
 University of Baghdad

College of Science

Computer Science Department

Programming Language

Fundamentals
First Class – First Semester

Morning Undergraduate Study

Dr. Nasreen Jawad Kadhim

Lecture 1

1. INTRODUCTION TO COMPUTERS

Today, computers are an integral part of our lives and are found at offices, homes, schools,

colleges, hotels, shops, etc. This advance in technology has made our lives easy and

comfortable. For instance, we can execute a number of activities using computer based

systems.

The computer comprises of technologically advanced hardware put together to work at

great speed. To accomplish its various tasks, the computer is made of different parts, each

serving a particular purpose in conjunction with other parts. Computers work through an

interaction of hardware (refers to the parts of a computer that you can see and touch) and

software (refers to the instructions, or programs, that tell the hardware what to do).

1.2 ADVANTAGES OF COMPUTERS

Compared to traditional systems, computers offer many noteworthy advantages. This is

one reason that traditional systems are being replaced rapidly by computer-based systems.

The main advantages offered by computers are as follows:

• High accuracy

• Superior speed of operation

• Large storage capacity

• User-friendly features

• Portability

• Economical in the long term

1.3 TYPES OF COMPUTERS

• Supercomputers Are the most powerful computers in terms of speed of execution

and large storage capacity. NASA uses supercomputers to track and control space

explorations.

• Mainframe Computers Are next to supercomputers in terms of capacity. The

mainframe computers are multi terminal computers, which can be shared

simultaneously by multiple users. For example, insurance companies use

mainframe computers to process information about millions of its policyholders.

• Minicomputers These computers are also known as midrange computers. These

are desk-sized machines and are used in medium scale applications. For example,

production departments use minicomputers to monitor various manufacturing

processes and assembly-line operations.

• Microcomputers As compared to supercomputers, mainframes and

minicomputers, microcomputers are the least powerful, but these are very widely

used and rapidly gaining in popularity. These computers are designed for use by a

single person. Four types of microcomputers exists: Desktop, Notebook, Tablet PC,

and Handheld.

2. BASIC COMPUTER FUNCTIONING

Computer Computer can be defined as an electronic device that accepts data from an

input device, processes it, stores it in a disk and finally displays it on an output device such

as a monitor.

To understand the basic principles of the functioning of the computer refer to the basic

block diagram of a computer as shown in Figure 1. This flow of information holds true for

all types of computers such as Personal Computers, Laptops, Palmtops etc. In other words,

the fundamental principle of working is the same.

Figure 1: Information Processing Cycle.

As shown in Figure 1, there are four main building blocks in a computer's functioning─

input, processor, output and memory. The data (data is the name given to facts) is entered

through input devices like the keyboard, disks or mouse. These input devices help convert

data and programs into the language that the computer can process. The data received from

the keyboard is processed by the CPU, i.e. the Central Processing Unit. The CPU controls

and manipulates the data that produce information (information is the meaningful data that

is relevant, accurate, up to date and can be used to make decisions). The CPU is usually

housed within the protective cartridge. The processed data is either stored in the memory

or sent to the output device, as explained in the command given by the user. The memory

unit holds data and program instructions for processing data. Output devices translate the

processed information from the computer into a form that we can understand.

3. COMPUTER SYSTEM COMPONENTS

The omputer system consists of both hardware and software. Hardware components are

the various physical components that comprise a computer system, as opposed to the non-

OUTPUT INPUT

STORAGE

DATA INFORMATION
PROCESS

tangible software elements. The software components of a computer system are the data

and the computer programs. Figure 2 illustrates the hardware and software components.

Figure 2: Basic components of computer system

3.1 Hardware Components

The main hardware components of a computer system are outlined at Figure 3:

1. Central Processing Unit

The Central Processing Unit also called Processor. This is the brain or heart of the computer

equipment. The CPU carries out the calculations for the program and controls the other

components of the system. It does the function by organizing circuits into two main units,

called Arithmetic Logic Unit (ALU) and Control Unit (CU).

The ALU contains circuits that do arithmetic and perform logical operations. The control

unit contains circuits that analyze and execute instructions.

i. Arithmetic Logic Unit

The ALU contains logic circuits that perform logic operations as well as arithmetic circuits

that can subtract multiply and divide two numbers. More complex operations such as

finding the square root of a number are done by sequence of their basic operations. The

ALU has storage locations called storage registers for storing numbers used in calculations

and for storing the results of calculations. To perform a calculation or logical operation,

number is transferred from primary storage to storage registers in the ALU. These numbers

are sent to the appropriate arithmetic or logic circuit. The results are sent back to the storage

registers. The results are transferred from the storage registers to primary storage.

ii. Control Unit

The Control Unit (CU) controls the whole computer system via performing the following

functions:

• Directs and coordinates all operations called for by the program.

