 0O

.f(xl y) = > F(u’ U)
“’“ﬂi ‘\."‘NI > y
f(-"- y) - Z Z F(u. v)eﬁr(:u/.\l Fuy/N)
-0 rv-0
M, N: image size often weed

short notation:
X, y: image pixel position

u, v: spatial frequency



The Meaning of DFT and Spatial Frequencies

* Important Concept

Any signal can be represented as a linear combination of
a set of\basic components

M-1 N1
f(\ ‘) . 2’ N\ f (” l)(”' (ux/M+vy/N)

/
— Fourier components: sinusoidal patterns

- FPourier coefficients: weighting factors assigned to the Fourier
components

* Spatial frequency: The frequency of Fourier component

* Not to confused with electromagnetic frequencies (e.g.,
the frequencies associated with light colors)



Real Part, Imaginary Part, Magnitude, Phase, Spectrum

Real part: R = Real( F)
Imaginary part: I = Imag(F)
Magnitude-phase ‘ ‘ o
representation: F(u,v) = |F(u, v)le """
Magnitude T e
(spectrum): IF(u.v)| = [R*(u.v) + I*(u.v)]
Phase ! P I{u.v)
(spectrum): d(u, v) = tan R(1.v) |
Power

Spectrum: P(u,v) = |F(u,v)[



2D DFT Properties

Spatial domain a"f(x, y)

differentiation: Py < (ju)"F(u,v)

Frequency domain , . ... "F(u, v)
differentiation: (7x)f (%, y) < au"

Distribution law:  X[fi(x. y) + folx. ¥)] = J[fi(x. y)] + J[fo(x. y)]
Laplacian: Vif(x,y) & —(u® + vV})F(u, v)

Spatial domain
Periodicity: f(x.y)=f(x+ M.y)=f(x,.y + N)=f(x+ M,y + N)

Frequency domain
periodicity: F(u,v) = F(u + M,v) = F(u,v+ N) = F(u + M,v + N)



Computation of 2D-DFT

* To compute the 1D-DFT of a 1D signal x (as a vector):
x =F,X

To compute the inverse 1D-DFT:

| Y
x=—F,X

N

* To compute the 2D-DFT of an image X (as a matrix):

n~

X =F, XF,
To compute the inverse 2D-DFT:

1 % ook
X:FFNXFN



Computation of 2D-DFT

remember Fourier transform matrices

X=FyXFy

—j27n/N
W, =e’""" , where, N =4

Wi

Wi

0w WY

relationship: | I v F,,

In particular, for N = 4:

1

__ _—j2n/N
W, =e

1

*

K,

e 71?2 = cos @ — jsin®

%k

|
ek e [E— e




An Nepoint DFT s expressed as an Ndy-N matrix multiphication a8 X' = 1 7. where I is the original input signal, and X is the OF T
of the signal.

s
The translomation || of s2e \' x N can be defined as )| = (—) ot equivaenty
VX jk=d,.. N-1

1 | | SRR |
T A L Al
7 B T A
¢ &

"= G

|

[ N1 PN ) NN

where,, — . Fis & priniive \'hroctofntyinwhich§ = /.



Calculate of Fourier matrices

—j2n/N .
WN =3 / ,Whel’e,N =4 e—](b — COSQ) — jsin¢

T

Where¢=5
e"j@—cos‘IT 'sinﬂ—O 1= —]1=W
= > J = ] = —] = WN

. T m
e 7120 = COSZE—jSin 2—=-1-0=-1

2
= W2

Sin(3x)= Sin(2x)Cos(x) + Cos(2x)Sin(x)
Cos3x = Cos (2x + x) = Cos2xCosx - Sin2xSinx



Computation of 2D-DFT: Example

* A 4x4 image

13 638 1 1 1 11 3 6 8f1 1
9 8 8 2 - 1 —j -1 21
=5 4 2 3 X:F4XF4:1—{1—]1§j§31—1
6 6 3 3 1 j -1 —j|6 6 3 3|1
/ [ 21 21 19 16 1
—4-3j —1-2j 4-5; S5+j|1
MATLAB function: fft2 =
-9 -7 -3 6 |1
—4+3; —-1+25 4+5; 5—j]|1
lowest frequency I 2-5j 3 245/
component 4-9; —11+8j —4-7; —5-4j
|13 6413 C11) —6-13;
highest frequency M 447 —11-8;

component —— |

* Compute its 2D-DFT:




Computation of 2D-DFT: Example

77 2-5j
~ |4-9 —11+8;
| 13 —6+13)
4+9] —5+4j
Real part:
77 2 3 2]
% - 4 —11 -4 =5
~13 -6 -11 -6
4 -5 -4 -11
Magnitude:
77 539 3 539
_ 9.85 1360 806 64
Rognina=| 13 1430 11 1432
985 640 806 1360

3
—4-7j
—11
—4+7j

245j |
—5-4j
—6-13;
~11-8/

Imaginary part:

l

0
-9
0
9

Phase:
0
-1.15 2

~

imag ~—

phase =

-5

8
13
4

—-1.19

51

314 200 3.14
115 247 209

0 5
-7 -4
0 -13
7 -8
0 119
~209 —247
~2.00

~251]




* Compute the inverse 2D-DFT:

Computation of 2D-DFT: Example

1 1 1 1

77 2-5j 3 2+5j |
[4-9;7 —1148; —4-7j —-5-4j
—-13 —6+13 -11 —-6-13j
- [4+9) S5+ —4+T) 1185 |
2] 21 19 16

-9 -7 -3 6

—4-3j —-1-2j 4-5j 5+

3j —1+2j 4455 5-j

MATLAB function: ifft2




From previous lecture 7

Fourier Transforms
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The Fourier transform is a representation of an image as
a sum of complex exponentials of varying magnitudes,
frequencies, and phases.

1 M-1N-1 P .
F(ll,1’): , ZZf(\ J’)e j2a(ux/M+vy/N)
Aﬂ\{ x=0 y=0

- Fourier components: sinusoidal patterns

F(u, v) Fourier Coefficients
fix, y) isan image

Course Website:



22 Fourier Transform is an important image processing tool which is used to
Ol decompose an image into its sine and cosine components. The output of
ZAOBl the transformation represents the image in the Fourier or frequency
domain, while the input image is the spatial domain equivalent.

