

Definition:

A ring is an ordered triple $(R, +, \cdot)$, where R is a nonempty set and $+, \cdot$ are binary operation on R such that

- 1) (R, +) is an abelian group.
- Mean:(a) (a + b) + c = a + (b + c), $\forall a, b, c \in R$.
- (b) $\exists 0 \in R$ such that a + 0 = 0 + a = a.
- (c) $\forall a \in R \exists (-a) \in R$ such that a + (-a) = (-a) + a = 0.
- (d) $a + b = b + a \quad \forall a, b \in R$.
- 2) $(a \cdot c) \cdot c = a \cdot (b \cdot c) \quad \forall a, b, c \in R.$
- 3) $\mathbf{a} \cdot (b + c) = \mathbf{a} \cdot b + \mathbf{a} \cdot c$, and $(a + b) \cdot c = \mathbf{a} \cdot c + b \cdot c \quad \forall a, b, c \in \mathbb{R}$.

Example:(1) (*Z*, +,·)

- 1) (Z, +) is abelian group.
- 2) (a.b).c = a.(b.c).
- 3) $a \cdot (b + c) = a \cdot c + a \cdot c$ And $(a + b) \cdot c = a \cdot c + b \cdot c$.

 \therefore (*Z*, +,·) Is a ring.

Example:(2)

 $(Q, +, \cdot)$ is a ring.

Example:(3)

 $(Z_n, +_n, \cdot_n)$ is a ring.

 $Z_n = \{\overline{0}, \overline{1}, \overline{2}, \cdots, \overline{n}\}$

 $(Z_n, +_n)$ is abelian group.

Definition:

Let $(R, +, \cdot)$ be a ring, then R commutative if $a \cdot b = b \cdot a \quad \forall a, b \in R$.

Definition:

Let $(R, +, \cdot)$ be a ring, then R is said to have identity if there exists $1 \in R$ such that $1 \cdot a = a \cdot 1 = a, \forall a \in R$ and a is invertible (unit) if there exists $b \in R$ such that $a \cdot b = b \cdot a = 1$.

Examples:

- (1) $(Z, +, \cdot)$ is a ring with identity, commutative, 1, -1 are only invertible element.
- (2) (Q, +,·) is a ring with identity commutative, and every element in Q has inverse except 0.
- (3) $(3Z, +, \cdot)$ is a commutative with no identity.

(4)
$$\begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}, +, \cdot \end{pmatrix}$$
 is a ring not comm. with identity $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Example: $(p(X), \Delta, \cap)$ is a ring?

- 1) $(p(X), \cap)$ is an abelian group, commutative $A \cap A = A$ (identity) no inverse.
- 2) $(A \cap B) \cap C = A \cap (B \cap C) \quad \forall A, B, C \in X$
- 3) $\forall A, B, C \in X A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$?
 - $A \cap (B\Delta C) = A \cap [(B C) \cup (C B)]$

Dr. Nuhad Salim

$$= A \cap (B - C) \cup A \cap (C - B))$$
$$= [(A \cap B) - (A \cap C)] \cup [(A \cap C) - (A \cap B)]$$
$$= (A \cap B)\Delta(A \cap C)$$

<u>Remark:</u>

Let R be a ring such that $R \neq \{0\}$ is a ring with identity 1, then $1 \neq 0$.

Proof: Suppose that 1 = 0, let $a \neq 0 \in R$, $a = a \cdot 1 = a \cdot 0 = 0$ C!

 $\therefore 1 \neq 0.$

Definition:

Let *R* be commutative ring. An element $a \in R$ is called *zero divisor* if $a \neq 0$ and there exists $b \in R$, $b \neq 0$ with $a \cdot b = 0$.

<u>Example</u>: $Z_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$ Solution: $\overline{2}$. $\overline{3} = \overline{0}$, $\overline{3}$. $\overline{4} = \overline{0}\overline{2}$, $\overline{3}$, $\overline{4}$ are zero divisors of Z_6 <u>Example</u>: $Z_5 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ has no zero divisor. <u>Example</u>: $(Z, +, \cdot)$, $(C, +, \cdot)$, $(R, +, \cdot)$, $(Q, +, \cdot)$ has no zero divisor. <u>H.W:</u> $(p(x), \Delta, \cap)$ has zero divisor or not?

Dr. Nuhad Salim

<u>Lemma:</u> Let *R* be a ring, then (1) $a \cdot 0 = 0 \cdot a = 0$. (2) $(-a) \cdot b = a \cdot (-b) = -(a.b)$. (3) $(-a)(-b) = a \cdot b$. (4) $a(b - c) = ab - ac \quad \forall a, b, c \in R$. Proof(1): $a \cdot 0 = a \cdot (0 + 0) = a \cdot 0 + a \cdot 0 \implies 0 = a \cdot 0$ Proof(2): $0 = 0 \cdot b = (a + (-a))b = ab + (-a)b \implies (-a)b = -(ab)$ Proof(3): $(-a)(-b) = -(a \cdot (-b)) = -(-(a \cdot b)) = a \cdot b$ Proof(4): $a \cdot (b - c) = a \cdot [b + (-c)]$ $= a.b + a \cdot (-c) = a \cdot b - a \cdot c$.

Definition:

A commutative ring with identity is called *integral domain* if it has no zero divisors.

Example:

 $(Z, +, \cdot), (Q, +, \cdot), (R, +, \cdot), (Z_p, +_p, \cdot_p)$ where p is prime are integral domains.

Lemma:

Let R be commutative ring with identity, R is integral domain if and only if $a \cdot b = a \cdot c$; $a \neq o$, then b = c, $b \cdot a = c \cdot a$; $a \neq o$, then b = c

Dr. Nuhad Salim

Proof:⇒) suppose $a \cdot b = a \cdot c$; $a \neq 0$ $(a \cdot b) - (a \cdot c) = 0$ [associative] $a \cdot (b - c) = 0$ [*R* is integral domain] $\therefore R$ has no zero divisor and $a \neq 0$ $\therefore b - c = 0 \Rightarrow b = c$. \Leftrightarrow) Let $a \in R$, $a \neq 0$ $a \cdot b = 0$, and we have $0 \cdot a = a \cdot 0 = 0$, $a \cdot b = a \cdot 0$ $\therefore b = 0$.