• Activates the appropriate circuits necessary for input and output devices.

• Causes the entire computer system to operate in an automatic manner.

The CU contains a temporary storage location called an instruction register for storing the

instruction being executed. It also contains circuit called the instruction decoder –which

analyzes the instruction register and causes it to be executed. The CU executes each

instruction by following the same basic sequence of steps:

• The next instruction in the program is retrieved for primary storage and stored in

the instruction register.

• The instruction is sent to the instruction decoder where it is analyzed.

• The decoder sends signals to the ALU, primary storage, I/O devices, and secondary

storage, that cause the actions required by the instructions to be performed. These

steps are repeated for each instruction in the program until all instructions have

been executed.

Figure 3: Block diagram of computer system.

2. Storage Unit

i. Primary Storage

Primary storage is also called internal storage or memory. It is used to store programs and

data currently being processed by CPU. Primary storage circuits need electricity to stay on.

If the power to the computer is turned off, all the circuits will turn off and all data in primary

storage will be lost. When computer is turned back on, the data will not reappear. The data

is lost forever. Because of this characteristics primary storage is called volatile storage.

This type of primary storage is called RANDOM ACCESS MEMORY or RAM. RAM is

the main type of primary storage used with computers and it is volatile. Many computers

have another type of primary storage called ROM –Read Only Memory. ROM is non-

volatile storage. ROM can store preset programs that are always put by computer

manufactures.

The Use of Primary Storage (RAM)

Main Memory has several uses:

• Input area –where the data is stored when it is read into CPU, awaiting processing.

• Operating system –controls the operation of the computer.

• Working storage –where calculations are performed and data is stored temporarily.

• Output area where the information is stored prior to output. Both the input and

output areas are buffers.

• Application program area –where the user program is held.

ii. Secondary Storage

Secondary is nonvolatile. Any data or programs stored in secondary storage stays there,

even with the computer power turned off. Secondary storage is a permanent form of

storage.

Differences between Primary storage and Secondary storage are explained at Table 1.

Table 1: Difference between Primary and Secondary Storage

Primary Storage Secondary Storage

Primary storage/memory is also called

Internal or main storage. High speed

Secondary storage or memory is also called

External or auxiliary storage. Low speed

It is very expensive It is not expensive as primary storage

It holds data or programs temporary It holds data or programs permanently

It holds programs and data in current use

in CPU

It holds program or data that will still be used

in primary storage

It is faster than secondary It is not fast as primary

It holds less data It holds large volume of data or files

3. Input and Input Devices

Input is any data or instructions that are used by a computer. Input devices are hardware

used to translate words, sounds, images, and actions that people understand into a form that

the system unit can process. Some commonly used input devices are: Keyboard, Mouse,

and Scanner.

4. Output and Output Devices

Output is processed data or information, and typically takes the form suitable for use by

the computer's human operators such as text, graphics, photos, audio, and/or video. Output

devices are any hardware used to provide or to create output. They translate information

that has been processed by the system unit into a form that humans can understand. Some

commonly used output devices are: Monitors (soft copy) and Printers (hard copy).

Lecture 2

3.2 Computer Software

Or just software, is the collection of computer programs and related data that provide

instructions telling a computer what to do. The term was coined to contrast the old term

hardware (meaning physical devices). In contrast to hardware, software is intangible,

meaning it "cannot be touched".

There are two types of software -system software and application/utility software.

• Application Software is the end user software. It is a computer software designed

to help the user to perform singular or multiple related specific tasks. The programs

written under application software are designed for general purpose and special

purpose applications. An example of application software is Microsoft Internet

Explorer.

• System Software is computer software designed to provide services to other

software. It enables an application software to interact with the computer hardware.

System software is the ‘background’ software that helps the computer to manage

its internal resources. The most important system software is the operating system.

Microsoft Windows are examples of system software.

4. PROGRAMMING LANGUAGES

Different programming languages support different styles of programming (called

programming paradigms). The choice of language used is subject to many considerations

such as company policy, suitability to task, availability of third-party packages or

individual preference. Ideally, the programming language best suited for the immediate

task will be selected.