The DFT is used to convert an image from the spatial domain into frequency
domain, in other words it allows us to separate high frequency from low
frequency coefficients and neglect or alter specific frequencies leading to
an image with less information but still with a convenient level of quality .

Fourier transform is a mathematical formula by which we can extract out the
frequency domain components of a continuous time domain signal. Using fourier
transform we can process time domain signal in frequency domain. We can use
various Frequency domain filters to process the signal.

If signal is descrete, Discrete Fourier Transform use to analyse discrete signal

The Fast Fourier Transform (FFT) is commonly used to transform

an image between the spatial and frequency domain. Unlike other domains such
as Hough and Radon, the FFT method preserves all original data. Plus, FFT fully
transforms images into the frequency domain, unlike time-frequency or wavelet
transforms.



K Nce between spatial domain and frequency

n In spatial domain, we deal with images as it
is. The value of the pixels of the image

input image el outeutimage change with respect to scene. Whereas in

Al - mattX frequency domain, we deal with the rate at
which the pixel values are changing in
spatial domain.

: frequency = :
Input image ﬁ > rocessing
Friineg distribution |

Output image <: nyerse
transformation

Frequency domain
We first transform the image to its frequency distribution. Then our black box

system perform what ever processing it has to performed, and the output of the
black box in this case is not an image, but a transformation. After performing
inverse transformation, it is converted into an image which is then viewed in spatial

domain.
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Background

The frequency domain
refers to the plane of the
two dimensional discrete
Fourier transform of an
iImage.

The purpose of the Fourier
transform is to represent a
signal as a linear
combination of sinusoidal

67 111 144 160 162 158
61 106 141 160 164 158
56 97 138 160 167 160
56 61 101 135 161 170 162
60 103 134 162 172 164
49 96 133 163 174 165
41 99 137 163 171 160
42 94 136 164 173 163
44 86 134 162 173 165
46 79 131 160 172 165
49 75 133 162 174 167
54 52 74 138 166 176 168
54 77 139 166 174 164

FIGURE 4.1 The function at the bottom is the sum of the four functions above it.
Fourier’s idea in 1807 that periodic functions could be represented as a weighted sum
of sines and cosines was met with skepticism.




lecture today: 8

Lect 8.Image Segmentation issue:
— The segmentation problem
— Finding points, lines and edges

Course Website:



The Segmentation Problem

Segmentation attempts to partition the pixels
of an image into groups that strongly
correlate with the objects in an image

Typically the first step in any automated
computer vision application




Segmentation Examples
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Detection Of Discontinuities

There are three basic types of grey level
discontinuities that we tend to look for in
digital images:

— Points

— Lines

— Edges
We typically find discontinuities using masks
and correlation
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Point Detection

Point detection can be achieved simply
using the mask below:

-1

8

-1

Points are detected at those pixels in the
subsequent filtered image that are above a

set threshold



Point Detection (cont...)

X-ray image of Result of point Result of
a turbine blade detection thresholding
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Line Detection

The next level of complexity is to try to
detect lines

The masks below will extract lines that are
one pixel thick and running in a particular
direction

-1 -1 -1 -1 = 2 -1 2 -1

(%)
I
—
|
—

2 2 2 -1 2 -1 -1 2 -1 -1 2 -1

-1 -1 -1 2 -1 -1 -1 2 -1 -1 -1 2

Horizontal +45° Vertical il 5"

'=.;3 Images taken from Gonzalez & Woods, Digital Image Processing (2002)



Line Detection (cont...)

Binary image of a wire
bond mask

3k

rocesgfifr Result of
i ame s thresholding

detector filtering result

Images taken from Gonzalez & Woods, Digital Image Processing (2002)




Edge Detection

An edge is a set of connected pixels that lie
on the boundary between two regions

Model of an ideal digital edge Model of a ramp digital edge

c;f Images taken from Gonzalez & Woods, Digital Image Processing (2002)

Gray-level profile Gray-level profile
of a horizontal line of a horizontal line
through the image through the image



Edges & Derivatives

]

We have already spoken | |

abOUt hOW der|vat|ves Gray-level profile
are used to find /
discontinuities

1st derivative tells us

Where an edge iS ~ derivative
2nd derivative can — I
be used to show

edge direction

-'=;3 Images taken from Gonzalez & Woods, Digital Image Processing (2002)




Derivatives & Noise

Derivative based edge detectors are
extremely sensitive to noise

We need to keep this in mind
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Common Edge Detectors

Given a 3*3 region of an image the following
edge detection filters can be used

-1 -1 -1 -1 0 1

- - »
4] 42 43

24 z.‘-\ z(n 0 0 0 _I 0 1

Z7 35 Zg 1 1 1 _1 0 ]

-1 0 0 -1

0 0 0 —2 0 2

0 1 1 0

Roberts

-'=;3 Images taken from Gonzalez & Woods, Digital Image Processing (2002)



Edge Detection Example

Original Image Horizontal Gradient Component

Verticl Gradient Componet

=.;'f Images taken from Gonzalez & Woods, Digital Image Processing (2002)



Edge Detection Example
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Edge Detection Example
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Edge Detection Problems

Often, problems arise in edge detection in
that there are is too much detail

For example, the brickwork in the previous
example

One way to overcome this is to smooth
images prior to edge detection



Edge Detection Example With

Smoothing

Original Image Horizontal Gradient Component

Images taken from Gonzalez & Woods, Digital Image Processing (2002)

Vertical Gradient Compoent Combined dge Imae



Laplacian Edge Detection

We encountered the 2nd-order derivative
based Laplacian filter already

sing (2002)

-1

-1

4

8

0

-1

0

-1

lez & Woods, Digital Image Proces

The Laplacian 1s typicaily not used by itself
as It i1s too sensitive to noise

Usually hen used for edge detection the
Laplacian is combined with a smoothing
Gaussian filter
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Laplacian Of Gaussian

The Laplacian of Gaussian (or Mexican hat)
filter uses the Gaussian for noise removal
and the Laplacian for edge detection

-'=.;3 Images taken from Gonzalez & Woods, Digital Image Processing (2002)