Definition:

Let $(R, +, \cdot)$ be a ring, and $\emptyset = S \subseteq R$, then $(S, +, \cdot)$ is called *subring* if $(S, +, \cdot)$ is a ring itself.

Example:

 $(2Z, +, \cdot)$ subring of $(Z, +, \cdot)$.

Definition:

Let $(R, +, \cdot)$ be a ring $\emptyset \neq S \subseteq R$, then $(S, +, \cdot)$ is subring if:

(1) $a-b \in S \quad \forall a, b \in S$.

(2) $a.b \in S \quad \forall a, b \in S$.

Example:

Z is a subring of (Q, +, .).

Dr. Nuhad Salim

Q is a subring of (R, +, .).

R is a subring of (C, +, .).

 $(\{\overline{0}, \overline{2}, \overline{4}\}, +, \cdot)$ is a subring of \mathbb{Z}_6

 $(\{\overline{0},\overline{3}\},+,\cdot)$ is a subring of Z₆.

Example:

Let (R, +, .) be a ring $R \times R = \{(a, b): a, b \in R\}$

$$(a,b) + (c,d) = (a + c,b + c),$$

$$(a, b). (c, d) = (ac, bd)$$

Proof: (1) $(R \times R, +)$ is abelian group

$$(2) (a,b) \cdot [(c,d) + (e,f)] = (a,b) \cdot (c + e, d + f)$$
$$= (a(c + e), b(d + f))$$
$$= (ac + ae, bd + bf) = (ac, bd) + (ae, bf)$$
$$= (a,b) \cdot (c,d) + (a,b) \cdot (e,f)$$

(3)Identity = (1, 1); $(a, b) \cdot (1, 1) = (a \cdot 1, b \cdot 1) = (a, b)$

 \therefore (*R* × *R*, +, .) is a ring with identity.

(4) $S = R \times \{e\} = \{(a, 0): a \in R\}$. S is a subring of $R \times R$.

Proof: S ≠ Ø since $(0,0) \in S$ $(a,0) - (b,0) = (a - b, 0) \in S$ $(a,0).(b,0) = (a.b,0) \in S$

Identity = (1, 0)

Definition:

Let R be a ring the center of a ring R is denoted by Cent R is the set Cent $R = \{x \in R : x \cdot r = r \cdot x \quad \forall r \in R\}.$

<u>Lemma:</u>

Cent R is a subring of R.

Proof: Cent $R \neq \emptyset$ [$0 \in Cent R$, 0.a = a.0 = 0], let $a, b \in Cent R$

 $\Rightarrow a \cdot x = x \cdot a \quad , b \cdot x = x \cdot b \quad \forall x \in R$

 $x \cdot (a - b) = x \cdot a - x \cdot b = a \cdot x - b \cdot x = (a - b) \cdot x$ [Since $a, b \in$

Cent R]

$$x \cdot (a \cdot b) = x \cdot ab = ax.b = a.bx$$

 \therefore Cent R is subring.

<u>Remark:</u>

(1) Let R be a ring, n positive integer,

$$na = \underbrace{a + a + \dots + a}_{n \text{ times}}, a^n = \underbrace{a.a...a}_{n \text{ times}}$$

(2) If R is a ring with 1 and a is invertible

 $a^{-n} = \underbrace{a^{-1} \cdot a^{-1} \dots a^{-1}}_{n \ times} a^0 = 1.$

<u>Remark:</u>

Let *R* be a ring and $n, m \in Z$

- (1) (n + m)a = na + ma.
- (2) n(a-b) = na nb.
- (3) (nm)a = n(ma) = m(na).

Dr. Nuhad Salim

$$Proof:(1):(n + m)a = \underbrace{a + a + \dots + a}_{(n+m) \text{ times}} = \underbrace{a + a + \dots + a}_{n \text{ times}} + \underbrace{a + a + \dots + a}_{m \text{ times}} + \underbrace{a +$$

Definition:

Let $(R, +, \cdot)$ be a ring, if there exists a positive integer n such that na = 0, $\forall a \in R$, then the smallest positive integer with this property is called the *characteristic* of R. If no such positive integer exists we say R has characteristic zero, we denote the characteristic of R by *Char* R.

Example:

Char
$$Z = 0$$
, Char $Q = 0$, Char $Z_6 = 6$, Char $Z_4 = 4$, Char $Z_n = n$.
 $(p(x), \Delta, \cap)$, Char $p(x) = 2$
 $2A = A \Delta A = (A - A) \cup (A - A) = \emptyset$

<u>Theorem</u>:(1)

Let *R* be a ring with identity, then *Char* R = n > 0 if and only if *n* is the smallest positive integer such that $n \cdot 1 = 0$.

<u>**Proof:</u>** \Rightarrow) Char R = n > 0, then n.a = 0, then n.1 = 0 suppose \exists positive integer msuch that m < n, m.1 = 0 and let $a \in R$ </u>

Dr. Nuhad Salim

 $m a = \underbrace{a + a + \dots + a}_{m \text{ times}} = \underbrace{a. 1 + a. 1 + \dots + a. 1}_{m \text{ times}} = m(1. a)$

=(m. 1). a = 0. a = 0 C!

Since n is Char R.

$$\iff$$
 Let $a \in R$, $na = n. (1.a) = (n.1).a = 0.a = 0$

: Char R = n since *n* is the smallest positive integer; $n \cdot 1 = 0$.

Corollary:

Let *R* be an integral domain, then *Char R* is either zero or prime integer. *Proof:* Suppose *Char R* > 0, suppose $n = n_1 \cdot n_2$, $1 < n_1 \le n_2 < n$. $0 = n \cdot 1 = (n_1 \cdot n_2) \cdot 1$ $(n_1 \cdot n_2) \cdot 1 = (n_1 \cdot 1) \cdot (n_2 \cdot 1)$ [*R* integral domain] But *R* is integral domain, then either $n_1 \cdot 1 = 0$ or $n_2 \cdot 1 = 0$ C! by theorem(1) since $n_1, n_2 < n$ and *n* is the smallest integer such that $n \cdot 1 = 0$. $\therefore n$ is a prime integer.