Programming language is a vocabulary and set of grammatical rules for instructing a

computer to perform specific tasks. The term programming language usually refers to

high-level languages, such as C, C++, C#, and Java. Each language has a unique set of

keywords (words that it understands) and a special syntax for organizing program

instructions.

High-level programming languages, while simple compared to human languages, are

more complex than the languages the computer actually understands, called machine

languages. Each different type of CPU has its own unique machine language. Lying

between machine languages and high-level languages are languages called assembly

languages. Assembly languages are similar to machine languages, but they are much easier

to program in because they allow a programmer to substitute names for numbers. Machine

languages consist of numbers only.

Lying above high-level languages are languages called fourth-generation languages

(usually abbreviated 4GL). 4GLs are far removed from machine languages and represent

the class of computer languages closest to human languages. Each of the programming

https://en.wikipedia.org/wiki/Software
http://www.webopedia.com/TERM/C/computer.html
http://www.webopedia.com/TERM/H/high_level_language.html
http://www.webopedia.com/TERM/C/C.html
http://www.webopedia.com/TERM/C/C_plus_plus.html
http://www.webopedia.com/TERM/C/COBOL.html
http://www.webopedia.com/TERM/L/language.html
http://www.webopedia.com/TERM/K/keyword.html
http://www.webopedia.com/TERM/S/syntax.html
http://www.webopedia.com/TERM/P/program.html
http://www.webopedia.com/TERM/I/instruction.html
http://www.webopedia.com/TERM/M/machine_language.html
http://www.webopedia.com/TERM/M/machine_language.html
http://www.webopedia.com/TERM/C/CPU.html
http://www.webopedia.com/TERM/A/assembly_language.html
http://www.webopedia.com/TERM/A/assembly_language.html
http://www.webopedia.com/TERM/P/programmer.html
http://www.webopedia.com/TERM/N/name.html
http://www.webopedia.com/TERM/F/fourth_generation_language.html
https://en.wikipedia.org/wiki/Programming_language_generations

language generations aims to provide a higher level of abstraction of the internal

computer hardware details, making the language more programmer-friendly, powerful

and versatile. Languages claimed to be 4GL may include support for database

management, report generation, mathematical optimization, GUI development, or

web development.

A fifth generation programming language (abbreviated as 5GL) is a programming

language based on solving problems using constraints given to the program, rather than

using an algorithm written by a programmer. Most constraint-based and logic

programming languages and some declarative languages are fifth-generation languages.

While fourth-generation programming languages are designed to build specific

programs, fifth-generation languages are designed to make the computer solve a given

problem without the programmer. This way, the programmer only needs to worry about

what problems need to be solved and what conditions need to be met, without worrying

about how to implement a routine or algorithm to solve them. Fifth-generation languages

are used mainly in artificial intelligence research. Prolog, OPS5, and Mercury are

examples of fifth-generation languages.

Regardless of what language you use, you eventually need to convert your program into

machine language so that the computer can understand it. There are two ways to do this:

1) Compile the program.

2) Interpret the program.

Compiler and interpreter are the internal programs that translate High level language

to Machine language. Compiler takes Entire program as input, program need not be

compiled every time, errors are displayed after entire program is checked, and it is

fast. Whereas interpreter takes Single instruction as input, every time higher level

program is converted into lower level program, errors are displayed for every

instruction interpreted (if any), and it is slow.

https://en.wikipedia.org/wiki/Programming_language_generations
https://en.wikipedia.org/wiki/Abstraction_layer
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Programmer
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Report_generator
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Graphical_user_interface_builder
https://en.wikipedia.org/wiki/Web_development
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Constraint_programming
https://en.wikipedia.org/wiki/Logic_programming
https://en.wikipedia.org/wiki/Logic_programming
https://en.wikipedia.org/wiki/Declarative_language
https://en.wikipedia.org/wiki/Fourth-generation_programming_language
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/OPS5
https://en.wikipedia.org/wiki/Mercury_programming_language
http://www.webopedia.com/TERM/C/convert.html
http://www.webopedia.com/TERM/C/compile.html
http://www.webopedia.com/TERM/I/interpreter.html

3) For low level languages, the internal program that translates assembly language

program (op code) to machine code is known as Assembler.

Every language has its strengths and weaknesses. For example, Pascal is very good for

writing well-structured and readable programs, but it is not as flexible as the C

programming language. C++ embodies powerful object-oriented features, but it is complex

and difficult to learn. The choice of which language to use depends on the type of computer

the program is to run on, what sort of program it is, and the expertise of the programmer.