0]0([(=1]0 (0
0|-1|-2|-1]|0
-1]1-2]16(-2(-1
0|-1|-2|-1]|0
0]0(-1]0 (0




Laplacian Of Gaussian Example

N
o
o
&)
(o))
=
(2]
(7]
()
(&)
(©)
st
o
(&)
(o))
@®©
£
®©
5=
2
(@]
)
©
o
=
]
N
Qo
®©
N
c
O
o
S
(@)
fud
y—
c
()
29
©
-—
(2]
(&)
(o))
@®©
£
- =




Summary

In this lecture we have begun looking at
segmentation, and in particular edge detection

Edge detection is massively important as it is
IN many cases the first step to object
recognition



Convolution and Correlation in Image Processing is quite similar
except that the kernel are rotated 180 degree between these 2

operation.
For example, image A = [10 20 30 ; 40 50 60; 70 80 90] and the 9|87
kermelh=1[123;45 6;7 8 9], correlation of 2 matrices is sum of g ; :

the elements multiplication of 2 matrices

For the convolution, the operation is almost the
same, except that the kernel is rotated 180

=1 . o .
10 20 30

t’4 k4 5 : 6
40 50 60

Gl " « 9
70 80 90

9 8 3
degree. . . -
*6 1’5 ﬁ4
40 50 60
'.3 !2 '1
70 80 90

Correlationresult = (10 x 1) + (20 X 2) + ¢y olution resuri = (10x9)+(20x8)+(30x7)
(30x3) + (40 x4) + (50 x 8) + (60 X 6) + + (40 x 6) + (50 x 5) + (60 x 4) + (70 x 3) + (80 x

(70 x 7) + (80 x 8) + (90 x 9) = 2850

1/2(3 714 |1
41516 852
/71819 9|16 |3

2)+ (90 x 1) = 1650

In the real Image convolution and correlation, the
kernel 1s sliding over every single pixel and
performs above operation to form a new image.



The following convolution theorem shows an interesting relationship between
the spatial domain and frequency domain:

FCoLp)* A, y) = H@w,v) F,v)

and, conversely,

FGoy)a,y) = H@,v)*G,v)

where the symbol "*" indicates convolution of the two functions. The important
thing to extract out of this is that the multiplication of two Fourier transforms
corresponds to the convolution of the associated functions in the spatial
domain. This means we can perform linear spatial filters as a simple
component-wise multiply in the frequency domain.



Lecture 9

* Frequency Domain Filtering

Dr Nassir H. Salman



From previous lecture 8

One-Dimensional Fourier transform and it’s inverse

Fourier transforms pair

* The Fourier transform , F(u), of a single variable,
continuous function ,7(x)is defined by :

) F(u) = I_Oooof(x)e_jz””xdx P

« where conversely , given F(u), we can obtain f(x)
by means of the inverse Fourier transform:

2) f(x) = I_OOOOF(u)ej””xdu

They indicate the important fact that a function can be
recovered from its transform



Fourier transform

* The two equations above can be extended to
two variables , and : following Fourier transform
and it's inverse of 2-D

1) F(u,v)= f f f(x,)e 2" dxdy

2) f(x, y) _ J'_oooo Jﬂ—ooOO F(u, V)ej27z'(ux+vy)dudv

F _1 Y ' =0,1,2,...,M-1 andv=0,1,2,...,N-1
u,v) = X, e—]Zﬂ(ux/M+vy/N) u=u,1, 4,..., -l andv=0,1,2,...,N-
()= > f(5.)

x=0 y=0
M—-1N-1

f(x y):ZZF(“ P)e I MIN) X =012, M-l and y=0.1,2,.., N -1
2 9

u=0 v=0

for image f (x, y) of size M x N



Fourier transform

 The Fourier transform of a discrete function
(DFT) of one variable , f(x), x=0,1,..., M-1,
IS given by the equation:

1 M —1

DN F(u) = — y)e /2mer /M foru=0,1,2,..., M-1.
) F(u) M;f()

* Inverse (DFT) , See 1/M Value

M -1
e 2) f(x)= Z F(”)ejzmx/M orx=0,1,2,..., M-1.
u=0

1
M




How to Compute 1-D F(u)

To compute F(u) we start by substituting v = 0 in the
exponential term and then summing for all values of x. we
then substitute v =7 in the exponential and repeat the
summation over all values of x. we repeat this process for all
M values of u in order to obtain the complete Fourier

transform. e
F(l/l) — Z f(x)e—jZﬂux/M
M u=0

It takes approximately M? summations and multiplications
to compute discrete Fourier transforms. Like f/x), the
transform is a discrete quantity, and it has the same
components as f(x). Similar comments apply to the
computation of the inverse Fourier transform



* An important property of the discrete transform
pair is that :the discrete Fourier transform and its

iInverse always exists. This can be shown by
substituting either of
1 M -1

D Fu)=——3 f(x)e ™"
M = or
into other and making orthogonality of the

exponential ,we need the following orthogonality
property

2) f(x)= 3 Fuye ™"

M- ( ; —

Zej27u"x/Me—j27zux/M —J M lf rF=u |

s 0 otherwise
.




The concept of the frequency domain follows from Euler’s
formula:

e’’ =cos@+ jsinb

Fourier transform becomes: After we substitute in 1-D Fourier T

M1
) F) :ﬁZf(x)[cos27zux/M—jsin27zux/M] for u=0.1.2. .. M.
u=0

Thus we see that each term of Fourier transform [that is, the
value of F(u) for each value of u ] composed of the sum of all
values of the function f{x). The values of f{x) , in turn, are
multiplied by sines and cosines of various frequencies .The
domain (values of u) over which the values of F(u) range is
appropriately called frequency domain.

The Fourier transform may be viewed as a “mathematical
prism” that separates a function into various components
based on frequency contents.



* In general we see from equations:

D F ()= ==X fx)e /v

1) F(u)= iMz_:lf(x)[(:0827zwc/M — jsi2mux/ M ]

M -

That the components of the Fourier transform are complex
quantities. As in analysis of complex numbers, we find it is
convenient sometimes to express F(u) in polar coordinates:

) F(u)=|F(u)le’*™



Where;

F(u)|=[R°(U)+ 1> (u)]”

* is called magnitude or spectrum of the
Fourier transform , and

1(u>}

¢ (u) = tan ~ {R(u)

is called the phase angle or phase spectrum of the
transform

The power spectrum or spectral density, defined as the square of
the Fourier spectrum:

P(u) = |F(u)|" = R*(u) + I’ (u)



Lecture today 9:

Simple 1-D Example of the DFT
a) M=1024, A=1, K= 8 non - zero POINTS

f(x) \F(u)| ab
1 AK 4 c d
M FIGURE 4.2 (a) A
) discrete function
4 | % potuls of M points, and

(b) its Fourier
spectrum. (¢) A
discrete function

: »u  With twice the
F———"—M points ——— number of
NoNZero points,
\F(u)| and (d) its Fourier
spectrum.