Definition:

Let *R* and *R'* be rings $f: R \to R'$, then *f* is a ring homomorphism if (1) f(a + b) = f(a) + f(b). (2) $f(a, b) = f(a) \cdot f(b)$. Example:

(1)Let $\emptyset: R \longrightarrow R'$; $\emptyset(r) = 0 \quad \forall r \in R$ is a ring homomorphism is called zero homo.

(2) $I: R \longrightarrow R$; $I(r)=r \forall r \in R$ the identity homomorphism.

(3) $h: Z \longrightarrow Z_n$; $h(n) = \overline{n} \quad \forall n \in Z$.

Definition:

Let $f : R \longrightarrow R'$ be a ring homomorphism.

1) If f is one to one, then f is monomorphism.

2) If f is onto, then f is epimorphism.

3) If f is (1-1) and onto, then f is isomorphism.

Definition:

If $f : R \longrightarrow R'$ and f is isomorphism, then we say that R is isomorphic to R', $R \simeq R'$.

<u>Remark:</u>

If $f : R \longrightarrow R'$ is homomorphism, then:

 $1) f(0_R) = 0_{R'_{\star}}.$

2) $f(-a) = -f(a) \quad \forall a \in R$.

3) $f(1_R) = 1_{R'_1}$ when R and R' are rings with identity.

Theorem:

Any ring can be *imbedded* in a ring with identity.

Proof: Let $R \times Z = \{(r, n): r \in R, n \in Z\}$

Define + and . on $R \times Z$ as follows

Dr. Nuhad Salim

(r,n) + (t,m) = (r + t,n + m).

(r,n).(t,m) = (rt + nt + mr, nm).

Then $R \times Z$ is a ring with identity (0, 1).

(r, n). (0, 1) = (r, n).

 $R \times \{0\} \subseteq R \times Z.$

Now we must show that $R \times \{0\}$ is subring of $R \times Z$

$$(a,0)\{\in R \times \{0\}\} - (b,0)\{\in R \times \{0\}f = (a-b,0) \in R \times \{0\}$$
$$(a,0).(b,0) = (ab,0) \in R \times \{0\}$$

Now we define a map $\emptyset: R \to R \times \{0\}; \quad \emptyset(r) = (r, 0) \quad \forall r \in R$ (1) Let $\emptyset(r_1) = \emptyset(r_2)$ $(r_1, 0) = (r_2, 0) \implies r_1 = r_2$ $\therefore \emptyset \text{ is } (1 - 1)$ (2) Let $(w, 0) \in R \times \{0\}.$ $\emptyset(w) = (w, 0).$ $\therefore \emptyset \text{ is onto, } \emptyset \text{ is homo.}$ (3) $\emptyset(r_1 + r_2) = (r_1 + r_2, 0) = (r_1, 0) + (r_2, 0) = \emptyset(r_1) + \emptyset(r_2).$ $\emptyset(r_1, r_2) = (r_1r_2, 0).$ $\emptyset(r_1). \emptyset(r_2) = (r_1, 0). (r_2, 0) = (r_1r_2, 0).$ $\therefore \emptyset \text{ is homomorphism.}$ $\therefore R \simeq R \times \{0\}.$

 \therefore *R* is imbedded in a ring $R \times Z$.

Definition:

Let R be a ring an element $a \in R$ is said to be *idempotent* element if $a^2 = a$.

<u>Definition:</u>

An element $a \in R$ is called *nilpotent* if there exists an integer n such that $a^n = 0$.

Examples:

(1) $Z_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$

Solution: $\overline{0}$, $\overline{1}$, $\overline{3}$, $\overline{4}$ are idempotent. $\overline{0}$ is nilpotent only.

 $(\mathbf{2}) Z_8 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\}$

Solution: $\overline{0}$, $\overline{2}$, $\overline{4}$, $\overline{6}$ are nilpotent elements.

(3) Z_5 : the idempotent element are $\overline{0}$, $\overline{1}$ and nilpotent is $\overline{0}$.

(4) $(p(x), \Delta, \cap)$

Solution: $A \cap A = A$, $\forall A$ is idempotent $A \cap ... \cap A = \emptyset$, just when $A = \emptyset$.

Definition:

Let *R* be a ring such that every element of *R* is idempotent, then *R* is *Boolean ring*.

Example :

In $Z_2 = \{0, 1\}$, $(\overline{0})^2 = 0$, $(\overline{1})^2 = 1$.

 \therefore Z_2 is Boolean ring.

<u>Theorem:</u>

Let R be a ring such that every element in R is idempotent (R is Boolean ring), then R is commutative.

Proof:
$$(a + b) = (a + b)^2 = (a + b) (a + b) = a \cdot a + a \cdot b + b \cdot a + b \cdot b$$

 $a + b = a^2 + a \cdot b + b \cdot a + b^2$
 $a + b = a + b + a \cdot b + b \cdot a$
 $0 = ab + ba \Rightarrow ab = -ba$
 $ab = (-ba) = (-ba)^2 = b^2 a^2 = ba$

∴ *R*is commutative.

<u>Remark:</u>

Let *R* be a ring if there exists an element $a \in R$, such that:

(1) ais idempotent.

(2) a is not zero divisor. Then a must be the identity of the ring.

Proof: (2) Let $b \in R$

 $a.b = a^2b \implies (a^2.b) - a.b = 0.$

a(ab - b) = 0 [ais not zero divisor]

$$\therefore ab - b = 0 \implies ab = b.$$

 \therefore *a* is identity.

Example:

Consider the ring $(p(x), \Delta, \cap)$; $p(x) = \{A : A \subseteq X\}$, for a fixed subset $S \subseteq X$, $S \in p(x)$, define $f : p(x) \longrightarrow p(x)$ by

Dr. Nuhad Salim

 $f(A) = A \cap S.$ $(1) A = B \Rightarrow A \cap S = B \cap S.$ f(A) = f(B) $\therefore f \text{ is well defined.}$ $(2) f(A \Delta B) = f(A)\Delta f(B)?$ $f(A \Delta B) = (A \Delta B) \cap S$ $= [(A - B) \cup (B - A)] \cap S$ $= [(A - B) \cap S] \cup [(B - A) \cup S]$ $= (A \cap S - B \cap S) \cup (B \cap S - A \cap S)$ $= (A \cap S)\Delta (B S) = f(A)\Delta f(B)$ $(2) f(A \cap B) = (A \cap B) \cap S = (A \cap B) \cap S$

 $(2) f(A \cap B) = (A \cap B) \cap S = (A \cap S) \cap (B \cap S) = f(A) \cap f(B)$

 \therefore f is homomorphism.