5. PROGRAM DEVELOPMENT LIFE CYCLE

The process of developing a software, according to the desired needs of a user, by following

a basic set of interrelated procedures is known as Program Development Life Cycle

(PDLC). PDLC includes various set of procedures and activities that are isolated and

sequenced for learning purposes but in real life they overlap and are highly interrelated.

5.1 TASKS OF PROGRAM DEVELOPMENT LIFE CYCLE

The basic set of procedures that are followed by various organizations in their program

development methods are as follows:

1. Program Analysis (Problem Definition),

2. Program Design,

3. Coding,

4. Debugging,

5. Testing,

6. Documentation,

7. Maintenance,

8. Extension and Redesign.

http://www.webopedia.com/TERM/O/object_oriented.html
http://www.webopedia.com/TERM/F/feature.html
http://www.webopedia.com/TERM/R/run.html

Figure 4 Program Development Life Cycle.

1. Program Analysis (Problem Definition):

This stage is the formal definition of the task. It includes the specification of inputs and

outputs, processing requirements, system constraints, and error handling methods. This

step is very critical for the completion of a satisfactory program. It is impossible to solve a

problem by using a computer, without a clear understanding and identification of the

problem. Inadequate identification of problem leads to poor performance of the system.

The programmer should invest a significant portion of his time in problem identification.

If he does not spend enough time at this stage, he may find that his well written program

fails to solve the real problem. This step is the process of becoming familiar with the

problem. It starts when the programmer is assigned a task. This step includes the reviewing

of the design document that was prepared for the program, as well as any system wide

information that would be helpful. The process ends when all the programmer’s questions

have been resolved and the requirements of the program are understood.

2. Program Design

Once the problem has been identified, the next stage is the program design. A computer is

both fast and versatile, but it requires the careful specification of what actions it should

take. For the user, there is seldom an opportunity to allow the computer to make an

undirected decision. Therefore the programmer must decide, prior to writing his program,

exactly which steps the computer should take to solve an identified problem. Such a

functional description of the task is either called an algorithm or results in a diagram called

flowchart.

Flowchart definition: Is a diagrammatic representation that illustrates a solution model to

a given problem. It represents an algorithm, workflow or process, showing the steps as

boxes of various kinds, and their order by connecting them with arrows. Flowcharts are

used in analyzing, designing, documenting or managing a process or program in various

fields. Figure 5 illustrates the basic symbols of the flowchart.

https://en.wikipedia.org/wiki/Problem_solving
https://en.wikipedia.org/wiki/Algorithm

Figure 5 The basic symbols of the flowchart.

3. Coding

The third step is the process of transforming the program logic design documents into a

computer language format. This stage translates the program design into computer

instructions. These instructions are the actual program or the software product. During this

step the programmer eliminates all the syntax and formal errors from the program and all

logic errors are detected and resolved during this process.

Lecture 3

4. Debugging

This stage is the discovery and correction of programming errors. Few programs run

correctly the first time, so debugging is an important and time consuming stage of software

development. Programming theorists often refer to program debugging and testing as

verification and validation, respectively. Verification ensures that the program does what

the programmer intends to do. Validation ensures that the program gives the correct results

for a set of test data.

There are basically three types of errors that you must contend with when writing computer

programs:

i. Compile-time errors or Syntax errors (Error(s) in spelling and grammar):

✓ Occur if there is a syntax error in the code.

✓ The compiler will detect the error and the program won’t even compile. At this

point, the programmer is unable to form an executable program that a user can run until

the error is fixed.

✓ A compilation error message often helps programmers debugging the source code for

possible syntax errors.

✓ Common examples are:

1) Misspelled variable and function names.

2) Missing semicolons (;).

3) Improperly matches parentheses.

ii. Run-time errors:

✓ Compilers aren’t perfect and so can’t catch all errors at compile time.

✓ Run-time error - refers to the period while a computer program is actually executed

 ("run") in a computer, from beginning to termination.

✓ Common examples are:

1) Trying to divide by a variable that contains a value of zero.

2) Trying to do impossible arithmetic operations such as calculation with non-numeric

data.

3) Trying to open a file that doesn't exist.

iii. Logical errors:

✓ Errors that indicate the logic used when coding of the program failed to solve the

problem (i.e. production of wrong solutions).

✓ You do not get error messages with logical errors.

✓ Common examples are:

1) Multiplying when you should be dividing.

2) Adding when you should be subtracting.

3) Opening and using data from the wrong file.

4) Displaying the wrong message.