X

F—————M points ———

24K
M

f(x)

2K points
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Chapter 4
Image Enhancement in the
Frequency Domain

ab

FIGURE 4.3

(a) Image of a
20 X 40 white
rectangle on a
black background
of size 512 X 512
pixels

(b) Centered
Fourier spectrum
shown after
application

of the log
transformation
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Chapter 4
Image Enhancement in the
Frequency Domain

Frequency domain filtering operation

: Filter [nverse
Fourier : .
‘ function Fourier
transform i
H(u,v) transform

F(u,v) H(u,v)F(u,v)

Pre-
processing

f(x.y) 8(x.y)
[nput Enhanced
image image

FIGURE 4.5 Basic steps for filtering in the frequency domain.



Centered Representation

\% . MATLAB
(-N/2, -N/2) (-N/2,N/2)  function: fftshift
high high
u
high high
v
(N/2, -N/2) (N/2,N/2) From Prof. Al Bovik

Example:

From [Gonzalez
& Woods]




Log-Magnitude Visualization

2D-DFT

centered
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Apply to Images

2D-DFT - centered -2 log intensity transformation

From [Gonzalez & Woods]



How to Display a Fourier Spectrum using MATLAB
The following table is meant to describe the various steps behind displaying the
Fourier Spectrum.

MATLAB code Image Produced

%Create a black 30x30 image
f=zeros (30,30);

%With a white rectangle in it
E{ai 2%, 13:17)=];

imshow(f, 'InitialMagnification’
o o b Ly




%Calculate the DFT
F=Ffc2(L)

% There are real and imaginary parts to F.
%Use the abs function to compute the
magnitude

%of the combined components
F2=abs (F)

figure, imshow (F2,([].,
'‘InitialMagnification', 'fic’')

%To create a finer sampling of the Fourier
transform

%you can add zero padding to £ when
computing its DFT

%Also note that we use a power of 2,
272256

% This is because the FFT -Fast Fourier
Transform -

%is fastest when the image size has many
factors

F=ffc2(Lf, 256, 2586):

F2=abs (F) :
figure, imshow (F2, [])




% The zero-frequency coefficient is
displayed in the

%upper left hand. comer To display it in
the center,

%you can use the function fftghift.
F2=ttfeshitt(F) .

F2=abs (F2):
figure,imshow(F2, [])

%In Fourier transforms, high peaks are so
high they

%hide details. Reduce contrast with the log
function.

F2=log (1+F2):

——-
.

figure,imshow(F2, [])




To get the results shown in the last image of the
table, you can also combine MATLAB calls as In

f=zeros (30, 30) ;

£(5:24,13:17)=1;

F=fft2(f, 256,256);
F2=fftshift (F);

figure, imshow (log (l+abs (F2)), [1)

Notice in these calls to imshow, the second argument is
empty square brackets. This maps the minimum value
In the image to black and the maximum value in the
iImage to white.



« The following convolution theorem shows an interesting relationship
between the spatial domain and frequency domain:

FCoLy)*alx, y) = H@u,v) Fu,v)
e and, conversely,

Feoy)alx,y) = H@,v)*Ge,v)

where the symbol "*" indicates convolution
of the two functions. The important thing to
extract out of this is that the multiplication of
two Fourier transforms corresponds to the
convolution of the associated functions in
the spatial domain. This means we can



perform linear spatial filters as a simple component-wise multiply
in the frequency domain.

This suggests that we could use Fourier transforms to speed up
spatial filters. This only works for large images that are correctly
padded, where multiple transformations are applied in the
frequency domain before moving back to the spatial domain.

When applying Fourier transforms padding is very important.
Note that, because images are infinitely tiled in the frequency
domain, filtering produces wraparound artefacts if you don't zero
pad the image to a larger size. The paddedsize function below
calculates a correct padding size to avoid this problem. The
paddedsize function can also help optimize the performance of
the DFT by providing power of 2 padding sizes. See
paddesize's help header for details on how to do this.



Basic Steps in DFT Filtering

The following summarize the basic steps in DFT Filtering (taken directly from page 121
of Digital Image Processing Using MATLAB):

1. Obtain the padding parameters using function paddedsize:
PQ=paddedsize (size(f)):

2. Obtain the Fourier transform of the image with padding:
F=fft2(f, PQ(1), PQ(2)):

3. Generate a filter function, &, the same size as the image

4. Multiply the transformed image by the filter:
G=H.*F;

5. Obtain the real part of the inverse FFT of G:
g=real (1ffc2(G)):

6. Crop the top, left rectangle to the original size:
g=g(l:size(f, 1), l:size(f, 2)):



2D-DFT (Frequency) Domain Filtering

Convolution Theorem

Sy Kxy )

input impulse response output
image (filter) image

g(x,y) = f(x,y) ® h(x,y)

A

DFT| | IDFT  DFT\| IDFT DFT| [IDFT

Guv) =  HRuv)Hu,v)



Frequency Domain Filtering

Frequency domain filtering operation

Filter
function
H(u,v)

Inverse
Fourier
transform

:,> Fourier
transform

H(u,v)F(u,v)

Pre-
processing

f(x.y) g(x.y)
[nput Enhanced
image image

FIGURE 4.5 Basic steps for filtgring in the frequency domain.

Filter design: design H(u, v)

From [Gonzalez & Woods]



2D-DFT Domain Filter Design

* ][deal lowpass, bandpass and highpass

low-frequency mid-frequency high-frequency
mask mask mask

From Prof. Al Bovik



Example: Applying the Sobel Filter
in the Frequency Domain

For example, let's apply the Sobel filter to
the following picture in both the spatial
domain and frequency domain.