(3) $ker f = \{A \subseteq p(x): f(A) = \emptyset\} = \{A \subseteq p(x): A \cap S = \emptyset\} = S^c \neq \text{ identity.}$ (4) $\forall A \subseteq X \Rightarrow X \cap A = A$, identity = X $\therefore f \text{ is not } (1-1).$

Problems:

1) Let R be a ring and $a \in R$, If C(a) the set of all elemente with a, $C(a) = \{r \in R : ra = ar\}$ show that C(a) is subring of R. and $Cent R = \bigcap_{a \in R} C(a).$

- 2) Let (G, +) be abelian group, R set of all groups homomorphism of G in to itself (f + g)(x) = f(x) + g(x), f ∘ g(x) = f(g(x)), show that (R, +, ∘) form a ring, determine the invertible elements of R.
- 3) Given that *f* is homomorphism. from the ring *R* in to the ring *R*, prove that

A. $f(Cent(R)) \subseteq Cent(f(R))$

B. If $a \in R$ is nilpotent, then f(a) is nilpotent in R'.

- C. If R has positive characteristic, then Char $f(R) \leq Char R$.
- 4) Let *R* be a ring without zero divisors:

i. $a \cdot b = 1$ iff $b \cdot a = 1$

ii. If $a^2 = 1$ then either a = 1 or a = -1.

Sol(*i*):

If a.b = 1, then $b \neq 0$

 $[\text{If } b = 0 \implies a \cdot 0 = 0 \neq 1]$

 $\therefore a.b = 1 \implies b.a.b = b$

- $b.a.b b = 0 \implies (ba 1)b = 0$, $b \neq 0$
- $\therefore ba = 1$
- **Sol** (*i i*):

 $a^{2} = 1$, $a \cdot a = 1 - a + a$ $a \cdot a + a - a - 1 = 0$ $a \cdot (a + 1) - (a + 1) = 0$

(a + 1).(a - 1) = 0

Either a = 1 or a = -1.

Definition:

Let I be a nonempty subset of ring R, then I is *ideal* of R if

(1) $a - b \in I \forall a, b \in I$. (2) $ar \in I$, $(ra \in I) \forall a \in I, r \in R$.

(3) $I \neq \emptyset$.

<u>Remark:</u>

Every ideal is subring.

Proof: Let I be an ideal, to show that I is subring

(1) $I \neq \emptyset$.

(2)Let $a, b \in I \implies a.b \in I$, $a-b \in I$

 $\therefore I$ is subring

But the converse is not true for example:

(Q, +, .) is a ring, $Z \subseteq Q$; Z is subring

 $3 \in Z$, $\frac{1}{2} \in Q$, $3 \cdot \frac{1}{2} = \frac{3}{2} \notin Z$.

 \therefore Z is not ideal

Example: In the ring Z

(1) 2Z is subring and ideal.

(2) 5Z, 3Z are ideals.

Dr. Nuhad Salim

In general nZ is an ideal $\forall n$.

Remark(1):

Let *I* be an ideal of a ring with 1. If $1 \in I$, then I = R. *Proof:* $I \subseteq R$, let $r \in R$, $1 \in I$ but *I* is ideal $\therefore 1.r \in I \implies r \in I \implies R \subseteq I$. Thus I = R

Remark(2):

Let *I* be an ideal of a ring with 1 and *I* contains an invertible element, then I = R.

Proof: $a \in I$ but a is invertible then $\exists b \in R$ such that $a.b \in I \Rightarrow 1 \in I$

 \therefore I = R, by remark (1).

<u>Definition</u>: An ideal *I* of a ring *R* is called a proper ideal if $I \neq R$ and *I* is called nontrivial ideal if $I \neq \{0\}$ and $I \neq R$.

Theorem: Let $\{I_{\alpha} : \alpha \in \Lambda\}$ be a family of ideals of a ring R, then $\bigcap_{\alpha \in \Lambda} I_{\alpha}$ is an ideal in *R*.

Proof: $\bigcap_{\alpha \in \Lambda} I_{\alpha} \neq \emptyset$ [$0 \in I_{\alpha} \forall \alpha \in \Lambda$] Let $a, b \in \bigcap_{\alpha \in \Lambda} I_{\alpha} \Rightarrow a \in I_{\alpha} \forall \alpha \in \Lambda$ and $b \in I_{\alpha} \forall \alpha \in \Lambda$ $\therefore a - b \in I_{\alpha} \forall \alpha \in \Lambda$ [ideal def.] $\therefore a - b \in \bigcap_{\alpha \in \Lambda} I_{\alpha}$ Let $a \in \bigcap_{\alpha \in \Lambda} I_{\alpha}$, $r \in R$

Dr. Nuhad Salim

 $\therefore a \in I_{\alpha} \quad \forall \alpha \in \Lambda \implies ra \in I_{\alpha} \quad \forall \alpha$ $ra \in \bigcap_{\alpha \in \Lambda} I_{\alpha}$ $\therefore \bigcap_{\alpha \in \Lambda} I_{\alpha} \quad \text{is ideal.}$ But the union is not ideal for example: $2Z \text{ is ideal, } 3Z \text{ is ideal, } 2 \in 2Z \text{ , } 3 \in 3Z$ If $2Z \cup 3Z$ is ideal $\therefore 2, 3 \in 2Z \cup 3Z \therefore 3 - 2 \in 2Z \cup 3Z C! \quad 1 \notin 2Z \cup 3Z$ $\therefore 2Z \cup 3Z \text{ is not ideal.}$

Definition:

Let S be a nonempty subset of a ring R the set $\langle S \rangle$, where:

 $\langle S \rangle = \cap \{I : I \text{ is an ideal of } R \text{ containing } S\}$

is called the ideal generated by S.

<u>Remark:</u>

- 1. $\langle S \rangle$ is smallest ideal containing *S*.
- 2. $\langle S \rangle = S$ if and only if *S* is an ideal.
- 3. If $S = \{a\}$, $\langle S \rangle = \langle a \rangle$ is called principle ideal.