5. Testing

This stage is the validation of the program. Testing ensures that the program performs

correctly the required tasks. Program testing and program debugging are closely related.

Testing is essentially a later stage of debugging in which the program is validated by trying

it on a suitable set of cases. Program testing is, however, more than a simple matter of

exercising the program a few times. Exhaustive testing of all possible cases is the best

alternative, but this processes is usually impractical. Formal validation methods exist, but

are only applicable to very simple programs. Thus, program testing requires a choice of

test cases.

There are two goals in preparing a test plan. Firstly, a properly detailed test plan

demonstrates that the program specifications are understood completely. Second, the test

plan is used during the program testing to prove the correctness of the program. During this

step a general approach to the testing of the program is prepared and documented,

indicating the number of tests needed and the purpose of each test.

6. Documentation

This stage is the documentation of the program so that those who use and maintain it, can

understand it, and program can be extended to further applications. Documentation is a

stage of software development that is often overlooked. Yet proper documentation is not

only useful in the testing and debugging stages, it is also essential in the maintenance and

redesign stages. A properly documented program can be easily reused when needed; an

undocumented program usually requires so much extra work that the programmer might as

well start from scratch. Among the techniques commonly used in documentation are

flowcharts, comments, memory maps, parameter and definition lists, and program library

forms. Proper documentation combines all or most of the methods mentioned.

Documentation is a time consuming task that the programmer performs simultaneously

with the design, coding, debugging and testing stages of software development. Good

documentation simplifies maintenance and redesign, and makes subsequent tasks simpler.

7. Maintenance

After the programs are developed and documented, it is placed into operation. During the

operation, a program may fail to perform its objective and it might be necessary to add new

functionality to a program or system. Changing program design, coding, and updating

programs are part of maintenance.

8. Extension and Redesign

This stage is the extension of the program to solve problems beyond those described in

initial problem definition. Obviously designers want to take advantage of programs

developed for previous tasks. Redesign may involve adding new features or meeting new

requirements. Such redesign should proceed through the previously mentioned stages

of program development. The process may also involve making a program meet critical

time or memory requirements. When relatively small increase in speed or reduction in

memory usage is needed, a program can often be reorganized to meet the requirement.

Example 1:

Read two numbers A and B and compute The sum of them and print the result.

Input to the program:

Two numbers (A, and B).

Processing:

Compute Sum as: SUM = A+B

Program output:

The sum of the numbers (SUM).

Algorithm:

1- Start

2- Read A, and B

3- Compute the Sum (SUM):

 SUM = A+B

4- Print the Sum (SUM)

5- End

Flowchart:

Lecture 4

6. PROGRAM FLOW

Program is defined as a sequence of statements whose objective is to accomplish some

task. Program statements can be processed in one of the following ways:

• Sequentially (Simple Sequential Flowcharts): Starts at the beginning and follows

the statements in order until it comes to the end. No choices are made; there is no

repetition.

• Selectively (Branched Flowcharts): By making a choice or decision when

executing statement/statements, which is also called a branch.

SUM = A+B

Read A, B

Print SUM

Start

End

• Repetitively (Loop Flowcharts): The program repeats particular statements a certain

number of times based on some condition(s).

Every programming language provides constructs to support sequence, selection or

iteration. So there are three programming language constructs. Figure 6 illustrates these

three types.

Figure 6 The types of program flow.

Simple Sequential Flowchart: Example 1:

Construct a flowchart that finds sum, average and product of three numbers.

Simple sequential flow: Example 2:

Construct a flowchart that finds the area and circumference of a circle where R

(radius) is given.

Flowchart:

Start

Read R

A= PI*R*R

C= 2*PI*R

Print R,
A, C

Stop

Lecture 5

7. The Process of Writing a C++ Program

• Programming: is a process of problem-solving.

• Different people use Different techniques to solve problems.

• Some techniques are nicely outlined and easy to follow. They not only solve the

problem, but also give insight into how the solution was reached.

• These problem-solving techniques can be easily modified if the domain of the

problem changes.

• To be a good problem solver and a good programmer, you must follow good

problem-solving techniques.

Algorithm: a step-by-step problem-solving process in which a solution is arrived at in a

finite amount of time.

In a programming environment (PDLC), the problem-solving process requires, after the

problem has been defined, the following Three basic steps:

1. Analyze the problem and outline the problem and its solution requirements.

2. Design an algorithm to solve the problem.

3. Implement the algorithm in a programming language, such as C++, and maintain the

program by using and modifying it if the problem domain changes.