Spatial Domain Filtering I Frequency Domain Filtering

%Create the Spagial Filtered Image %C Create the Frequency Filtered Image
f = imread('entry2.png'): f = imread('entry2.png'):
h = fspecial('sgbel'): h = fspecial('sobel'):
8fi = imfilter (double(f),h, O, PQ = paddedsize (size(f)):
teonv') F = £fft2 (double(£f), PQ(1),
PQ(2)):
H = £fft2 (double(h), PQO(1),
PQ(2)):

F LfH = H.*F;

££fi = ifft2(E_f£fH):

£ffi = f£ffi(2:s83ize(£,1)+1,
%Display results (show all values) 2:size(f,2)+1);
figure.imshow (3Li, (1)~

%Display results (show all values)
figure, imshow(ffi, [])

% The abs function gets correct magnitude
%when used on complex numbers

sfim = abs(sfi): % The abs function gets correct magnitude
figure, imshow(sfim, []): %when used on complex numbers

ffim = abs(f£fi):




%threshold into a binary image %threshold into a binary image

figure, imshow(sfim > figure, imshow(ffim >
O.2* max (sfim(:))): O.2*max (ffim(:))) >

You will notice that both approaches result in a similar looking, if not identical filtered
Image. You may have to adjust how vou crop the image slightly as shown in the



Frequency Domain Specific Filters

As you have already seen, based on the property that
multiplying the FFT of two functions from the spatial domain
produces the convolution of those functions, you can use
Fourier transforms as a fast convolution on large images. Note
that on small images it is faster to work in the spatial domain.

However, you can also create filters directly in the frequency
domain. There are three commonly discussed filters in the
frequency domain:

Lowpass filters, sometimes known as smoothing filters
Highpass filters, sometimes known as sharpening filters

Notch filters, sometimes known as band-stop filters



Lowpass filters:

> create a blurred (or smoothed) image

> attenuate the high frequencies and leave the low frequencies of the Fourier
transform relatively unchanged

Three main lowpass filters are discussed in Digital Image Processing Using
MATLAB.

1. ideal lowpass filter (ILPF)
2. Butterworth lowpass filter (BLPF)
3. Gaussian lowpass filter (GLPF)

The corresponding formulas and visual representations of these filters are
shown in the table below. In the formulae, D, is a specified nonnegative
number. D(u,v)is the distance from point (u,v) to the center of the filter.



Lowpass Filter Mesh Image

Ideal:

1 af D{u,v) =D,
A@Y)=10 it D@,v) > D,
Butterworth
H@,v)= 1

1+[ D@, v)/ D, |




To view the MATLAB calls that were used to create the images in the above table, click

The following is the result of applying a Gaussian lowpass filter on an image.



Original Image Fourier Spectrum of Image

Image with Gaussian lowpass filter Spectrum of image with Gaussian lowpass filter




Matlab code

footBall=imread('football.jpg'):
%Convert to grayscale
footBall=rgb2gray(footBall):
imshow (footBall)

%Determine good padding for Fourier transform

%Create a Gaussian Lowpass filter 5% the width of the Fourier transform
DO = 0.05*PQ(1):
H = lpfilter ('gaussian', PQ(1), PQ(2), DO):

% Calculate the discrete Fourier transform of the image
F=fft2 (double(footBall) size(H,1),size(H,2)):

% Apply the highpass filter to the Fourier spectrum of the image
LPFS football = H.*F;

% conyert the result to the gpacial domain.
LPF football=real (ifft2 (LPES _ football)):

% Crop the image to undo padding
LPE football=LPF football(l:size(footBall,1l), 1l:size(footBall,k2)):

%Display the blurred image
figure, imshow(LPF football, [])



%Display the blurred image

figure, imshow (LPF football, [])

% Display the Fourier Spectrum

% Move the origin of the transform to the center of the frequency rectangle.
Fc=fftshift (F);

Fcf=fftshift (LPFS football);

% use abs to compute the magnitude and use log to brighten display
Sl=1log(l+abs(Fc));

S2=1og (l+abs(Fcf));

figure, 1imshow (S1,[])

figure, 1imshow (S2,[])



Highpass filters:
sharpen (or shows the edges of) an image

attenuate the low frequencies and leave the high frequencies of
the Fourier transform relatively unchanged

The highpass filter (Hpg) is often represented by its relationship to the lowpass filter
(Hig):

H,,(u,v)=1-H, (u,v)l

Because highpass filters can be created in relationship to lowpass filters, the following
table shows the three corresponding highpass filters by their visual representations:

Lowpass Mesh

Filter Image

Ideal
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s — AV Digital Image Processing, 2nd ed.

Processing

www.imageprocessingbook.com

IMAGE FORMATION
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Digital Image Processing, 2nd ed. VW MR DIDCessimpbonk <O ok com

The Electromagnetic Spectrum

Energy of one photoa (electron volts)

w 1w w1 1w ! w! 1w0? 1w w4 1wt 1wt 1w’ 1wt 1”?
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Froequency (Hz)

' 10 10" 1" 107 1wt 't o™ 10t 102 " 1 1w W w10t
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Wavelength (meters)

1w " w0 w® w* w? 1wt 1wt 1wt 1wt 1w ow' w10 et
] ] ] ] ] ] ] ] ] ] ] ] ] ] | 1
Hard X-rays Ultraviolet Infrarced Radio waves
Gamma rays Soft X-rays Visible spectrum Microwaves

04 x 10°° 05 x 10" 0.6 X 10°° 0.7 x 10°%
Ultraviolet Violet Blue  Green Yellow  Orange Red Infrared

FIGURE 2.10 The clkectromagnetic spectrum. The visible spectrum s shown zoomed 1o facilitate explanation,
) but note that the visible spectrum is a rather narrow portion of the EM spectrum.

© 2002 R. C. Gonzalez & R. E. Woods



o For natural images we need a light source (\: wavelength of the source) Y

- E(.’L’, v,2, A) incident Ilght on a point (z,y, z world coordinates of the point)

B o Each point in the scene has a reflectivity function.