<u>Remark:</u>

If *R* is commutative ring with identity and $x \in R$, then

$$\langle x \rangle = \{rx: r \in R\} = Rx$$

For example: < 2 > = 2Z, < 3 > = 3Z

<u>Definition:</u>

A ring *R* is called principle ideal ring if every ideal in *R* is principle ideal.

Theorem:

(Z, +, .) is P. I. R.

Proof: Suppose I be an ideal in Z if $I = \{0\}$, then I = <0 > if $I \neq \{0\}$, then \exists an integer $0 \neq m \in I$, if it is negative then $-m \in I$, then I contains a positive integer, let n be the least positive integer such that $n \in I$, we claim that I = < n >.

It's clear that $\langle n \rangle \subseteq I$ since $n \in I$.

Now, let $m \in I$ by division algorithm theorem $\exists q, r \in Z$, such that:

m = nq + r , $0 \le r < n$, $r = m(\in I) - nq(\in I)$

 $\therefore r \in I$ C! since *n* is the least positive integer $n \in I$ and r < n.

$$\therefore r = 0 \implies m = nq$$

 $\therefore m \in < n >$

```
\therefore I = < n >
```

The union is not ideal for example:

$$Z_{6} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}, I_{1} = \{\overline{0}, \overline{2}, \overline{4}\}, I_{2} = \{\overline{0}, \overline{3}\}$$
$$\cup I_{i} = \{\overline{0}, \overline{2}, \overline{3}, \overline{4}\}$$
$$3 - 2 = 1 \notin \cup I_{i}, i = 1, 2.$$

Definition:

Let I and J be ideals of a ring R, then the sum of I and J denoted by:

 $I + J = \{a + b: a \in I, b \in J\}.$

<u>Remark:</u>

If I and J ideals in R then I + J is also ideal in R.

Proof: $I + J \neq \emptyset \quad [0 \in I, 0 \in J :: 0 \in I + J]$

Let $w_1, w_2 \in I + J \implies w_1 = a_1 + b_1$, $a_1 \in I$, $b_1 \in J$, $w_2 = a_2 + b_2$, $a_2 \in I$, $b_2 \in J$

$$w_1 - w_2 = a_1 + b_1 - a_2 - b_2 = (a_1 - a_2) (\in I) + (b_1 - b_2) (\in J)$$

 $\therefore w_1 - w_2 \in I + J.$

Let $w \in I + J$, $r \in R$, w = a + b; $a \in I$, $b \in J$

$$rw = r(a + b) = ra(\in I) + rb(\in J) \in I + J$$

 $\therefore I - J$ is an ideal.

<u>Example</u>: $Z_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}, I = \{\overline{0}, \overline{3}\}, J = \{\overline{0}, \overline{2}, \overline{4}\}$ $I + J = \{\overline{0}, \overline{2}, \overline{4}, \overline{3}, \overline{5}, \overline{1}\} = Z_6$ I + J is an ideal <u>Example</u>: In (Z, +, .)

2Z + 3Z = ideal.

Definition:

Let *I* and *J* be ideals in a ring *R* we say that *R* is internal direct sum of *I* and *J* if:

(1) R = I + J

(2) $I \cap J = \{\emptyset\}$

We denote that by: $R = I \bigoplus J$.

 $\underline{Example:} Z_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$

 $I=\{\overline{0},\overline{3}\}$, $J=\{\overline{0},\overline{2},\overline{4}\}$

 $\therefore Z_6 = I \oplus J \text{ or } Z_6 = Z_6 \oplus \{0\}$

Theorem:

Let *I* and *J* be ideal in *R*, then $R = I \bigoplus J$ if and only if every element in *R* can be written in only one way.

Proof:⇒) Let $R = I \oplus J \implies R = I + J$, $I \cap J = \{0\}$ let $r \in R$ ∴∃ $a \in I$, $b \in J$ such that r = a + b if not r = a1 + b1, $a1 \in I$, $b1 \in J$

$$a_1 + b_1 = a + b \implies a_1 - a = b - b_1 \in I \cap J = \{0\}$$

 $\therefore a_1 - a = 0 \implies a = a_1$, $b - b_1 = 0 \implies b = b_1$

$$\iff I + J \subseteq R , let w \in R , w = w + 0 \in I + J$$

 $\therefore R \subseteq I + J \quad \therefore \ R = I + J$

Let $w \in I \cap J \implies w \in I$ and $w \in J$, w = w + 0 = 0 + w C! $\therefore w = 0$

Definition:

Let R_1, R_2 be rings consider the set $R_1 \times R_2 = \{(x, y) : x \in R_1, y \in R_2\}$, define +, \cdot on $R_1 \times R_2$

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $(x_1, y_1). (x_2, y_2) = (x_1. x_2, y_1. y_2)$

Then we can show that $R_1 \times R_2$ is a ring? Is called the external direct sum of R_1 and R_2

$$R_1 \simeq R_1 imes \{0\}$$
 , $R_2 \simeq \{0\} imes R_2$

<u>Theorem:</u>

Let $f : R \longrightarrow R'$ be ring homomorphism.

(1) If K is an ideal in R', then $f^{-1}(K)$ is an ideal in R.

(2) If J is an ideal in R and f is onto then f(J) is ideal in R'

Proof: $f^{-1}(K) = \{r \in R : f(r) \in K\} \neq \emptyset$ since $[0 \in f^{-1}(K), f(0) = \overline{0} \in K]$ Let $x, y \in f^{-1}(K) \Rightarrow f(x) \in K$, $f(y) \in K$

K is ideal ⇒ $f(x)-f(y) \in K$, f is ring homomorphism ⇒ $f(x-y) \in K$ ∴ $x-y \in f^{-1}(K)$

Let $w \in f^{-1}(K)$, $r \in R$, $f(w) \in K$, $f(r) \in R'$ and K is ideal

 $\therefore f(w).f(r) \in K \ [f \text{ isring homomorphism}] \ f(w.r) \in K \Rightarrow w.r \in f^{-1}(K)$ $\therefore f^{-1}(K) \text{ is ideal.}$

(2)
$$f(J) \neq \emptyset$$
 since $[0_R = f(0_R) : 0_R \in f(J)]$
Let $x, y \in f(J) \implies x = f(w_1), w_1 \in J, y = f(w_2), w_2 \in J$

Dr. Nuhad Salim

 $w_1 - w_2 \in J$ [Since J is an ideal], $f(w_1 - w_2) \in f(J)$ [f is homomorphism] $f(w_1) - f(w_2) \in f(J)$, $x - y \in f(J)$ Let $a \in f(J)$, $r' \in R'$, a = f(w), $w \in J$ $r' \in R'$ since f is onto then $\exists r \in R$ such that f(r) = r' $\therefore rw \in J$ [J is ideal] $f(rw) \in f(J), f(r)f(w) \in f(J)$ [f is homomorphism], $r'a \in f(J)$ $\therefore f(J)$ is an ideal.