So, To develop a program to solve a problem, you start by analyzing the

problem. You then design the algorithm; write the program instructions in a high-

level language (or code the program); and enter the program into a computer

system. Figure 7 summarizes this three-step programming process:

Figure 7 Problem analysis–coding–execution cycle

Figure 8 Processing a C++ program

As illustrated in Figure 8, we are ready to review the steps (Six Steps) required to process

a program written in C++.

Step 1: Write the source codes (.cpp) and header files.

Step 2: Pre-process the source codes according to the preprocessor directives. Preprocessor

directives begin with a hash sign (#), e.g., #include and #define. They indicate that certain

manipulations (such as including another file or replacement of symbols) are to be

performed BEFORE compilation.

Step 3: Compile the pre-processed source codes into object codes (.obj, .o).

Step 4: Link the compiled object codes with other object codes and the library object codes

(.lib, .a) to produce the executable code (.exe).

Step 5: Load the executable code (.exe) into computer memory.

Step 6: Run the executable code, with the input to produce the desired output.

✓ Source Program (.cpp): consists of the program statements comprising a C++ or other

programming language program.

✓ Object Program (.obj): is the result of compiling a Source Program.

✓ Header files: contain constant, variable, and function declarations needed by a

program.

✓ Linker: A program that combines the Object Program (.obj) with other programs in the

library and is used in the program to create the executable code.

✓ Loader: A program that loads an Executable Program (.exe) into main memory.

✓ Executable Program (.exe): is a program that can be run by a computer.

Lecture 6

7.1 Compiling and Linking Errors

During compilation, if there are any errors that will be listing by the compiler. The errors

may be any one of the following:

• Syntax error This error occurs due to mistake in writing the syntax of a C++

statement or wrong use of reserved words, improper variable names, using variables

without declaration etc. Examples are: missing semi colon or parenthesis, etc.

Appropriate error message and the statement number will be displayed. You can

see the statement and make correction to the program file, save and recompile it.

• Logical error This error occurs due to the flaw in the logic. This will not be

identified by the compiler. However it can be traced using the debug tool in the

editor. First identify the variable which you suspect creating the error and add them

to watch list. This tool helps in knowing the values taken by the variable at each

step. You can compare the expected value with the actual value to identify the error.

• Linker error This error occur when the files during linking are missing or misspelt.

• Runtime error This error occurs if the program encounters division by zero,

accessing a null pointer etc. during execution of the program.

7.2 Parts of C++ Program: Brief Explanation

See the following C++ program:

Comments

/* */

// ... until the end of the line

These are called comments. Comments are NOT executable and are ignored by the

compiler; but they provide useful explanation and documentation to your readers. There

are two kinds of comments:

1. Multi-line Comment: begins with /* and ends with */. It may span more

than one line.

2. End-of-line Comment: begins with // and lasts until the end of the current

line.

Preprocessor directives

#include <iostream>

using namespace std;

The "#include" is called a preprocessor directive. Preprocessor directives begin with a

sign. They are processed before compilation. The directive "#include

<iostream>" tells the preprocessor to include the "iostream" header file to support

input/output operations. The "using namespace std;" statement declares std as

the default namespace used in this program. The names cout and endl, which is used in

this program, belong to the std namespace. These two lines shall be present in all our

programs.

Main function

int main() { ... body ... }

defines the so-called main() function. The main() function is the entry point of program

execution. main() is required to return an int (integer).

cout << "hello, world" << endl;

"cout" refers to the standard output (or Console OUTput). The symbol << is called the

stream insertion operator (or put-to operator), which is used to put the string "hello, world"

to the console. "endl" denotes the END-of-Line or newline, which is put to the console

to bring the cursor to the beginning of the next line.

Return Statement

return 0;

terminates the main() function and returns a value of 0 to the operating system.

Typically, return value of 0 signals normal termination; whereas value of non-zero (usually

1) signals abnormal termination. This line is optional. C++ compiler will implicitly insert

a "return 0;" to the end of the main() function.

Lecture 7

8. Programming Methodologies

Two popular approaches to programming design are:

1- Structured approach (Structured Programming)

2- Object-Oriented approach (Object-Oriented Programming)

8.1 Structured Programming:

Dividing a problem into smaller sub-problems is called structured-design. Each sub-

problem is then analyzed, and a solution is obtained to solve the sub- problem. The

solutions to all of the sub-problems are then combined to solve the overall problem. The

process of implementing a structured design is called Structured Programming,

see Figure 9. The structured-design approach is also known as Top-down design or Bottom-

up design.