—r(z,y,2,A): reflectivity function
o Light reflects from a point and the reflected light is captured by an imaging device.
—c(z,y,2,A) = E(z,y,2,A) x r(2,y,2,A): reflected light.
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— Exyzd)
— XYz =EXY,zM) 1(XY,2,})

e N

R camel'a(c:(x, Y, Z, }\,)) = E
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o The image function f.(«",y) (C =R, ., B) is formed as:
fe(@,y) = [ela,y, \)Ve (N)dA (2)

o It is the result of:
1. Incident light E(z,y.2 A) at the point (z,y,2) In the scene,
2. The reflectivity function r(z.y.z. A) of this point,
3. The formation of the reflected light c(z.y.2,)\) = E(z,y,2,)\) x
r(z,y,2,A),

4. The projection of the reflected light c(z,y,2,\) from the three
dimensional world coordinates to two dimensional camera coor-

dinates which forms c,(z’,y/, ),
5. The sensitivity function(s) of the camera V()).

© 2002 R. C. Gonzalez & R. E. Woods



Digital Image Formation

o The image function f,(2,y/) is still a function of 2’ € [2/ . .2/ ]andy €
oy .y ] which vary in a continuum given by the respective intervals.

o [he values taken by the image function are real numbers which again
vary in a continuum or interval f. (2',y/) € [fuins fras).

o Digital computers cannot process parameters/functions that vary in a
continuum.

. . . 54 48 48 52 67 111 144 160 162 158

) We have to d'l-SCTCtZZC. 54 48 48 49 61 106 141 160 164 158
48 45 48 49 56 97 138 160 167 160

50 51 57 56 61 101 135 161 170 162

59 60 61 55 60 103 134 162 172 164

1 lJ y]=>1, y’_ (l:O N -1 ]:0 ,-\]_1) 62 61 55 44 49 96 133 163 174 165
o« Ly i Jj \C yeoeyd ’ yoeoyd 56 45 53 54 41 99 137 163 171 160
55 45 55 56 42 94 136 164 173 163

53 45 58 59 44 86 134 162 173 165

o ‘ T AL Q t t 54 47 61 60 46 79 131 160 172 165

2- fC (l',yj) = f(? (I,yj) uantization. 57 51 63 58 49 75 133 162 174 167
63 57 62 54 52 74 138 166 176 168

70 62 61 49 54 77 139 166 174 164

When x, y, and the amplitude values of fare all finite,

discrete quantities, we call the image a digital image.

© 2002 R. C. Gonzalez & R. E. Woods
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= Image Sensing and Acquisition

y 7
latael C

[ Gonzaler

a Energy

b

& Filter J l l l l

FIGURE 2.12

(a) Single imaging ' .
SENsor. — Sensing material

Power in

(b) Line sensor.
(c) Array sensor.

Housing—/ {\[U\m- Voltage waveform out

A digital image is nothing more || F 0 0 E I
AN N S N F R R R RS
than data—numboers mndicating EEEEEEERREEN:
variations of red, green, and blue af i EIRIEIRIEIEIR 5 5 5 & % e
> > ..... 59 60 61 55 60 103 134 162 172 164
. . . 62 61 55 44 49 96 133 163 174 165
a particular location on a grid of 56 45 © 340 2 137 10 171 10
pixels.

55 45 55 56 42 94 136 164 173 163
--. 53 45 58 59 44 86 134 162 173 165
-- 54 47 61 60 46 79 131 160 172 165

57 51 63 58 49 75 133 162 174 167
- 63 57 62 54 52 74 138 166 176 168

70 62 61 49 54 77 139 166 174 164
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Introduction

hat is Digital Image Processing?

Digital Image

— A two-dimensional function f(¥,Y) xand y are spatial
coordinates

The amplitude of £ is called intensity or gray level at the point (x, y)

Digital Image Processing

— Process digital images by means of computer, it covers low-, mid-
, and high-level processes

low-level: inputs and outputs are images
mid-level: outputs are attributes extracted from input images
high-level: an ensemble of recognition of individual objects

Pixel
— The elements of a digital image

© 2002 R. C. Gonzalez & R. E. Woods
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* An 1mage may be defined as a two —
dimensional function, 7(x, y), where x and y
are spatial (plane) coordinates, and the
amplitude of fat any pair coordinates (x, y) 1s
called the intensity or gray level of the image
at that point.

 When x, y, and the amplitude values of fare
all finite, discrete quantities, we call the 1image
a digital image.

© 2002 R. C. Gonzalez & R. E. Woods
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Digital image representation

drigin FIGURE 2.18
2 3... o N-1 Coordinate
y convention used
in this book to
represent digital
Images.
3¢ o
L D
[ & ]
[ [ ]
e O
Q- ]
: e o
M-=14 »
Y
X
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Images as Matrices

e An image matrix (N x M):
[ A(0,0) A(0,1) A(0,

) L AOM-1) ]
) ALM-Y iy ows @

A(1,0) A(1,1) AL

B D

CAN-1,M-1)

| A(N -1,0) AN-1,1) AN-12) ..

o Ai,j) € {0,1,...,255).

o Ali,]):
- “"Matrix case:” The matrix element (i, j) with value A(i, j).

~ “Image case:” The pixel (i, ;) with value A(i, j).
~ Will use both terminologies.

© 2002 R. C. Gonzalez & R. E. Woods
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el Sources for Images

* Electromagnetic (EM) energy spectrum
e Acoustic

e Ultrasonic

« Electronic

* Synthetic 1images produced by computer

© 2002 R. C. Gonzalez & R. E. Woods
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Electromagnetic (EM) energy spectrum

Processing _A¥gt///
‘rf
)
£

Energy of one photon (electron volts)

: 10°  10* 10° 10* 10t 10° 107! 1002 107 107* 107° 10® 1007 107® 1077

| I | I I | I I | | I | I I | I
k3 B _J = R -

Gamma rays X-rays Ultraviolet Visible Infrared Microwaves Radio waves

FIGURE 1.5 The electromagnetic spectrum arranged according to energy per photon.

Major fields in which digital image processing is widely used

Gamma-ray imaging: nuclear medicine and astronomical observations
X-rays: medical diagnostics (X-rays of body), industry, and astronomy, etc.
Ultraviolet: lithography, industrial inspection, microscopy, lasers, biological
imaging, and astronomical observations

Visible and infrared bands: light microscopy, astronomy, remote sensing,
industry, and law enforcement

Microwave band: Radar imaging

Radio band: medicine (such as MRI) and astronomy

© 2002 R. C. Gonzalez & R. E. Woods
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Types of Computerized Processes

e ]1-Low Level Process
e 2-Mid Level Process
« 3-High Level Process

 I-low Level Process 1nvolves primitive
operations, such as image processing to reduce
noise, contrast, enhancement and 1mage
sharpening. In this level, both its mput and
output are digital images

© 2002 R. C. Gonzalez & R. E. Woods
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* Involves tasks such as ,segmentation
(partitioning an image into regions or
objects), description these objects to reduce
them to a form suitable to computer, and
classification (recognition ) of individual
objects. The inputs are digital images and
the outputs are attributes extracted from
those images (i.e, edges, contours, and the
identity of individual objects.