Corollary:

Let $f: R \to R'$ be a ring homomorphism, then *kerf* is ideal in *R*.

Proof: ker $f = \{r \in R : f(r)=0\} = f^{-1}(O_{\hat{R}}), O_{\hat{R}}$ is ideal by theorem $f^{-1}(O_{\hat{R}})$ is ideal

 \therefore ker f is ideal.

The quotient ring, let I be an ideal in a ring R , $\frac{R}{I} = \{x + I : x \in R\}$. Define +, • as:

$$(x + I) + (y + I) = (x + y) + I \in \frac{R}{I}$$
$$(x + I) \cdot (y + I) = (x \cdot y) + I \in \frac{R}{I}$$

To show that +; is well define (1) is well defined, by (1)

$$x + I = x_1 + I \iff x - x_1 \in I$$

$$y + I = y_1 + I \iff y - y_1 \in I$$

$$(x + I) \cdot (y + I) = (x_1 + I) \cdot (y_1 + I)$$

$$xy + I = x_1 y_1 + I \iff xy - x_1 y_1 \in I$$

Dr. Nuhad Salim

$$xy - x_1y_1 = xy - xy_1 + xy_1 - x_1y_1$$

 $= x(y - y_1) + (x - x_1)y_1 \in I$ (*I* is ideal)

Then $xy - x_1y_1 \in I \implies$ is well defined.

Theorem:

Let *I* be an ideal of a ring *R*, then $\left(\frac{R}{I}, +, \cdot\right)$ is a ring which is called the quotient ring of *R* by *I*.

Proof: (1) well defined

$$a + I = a_{1} + I \iff a - a_{1} \in I, \qquad b + I = b_{1} + I \iff b - b_{1} \in I$$

$$(a + I) + (b + I) =? (a_{1} + I) + (b_{1} + I)$$

$$(a + b) + I = (a_{1} + b_{1}) + I \iff a + b - (a_{1} + b_{1}) \in I$$

$$a + b - a_{1} - b_{1} = a - a_{1} (\in I) + b - b_{1} (\in I) \in I$$

 \therefore + is well define is well define.

(2) Associative

$$r + I + [(r_1 + I) + (r_2 + I)] =? [(r + I) + (r_1 + I)] + (r_2 + I)$$
$$(r + I) + (r_1 + r_2 + I) = (r + r_1 + I) + (r_2 + I)$$
$$\therefore (r + r_1 + r_2) + I = (r + r_1 + r_2) + I$$

(3)The identity

$$(r + I) + (0 + I) = (r + 0) + I = r + I$$

 $\therefore 0 + I = I$ is the identity.

(4) (r + I) + [(-r) + I] = (r - r) + I = 0 + I = I

Dr. Nuhad Salim

(-r) + I is the inverse
(5) $(r + I) + (r_1 + I) = (r_1 + I) + (r + I)$
$(r + r_1) + I = (r_1 + r) + I$
$(r + r_1) + I = (r + r_1) + I$, since $r + r_1 \in R$ and R is a ring $r + r_1 = r_1 + r$ [abelian group]
\therefore (<i>R</i> / <i>I</i> , +) is abelian group.
(6) $[(a + I).(b + I))].(c + I) = (a.b + I).(c + I) = a.b.c + I$
(a + I).[(b + I).(c + I)] = (a + I).(b.c + I) = a.b.c + I
(7)(a + I).[(b + I) + (c + I)] = (a + I)(b + c + I)
= a.(b + c) + I
= a.b + a.c + I
= (ab + I) + (a.c + I)
=(a + I)(b + I) + (a + I)(c + I).
\therefore · Is associative $\therefore \left(\frac{R}{I}, +, \cdot\right)$ is a ring.

<u>Note</u>: If R with identity 1, then $\frac{R}{I}$ with identity 1 + I.

Example: Let Z be a ring,

(1)
$$\frac{Z}{3Z} = \{3Z, 1 + 3Z, 2 + 3Z, \dots\}.$$

(2) $\frac{Z}{4Z} = \{4Z, 1 + 4Z, 2 + 4Z, 3 + 4Z, \dots\}$

(3)
$$\frac{Z}{2Z} = \{2Z, 1 + 2Z, \dots\}$$

<u>Remark:</u>

Let *I* be an ideal of *R*, the function $\pi : R \to R/I$ defined by $\pi(r) = r + I$, for all $r \in R$, is a ring epimorphism, it is called the natural epemorphism.

$$\pi (r_1 + r_2) =? \pi (r_1) + \pi (r_2)$$

(r_1 + r_2) + I = (r_1 + I) + (r_2 + I)
$$\pi (r_1.r_2) =? \pi (r_1).\pi (r_2)$$

(r_1.r_2) . I = (r_1 + I) . (r_2 + I).

<u>Remark:</u> (Fundamental Homomorphism Theorem of rings)

Let $f : R \longrightarrow R'$ be a ring homomorphism, which is onto, then $R/ker f \simeq R'$

Proof: Define
$$g: \frac{R}{kerf} \longrightarrow R'$$
 by $g(r + K) = f(r)$ where $ker f = K$
(1) $r + K = r_1 + K \Leftrightarrow r - r_1 \in K$
 $\Rightarrow f(r - r_1) = 0$, $f(r) - f(r_1) = 0 \Rightarrow f(r) = f(r_1)$
 $\therefore g(r + K) = g(r_1 + K)$
 \therefore Well defined
(2) g is homomorphism
 $g((r + K) + (r_1 + K)) = g(r + K) + g(r_1 + K)$
 $g(r + r_1 + K) = f(r) + f(r_1)$
 $\therefore f(r + r_1) = f(r + r_1)(since f is homo.)$

Dr. Nuhad Salim

 $g((r + K) \cdot (r_1 + K)) = ? g(r + K) \cdot g(r_1 + K)$

 \therefore g is homo.