Tip: Programs written using the Structured-design approach are;

✓ easier to understand,

✓ easier to test and debug, and

✓ easier to modify.

 (a)

(b)

(c)

Figure 9: Structured

Programming

8.2 Control Structures in structured design (within C++): An Introduction

The programs in C++ executes its statements one by one from beginning to end. There

are different approaches that can be used to solve same problems. The format of

program should be such that it is easy to trace the flow of execution of statements. By

making the flow of execution traceable, it is easy to develop accurate, error-free and

maintainable code. As the statements are executed, their execution may vary depending

upon the circumstances. The programs not only store data but also perform

manipulative tasks and to perform such tasks C++ has provided tools which help in

performing repetitive tasks and other manipulative actions(decision making). The tools

comes in the form of Control Structures. So Control Structures in C++ tells about

the order in which the statements are executed and helps to perform manipulative,

repetitive and decision making actions.

The structured-design approach uses Three fundamental types of program flow:

• Sequence: Instructions are executed in the order in which they appear.

• Selection: The program branches to different instructions depending on

whether a condition is met or conditions. Within C++; if, if..else, ... or switch.

• Repetition: The program repeats particular statements a certain number

of times based on some condition(s). Within C++; for, while or do…while.

1. Selection Structure (Branching Statements)

As the name suggests they alter the sequential execution of the statements of program

depending upon the condition. Branching Statements are included in this control

structure. Following branching statements are supported by C++ :

• if statement.

• if-else statement.

1

• switch statement.

• goto statement.

Except goto statement which is unconditional branching statement, all the other ones

are conditional branching statements.

Lecture 8

if Statement

if Statement helps in controlling the flow of the program by providing programmer by

an ability to make decisions like what part of code to execute thus controlling the

sequence of execution of statements. Syntax of the if-statement is as

follows:

if (test-expression) statement;

As mentioned in the syntax of the statement, the test expression is always mentioned in

parentheses. In this statement if the test-expression is true then the statement which is

followed immediately is executed. If the test-expression is false then the control will

transfer to the next statement following the if construct. Multiple statements can also

be included in the if-statement construct. These multiple statements must be enclosed

in curly braces {}, these statements are known as Compound Statements.

if-else Statement

This statement is quite similar to if-statement, this statement also specify what happens

when the condition is not satisfied by providing else as an alternative statement. If you

2

want to perform some action even if the test-expression fails i.e. condition is false then

if-else statement is used. Syntax of if-else statement is as follows:

If (test-expression) { Statement1; } else { Statement2; }

As mentioned in syntax of the if-else statement, if the test expression is true then

statement 1 is executed else statement 2 is executed if the test expression fails. The else

clause of an if…else statement is associated with the closest previous if statement.

In an if-else statement only the code associated with if or the code associated with else

is executed, never both. The following figure explains the flow of if-else statement:

In the above example if the condition fails then else part of the program executes and

if the condition is true then first part i.e. if part is executed. Similar to if-statement, if-

else statement can also be used with compound statements.

http://i1.wp.com/www.lifengadget.com/lifengadget/wp-content/uploads/2014/03/Selection_209.png

3

Nested if else Statement

As the name suggests this statement contains multiple if-else statements which are used

in multi-way decisions that arise when there are multiple conditions and different

actions are required depending upon the conditions. The syntax of Nested if-else

statement is as follows:

If (test-expression1) statement1; else if (test-expression2) statement2;

else if (test-expression3) statement3;

The following figure explain the flow of Nested if-else statement:

As the above flowchart explains, if the test-expression1 i.e. decision1 is true, the whole

chain is terminated. The chain will only continue if the test-expression1 or decision1

fails, similar is the case for decision2 and so on. In nested if-else statements, the else

statement is associated with corresponding inner most if statement.

http://i0.wp.com/www.lifengadget.com/lifengadget/wp-content/uploads/2014/03/3gl_flow_multi1-1.png

4

Lecture 9

switch Statement

This statement is alternative to nested if-else statement. It is multi-way decision making

construct which allows you to choose different statements depending upon the

conditions. This switch statement successfully tests the expression against the integer

or character constant and when there is a match, the statement associated with the

constant is executed. break statement is very important in a switch statement structure.