© 2002 R. C. Gonzalez & R. E. Woods
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R

3-High Level Process

* Involves making sense of a recognized objects as in
image analysis , for example : 1if a digital 1mage
contains a number of objects , a program may
analyzed the image and extract the objects.

e So the digital image process encompasses
processes whose inputs and outputs are images
and in addition, encompasses processes that
extract attributes from images up to and including
recognition of individual objects.

© 2002 R. C. Gonzalez & R. E. Woods
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Step 1: Image Acquisition
The 1mage 1s captured by a sensor (eg.
Camera), and digitized 1f the output of the
camera or sensor 1s not already 1n digital form,
using Analogue-to-Digital convertor

. Digital Image Processing ‘
> System [

that's givesits  Processed image
ouput as an

a particular system to

and sent to focus on a water drop,

3d world around us oy

© 2002 R
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Cont. Fundamental Steps in DIP:

B%9p 2: Image Enhancement

The process of manipulating an 1image so that the
result 1s more suitable than the original for
specific applications.

The idea behind enhancement technigues 1s to
bring out details that are hidden, or simple to

highlight certain features of interest in an 1image.
ﬁ —

am—

*Filtering with morphological operatorst
*Histogram equalization.

*Noise removal using a Wiener filter.
Linear contrast adjustment.
*Median filtering.

oANsharRmaskfiifering.



.imageprocessingbook.com

© 2002 R. C. Gonzalez & R. E. Woods



{mage — 6 Digital Image Processing, 2nd ed.

Poessng f

Sknt. Fundamental Steps in DIP:

www.imageprocessingbook.com

Step 3: Image Restoration

- Improving the appearance of an 1mage

- Tend to be mathematical or probabilistic
models. Enhancement, on the other hand, is based
on human subjective preferences regarding what
constitutes a “good” enhancement result




What is Image Restoration? o

* Image restoration attempts to restore images that have been

degraded

v’ Identify the degradation process and attempt to reverse it.

v" Almost Similar to image enhancement, but more objective.

Fig: Degraded image Fig: Restored image

© 2002 R. C. Gonzalez & R. E. Woods
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u . Fundamental Steps in DIP:

Step 4: Colour Image Processing

Use the colour of the 1mage to extract features
of interest 1n an 1mage

©2002R.C.
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Color to grey and negative
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Representation
and description

=

Segmentation

Preprocessing

Recognition | Result
and
interpretion

Problem

domain Knowledge base
Image
acquisition

Fig 1. Fundamental steps in digital image processing
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et | lements of digital image processing systems:

e The basic operations performed in a digital image
y processing systems include (1) acquisition, (2)
storage, (3) processing, (4) communication and (5)

display.
Storage
e Optical disks
 Tape
= \Videotape
 Mag disks
t Display Unit
Image acquisition e TV monitors
equipments Processing Unit  Printers
e Video « Computer e Slide
s Scanner * Workstation projectors
e Camera ?
s -
Communication
channel

Fig 2. Basic fundamental elements of an image processing
system
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Processing'__ 'r,ﬂ
o=td Components of an Image
\0 p .
= Processing System
p Network .
Image displays <:::> Computer Mass storage
P {} 5
Specyalized
. Image
image .
Hardcopy ocessin processing
P S software

_M@&LL

Problem Domain |:> Image sensors
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mage — Digital Image Processing, 2nd ed s+ 48 48 49 61 106 141 160 164 158
Processing /4§ 48 45 48 49 56 97 138 160 167 160 -COM

d d 50 51 57 56 61 101 135 161 170 162

ma e a lS lcs 50 60 61 55 60 103 134 162 172 164

62 61 55 44 49 96 133 163 174 165

. . 4.8 ) B duilaay) iLadl) 56 45 53 54 41 99 137 163 171 160

' lthmetlc Mean, z Jj J""n 2 ¥ o 55 45 55 56 42 94 136 164 173 163

53 45 58 59 44 86 134 162 173 165

- andard Deviation, . . ‘ 54 47 61 60 46 79 131 160 172 165
. Q:‘!‘u &= 57 51 63 58 49 75 133 162 174 167
» and Variance 63 57 62 54 az 74 138 166 176 168

77 139 166 174 164
« Useful statistical features of an image are its arithmetic mean,

 standard deviation, and variance. These are well known
mathematical constructs that, when applied to a digital image, can
reveal important information.

 The arithmetic mean is the image's average value.

» The standard deviation is a measure of the frequency distribution, or
range of pixel values, of an image. If an image i1s supposed to be
uniform throughout, the standard deviation should be small. A smal/
standard deviation indicates that the pixel intensities do not stray
very far from the mean; a large value indicates a greater range.

« The standard deviation is the square root of the variance.

The variance 1s a measure of how spread out a distribution 1s.

e The sample mean (m,) of an image A (N x M):
ASRIE

It 1s computed as the average squared deviat

- \\]

: « The sample variance (03) of A:
from 1ts mean ‘ el

Y ¥ (A@E,§) — my)®

© 2002 R. C. Gonzalez & R. E. Woods R . A
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Simple Image Statistics - Sample Mean and Sample
Variance

e The sample mean (m,) of an image A (N x M):
N-1M-1
> X AL,j)

my = —2_ (1)

NM

e The sample variance (03) of A:

N-1M-1 .,
> 2 (A7) —may)”

0,-3 _ i=0 j=0 (

. NM

RN

o The sample standard deviation, o4 = /o3.