(3) $g(r + K) = g(r_1 + K) \Rightarrow f(r) = f(r_1) \Rightarrow f(r) = f(r_1) = 0$ [Since *f* is homomorphism]

$$f(r-r_1)=0 \Rightarrow r-r_1 \in ker \ f=K \quad \Leftrightarrow \ r + K = r_1 + K \ \Rightarrow \ g \ is \ (1-1)$$

(4) Let $w \in R'$ since f is onto $\exists x \in R$, such that f(x) = w

$$g(x + K) = f(x) = w \implies g$$
 is onto.

Example: Show that $\frac{z}{nZ} \simeq Z_n$ **Solution:** $f: Z \longrightarrow Z_n$, $f(x) = \bar{x} \quad \forall x \in Z$ $f(x + y) = \overline{x + y} = \bar{x} + \bar{y} = f(x) + f(y)$ $f(xy) = \overline{xy} = \bar{x}. \bar{y} = f(x).f(y)$

 $\therefore f$ is homo.

Let $\overline{w} \in Z_n \Rightarrow \exists w \in Z$ such that $f(w) = \overline{w}$ $\therefore f$ is onto by F. H. Th. $\frac{Z}{\ker f} \simeq Z_n$ $\ker f = \{x \in Z : f(x) = \overline{0}\} = \{x \in Z : \overline{x} = \overline{0}\} = nZ$ $\therefore \frac{Z}{nZ} \simeq Z_n$.

<u>Remark:</u>

The only nontrivial homomorphism from Z to Z is the identity.

Proof: $f: Z \longrightarrow Z$; $0 \neq n \in Z$,

Dr. Nuhad Salim

$$f(n) = \underbrace{f(1+1+\dots+1)}_{n \text{ times}} = \underbrace{f(1)+f(1)+\dots+f(1)}_{n \text{ times}}$$

[Since *f* is homomorphism]

$$f(n) = nf(1) \dots (*)$$

f(n)=f(n.1)

$$f(n).1 = f(n).f(1) \Rightarrow f(1) = 1 \text{ [by(*)]}$$

$$\therefore f(n) = n$$

 $\therefore f$ is identity.

Corollary (1):

Let R be a ring and suppose that f, g a ring isomorphism, then

$$f = g : R \longrightarrow Z.$$

Proof: $f : R \longrightarrow Z$, $g : R \rightarrow Z$; $R \simeq Z$
 $g^{-1} : Z \longrightarrow R$ is a ring isomorphism
 $f \circ g^{-1} : Z \longrightarrow Z$, $\left(Z \xrightarrow{g^{-1}} R \xrightarrow{f} Z \right) \Rightarrow f \circ g^{-1} : Z \longrightarrow Z$
 $\therefore f \circ g^{-1} = I$ [by Remark]
 $\therefore g = f$

Corollary (2):

Let *R* be a ring and $f, g: R \rightarrow Z$ be an epimorphism, then if ker f = ker g, then f = g.

Proof: by F.H.Th. $R/\ker f \simeq Z$ and $\frac{R}{\ker g} \simeq Z$, by coro.(1) $f^* = g^*$; $f^*: R/ker f \to Z$ and $g^*: R/ker g \to Z$. To prove that f = gLet $r \in R$, $f(r)=f^*(r + ker f) = g^*(r + Kerg) = g(r);$ $\therefore f = g$. Theorem: $Z_n \oplus Z_m \simeq Z_{nm}$ if and only if g.c.d(n,m) = 1. **Proof:** We only have to show that $\frac{Z}{nZ} \oplus \frac{Z}{mZ} \simeq \frac{Z}{nmZ}$ since by F. H. Th. $\frac{Z}{nZ} \simeq Zn$ and $Z_{nm} \simeq \frac{Z}{m\pi^2}$ Define $\emptyset: Z \longrightarrow \frac{Z}{nZ} \oplus \frac{Z}{m^7}$ By $\phi(x) = (x + nZ, x + mZ) \quad \forall x \in Z$ \emptyset is a ring homomorphism? $\ker \emptyset = \{x \in Z : \emptyset(x) = (nZ, mZ)\}$ $= \{ x \in Z: (x + nZ, x + mZ) = (nZ, mZ) \}$ $= \{x \in Z : (x \in nZ, x \in mZ)\} = \{x \in Z : x \in nZ \cap mZ\} = nmZ$ since g.c.d(n,m) = 1 \emptyset is onto: Let $(a + nZ, b + mZ) \in \frac{Z}{nZ} \oplus \frac{Z}{mZ}$ $g.c.d(n,m) = 1 \implies \exists s,t \in Z$ \Rightarrow sn + tm = 1(**), since sn - 1 \in mZ and tm - 1 \in nZ

Let x = a tm + bsn(*)

$$\phi(x) = (x + nZ, x + mZ)$$

Dr. Nuhad Salim

= (atm + nZ, bsn + mZ) = (a + nZ, b + mZ) $a + nZ = atm + nZ \Leftrightarrow a - atm \in nZ \Leftrightarrow a(1 - tm) \in nZ \Leftrightarrow a \in nZ$ Similarly $bsn + mZ = b + mZ \Leftrightarrow (b - bsn) \in mZ \Leftrightarrow b(1 - sn) \in mZ \Leftrightarrow btm \in mZ$ $\therefore \emptyset \text{ is onto.}$

Definition:

A proper ideal *M* of a ring R is called *maximal ideal* if where ever *I* is an ideal of *R* with $M \subset I$, then I = R.

Example: In Z_6 the ideals are:

 $\{0\}$, Z_6 , $\{\overline{0}, \overline{3}\}$, $\{\overline{0}, \overline{2}, \overline{4}\}$

 $\{\overline{0}, \overline{3}\}$ is the maximal in Z_6

 $\{\overline{0}, \overline{2}, \overline{4}\}$ is the maximal in Z₆.

Definition:

A proper ideal *P* of a ring *R* is called a *prime* ideal if for all *a*, *b* in *R* with $a.b \in P$ either $a \in P$ or $b \in P$.