It causes exit from the switch structure after the case statements are executed. If the

break statement is not mentioned then the control will transfer to the next case

statement. When the condition in case is true the corresponding statement will get

executed. The default part is optional in the switch statement, if none of the case is true

then default statement is executed. The syntax and flow of switch-statement are

explained in the following figures:

switch(test-expression) {

 case constant 1 : statement sequence 1; break;

 case constant 2 : statement sequence 2; break;

 case constant 3 : statement sequence 3; break;

 : :

 case constant n-1: statement sequence n-1; break;

 [default : statement sequence n]; }

5

switch vs if-else

• switch can only test the expression for equality whereas if-else can

evaluate logical and relational expressions.

• if-else statement is more flexible and versatile than switch statement as

if-else can handle range of values whereas switch case can have single

value.

• cases in switch statement cannot handle floating-point values whereas

if-else statements can handle floating point values apart from integer and

character.

http://i0.wp.com/www.lifengadget.com/lifengadget/wp-content/uploads/2014/03/Selection_210.png

6

A switch statement is more efficient than nested if-else statement A switch statement

can only work for equality comparisons. A switch statement can also be nested.

2. Looping Structure(Iterative Statements)

With the help of Loops, a section of code can be executed repeatedly until a termination

condition is met. Loops or the looping statements are also called iteration statements.

There are three kinds of loops in C++:

• for loop.

• while loop.

• do-while loop.

Elements of Looping Structure

There are four elements in the looping structure that control its execution. These

elements are given below:

• Initialization Expression: The loop control variable must be initialized

for the looping structure. This expression is executed only once in the

beginning of the loop.

• Test Expression: As the name suggests this element test the condition

which decides whether the loop body will be executed or not. If the

condition is false the loop gets terminated else the loop statements get

executed. for-loop and while-loop are entry controlled loops where the

test expression is evaluated before entering whereas do-while is an exit

controlled loop.

• Update Expression: This element updates the value of loop variable.

This element is executed after executing the body of loop.

7

• Loop Body: The body of the loop contains the statements which are

executed repeatedly as long as the test expression is true. In entry

controlled loop the body of the loop is executed after the test expression

whereas in the exit controlled loop the body of the loop gets executed

before the test-expression.

while-loop

what if the number of iterations to be performed are not known in advance, while-loop

can be used in such a case. The statements inside the while loop keeps on executing

until the test condition is true. The syntax of while-loop is as follows :

while (test-condition) { statement(s); }

The flowchart of while-loop is as follows :

http://i1.wp.com/www.lifengadget.com/lifengadget/wp-content/uploads/2014/03/Selection_212.png

8

while-loop evaluates the test-expression before entering into the loop. while-loop can

also be infinite loop, only if the loop variable is not updated inside the body. while-loop

can also be empty loop, only if it contains a null statement in its body.

Lecture 10

do-while loop

As stated earlier, do-while loop is an exit-controlled loop i.e. the test-expression is

evaluated after the loop-body gets executed. Whereas the for-loop and while-loop is

evaluated at the top of the loop, do-while is evaluated at the bottom of the loop. This

looping structure is used where it is desirable to execute the body of a while-loop at

least once, even if the test-expression is false. The syntax of do-while loop is as follows:

do { statement; } while (test-expression);

The flowchart of do-while loop is as follows:

9

First the statement inside the body of the loop is executed and then the test expression

is evaluated. Example of do-while loop is as follows:

int i=0;
do
{
cout<<i<<endl;
i++;
}
while (i<5);

Output of the program: 0 1 2 3 4 The do-while loop is used commonly in a menu

selection routine, where the menu is displayed at least once and then depending upon

the user’s response, it is either repeated or terminated.

for-loop

http://i0.wp.com/www.lifengadget.com/lifengadget/wp-content/uploads/2014/03/Selection_213.png

10

The for-loop is used where a statement is executed a fixed number of times. Compound

statements can also be used in the body of for loop. The syntax of for-loop is as follows

:

for (initialization expression; test-expression; update expression) {

body of for-loop; }

The flowchart of the for-loop is as follows:

http://i0.wp.com/www.lifengadget.com/lifengadget/wp-content/uploads/2014/02/Selection_200.png

11

• The initialization expression step is executed first, and only once.

• Then, the test-condition is evaluated. If it is true, the body of the loop is

executed. If it is false, the body of the loop does not execute and flow of control

jumps to the next statement just after the for loop.

• After the body of the for loop executes, the update statement is executed to

update the loop variable.

• The condition is now evaluated again. If it is true, the loop executes and the

process repeats itself.

http://i0.wp.com/www.lifengadget.com/lifengadget/wp-content/uploads/2014/03/Selection_211.png