© 2002 R. C. Gonzalez & R. E. Woods
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neh Y Using filters

temiﬂ Image Values outside bound
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Filter and 1mage

What value should these

outside pxeks have?
B R R
AW 5N L7
17 | A 1 C./ 15 (enter of kernel
3| s | 7| |
4 ] 13 20 22
10 12 19 21 3
mfw || 2|79

© 2002 R. C. Gonzalez & R. E. Woods
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(enter of kernel

Dutside pixek are
assumed fo be 0.
5 1 6
0 0 0
3y s
7| w | P*{F8Y
.
n| s | 7|14 8
4 b 13 20 22
10 12 19 21 3
1 18 25 2 9
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Linear filtering can be uses to smooth, blur,
sharpen, or find the edges of an image. The
following four 1mages are meant to
demonstrate what spatial filtering can do. The
original 1mage 1s shown in the upper left-hand
corner.

 Smooth  blur sharpen  find the edges

© 2002 R. C. Gonzalez & R. E. Woods
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' % than zero to use as a padding value.
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* As anote, 1f your filter were larger than 3x3,
then the "border padding" would have to be
extended. For a filter of size 3x3, 'replicate’
and 'symmetric' yield the same results.

* The following images show the results of the
four different boundary options. The filter used
below 1s a 5x5 averaging filter that was created
with the following syntax:
h=fspecial('average',5)

© 2002 R. C. Gonzalez & R. E. Woods
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he following MATLAB function
onstrates how spatial filtering may
WhiiMotion 1mb@rﬁplt}h{€d) to an image

 %MYFILTER Performs spatial correlation

« % I=EMYFILTER(f, w) produces an image that has undergone
correlation.

% fis the original image

* % w is the filter (assumed to be 3x3)

* % The original image 1s padded with 0's
* %Author: Nova Scheidt

* % check that w 1s 3x3
 [mun]=size(w);

e 1fm~=3|n~=3

. error('Filter must be 3x3')

© 2002 R. C. Gonzalez & R. E. Woods



| -1 ,j +1)=f(19] );
end
end

w11

W12

W13

W21

W22

W23

W31

W32

W33

%cycle through the array and apply th®

for i=1:x
for j=1:y

img(i,])=g(i,j)*w(l,1)+g(i+1,j)*w

column

+ g(i,j+1)*w(1,2)+g(i+1,j+1)*w(2,2)+g(i+2,j+1)*w(3,2)...

% second column

LY 519 ol 18] olos
= , , (XX J

first

+ g(i,j+2)*w(1,3)+g(i+1,j+2)*w(2,3)+g(i+2,j+2)*w(3,3);... %o third

column

%img(i,))=g(1,))*w(1,1)+g@(+1,))*w(2,1)... %first column
% + g(1,)+D)*w(1,2)+g(+1,5+1)*wW(2,2); %second column

end

/%) ) | dC. Gonzalez & R. E. Woods
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Fourier Transforms
Agad ) ) guall Apdaly 1) 58 B gl

The Fourier transform is a representation of an image as a sum
of complex exponentials of varying magnitudes, frequencies,
and phases.

M-1N-1
—-j27 A N
F(u.,v)= sz(\ V)e j2r(ux/M+vy/N)
A[\ x=0 y= - Fourier components: sinusoidal patterns

F(u, v) Fourier Coefficients
fix, y) isan image

© 2002 R. C. Gonzalez & R. E. Woods
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@ ddg ourier Transform is an important image processing tool which is used to
;;’ff mpose an image into its sine and cosine components. The output of

'O ansformation represents the image in the Fourier or frequency domain,
e the input image is the spatial domain equivalent.

 The DFT is used to convert an image from the spatial domain into frequency
domain, in other words it allows us to separate high frequency from low frequency
coefficients and neglect or alter specific frequencies leading to an image with less
information but still with a convenient level of quality .

« Fourier transform is a mathematical formula by which we can extract out the
frequency domain components of a continuous time domain signal. Using fourier
transform we can process time domain signal in frequency domain. We can use various
Frequency domain filters to process the signal.

« [If signal is descrete, Discrete Fourier Transform use to analyse discrete signal

 The Fast Fourier Transform (FFT) is commonly used to transform

an image between the spatial and frequency domain. Unlike other domains such as
Hough and Radon, the FFT method preserves all original data. Plus, FFT fully
transforms images into the frequency domain, unlike time-frequency or wavelet
transforms.

© 2002 R. C. Gonzalez & R. E. Woods
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requency domain In spatial domain, we deal with
nputimage outoutimage IMages as it is. The value of the
matrix
frequency domain, we deal with
e rate at which the pixel

matix pixels of the image change with
Inputimage C=p> | frequency | IZEESERB S are changing in spatial

respect to scene. Whereas In
distribution

Output image <: nyerse
transformation

Frequency domain
We first transform the image to its frequency distribution. Then

our black box system perform what ever processing it has to
performed, and the output of the black box in this case is not
an image, but a transformation. After performing inverse
transformatjon, it is converted into an image which is then
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inverse fourier transforms
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FIGURE 4.1 The function at the bottom is the sum of the four functions above it.
Fourier’s idea in 1807 that periodic functions could be represented as a weighted sum
of sines and cosines was met with skepticism.
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The frequency domain
refers to the plane of the two
dimensional discrete Fourier
transform of an 1mage.

The purpose of the Fourier
transform 1is to represent a
signal as a linear combination
of sinusoidal signals of
various frequencies.

54 48 48 52 67 111 144 160 162 158
54 48 48 49 61 106 141 160 164 158
48 45 48 49 56 97 138 160 167 160
50 51 57 56 61 101 135 161 170 162
59 60 61 55 60 103 134 162 172 164
62 61 55 44 49 96 133 163 174 165
56 45 53 54 41 99 137 163 171 160
55 45 55 56 42 94 136 164 173 163
53 45 58 59 44 86 134 162 173 165
54 47 61 60 46 79 131 160 172 165
57 51 63 58 49 75133 162 174 167
63 57 62 54 52 74 138 166 176 168
70 62 61 49 54 77 139 166 174 164
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F(u,v) = f(x y)e—JZﬂ(ux/M+vy/N) u=0,1,2,...,M-1 andv=0,1,2,...,N-1

IDFT inverse discrete Fourier Transform

M-1N-1
SO,y) =Y Flu,v)e /2oy x =t b
u=0 v=0 1 e 1 .
[ ]l -
X — _"F;XF\' VN 1 | * | ' '; .
N" - | [ A1 AN NN WI\TWM\)

whete, , . ,~5is a primitve \'th rootof unityinwhich ; = /-1
© 2002 R. C. Gonzalez & R. E. Woods g=e d ' ' 1=y~
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