Example:

Dr. Nuhad Salim

1)4Z is an ideal in Z, but not a prime ideal in Z.

2 {0} is a prime ideal in *Z*.but not maximal.

3){0} is not a prime ideal in Z_6 .

Definition:

A commutative ring with identity is called an *integral domain* if it has no zero divisor.

Definition:

A ring $(R, +, \cdot)$ is said to be *field* if $(R - \{0\}, \cdot)$ forms a commutative ring (with identity 1).

Or

The field is commutative ring with identity in which each nonzero element has inverse under multiplication.

<u>Remark:</u>

Every field is an integral domain.

Proof: Let *R* be a field and let $a, b \in R$ such that a, b = 0

If $a \neq 0 \Rightarrow a$ has inverse say a^{-1} [since $a \in \text{field}$] $\Rightarrow a^{-1} \cdot a \cdot b = 0 \Rightarrow b = 0$ i.e., *R* is integral domain.

<u>Remark:</u>

Let *R* be a commutative ring with identity, then *R* is a field if and only if $\{0\}$ and *R* are the only ideals of *R*.

Proof:⇒ let $I \neq 0$ be an ideal in R let $a \neq 0$, $a \in I$, but R is a field ⇒ $\exists a^{-1} and a. a^{-1} = 1 \in I [I \text{ ideal } a \in I, r \in R \Rightarrow ar \in I] \Rightarrow I = R$ [by remark]

 $\Leftrightarrow \text{Let } a \neq 0 \text{, } a \in R \text{, } < a > \text{ is an ideal in } R \text{ but } < a > \neq \{0\} \Rightarrow < a > = R$ $\therefore 1 \in R \Rightarrow 1 \in <a > \Rightarrow 1 = r.a$

Example: Q have ideals $\{0\}$, Q.

R have ideals $\{0\}$, R.

C have ideals $\{0\}$, C

 Z_3 , Z_5 , Z_7 are fields.

<u>Remark:</u>

Every finite integral domain is field.

Proof: Let $R = \{a_1, a_2, ..., a_n\}$ be an integral domain and $0 \neq a_j \in R$ consider the set $S = \{a_1a_j, a_2a_j, ..., a_na_j\}$ all elements of S are distinct since if $a_la_j = a_ka_j \Rightarrow a_l = a_k C!$

Clearly $S \subseteq R$ and $R \subseteq S \Rightarrow S = R \Rightarrow 1 \in S$

 $\Rightarrow 1 \in a_n a_i \Rightarrow a_i$ has inverse $\Rightarrow R$ is field.

<u>Remark:</u>

Let R be an integral domain with only finite number of ideals in R, then R is a field.

Proof: Let $a \neq 0$, $a \in R$, $\langle a \rangle$, $\langle a^2 \rangle$, $\langle a^3 \rangle$,... be ideals in R but R has only finite number of ideals $\Rightarrow \exists k, \ell$ such that $k < \ell$ positive integers such that $\langle a^k \rangle = \langle a^\ell \rangle$. $\Rightarrow a^k \in \langle a^k \rangle = \langle a^\ell \rangle \Rightarrow a^k = ra^\ell$ for some $r \in R \Rightarrow a^k = ra^\ell = ra^{\ell-k}a^k$ $\because R$ is integral domain \Rightarrow cancelation law is valid. $\Rightarrow 1 = ra^{\ell-k} \Rightarrow$ $1 = (ra^{\ell-k-1}).a$ and $\because 1 = a^{-1}a$ $\therefore a^{-1} = ra^{\ell-k-1} \Rightarrow a^{-1} \in R$

 \therefore R is a field.

<u>Remark:</u>

If *R* is a field, then either $f : R \to R'$ is 1-1 or $f : R \to R'$ is the zero homomorphism.

Proof:

Ker f is an ideal in R. Ker f = $\{0\}$ or ker f = R. $\therefore f$ is 1 -1 or f is the zero.

<u>Remark:</u>

Let *R* be a commutative ring with 1, let *N* be the set of nilpotent elements of *R*, then *N* is an ideal in Rand $\frac{R}{N}$ has no nonzero nilpotent element.

[*a* is a nilpotent $a^n = 0$ for some positive integer *n*]

Proof:
$$N \neq \emptyset [0 \in N , (0)^n = 0, \forall n]$$
 let $a \in N$ and $r \in R$

 $\therefore a \in N \implies \exists$ a positive integer k such that $a^k = 0$

$$(ar)^k = a^k r^k = 0 \cdot r^k = 0$$
 , $r \in R$

 $\therefore ar \in N$

Let $a, b \in N \Longrightarrow \exists n, m$ positive integers such that $a^n = 0, b^m = 0$

$$(a-b)^{n+m} = a^{n+m} - ()a^{n+m-1}b + ()a^{n+m-2}b^2 - ()a^{n+m-3}b^3 + \dots + ()a^nb^m + \dots + b^{n+m} = 0.$$

 $\Rightarrow (a - b)$ is nilpotent $\Rightarrow a - b \in N \Rightarrow N$ is an ideal.

Now, let r + N be nilpotent element in $\frac{R}{N}$, $\exists k \in Z^+$ such that $(r + N)^k = N$

 $r^k + N = N \iff r^k \in N$

 $\Rightarrow \exists s \in Z^+ \text{ such that } (r^k)^s = 0 \Rightarrow r^{ks}(\text{nilpotent}) = 0$ $\Rightarrow r \in N \Rightarrow r + N = N .$

<u>Remark:</u>

Let *R* be commutative ring with identity and let *a* be an idempotent element in *R*, then $R = \langle a \rangle \oplus \langle 1 - a \rangle$

Proof: $a \in \langle a \rangle$, $a \in R$, $\langle a \rangle \subseteq R$, $\langle a \rangle + \langle 1 - a \rangle \subseteq R$, $1 \in R$

$$1 = a + 1 - a \implies 1 \in \langle a \rangle + \langle 1 - a \rangle \implies R \subseteq \langle a \rangle + \langle 1 - a \rangle$$
$$\implies R = \langle a \rangle + \langle 1 - a \rangle$$

Dr. Nuhad Salim

Let $w \in \langle a \rangle \cap \langle 1 - a \rangle \Rightarrow w = ra$; $r \in R$

$$w = t.(1-a)$$
; $t \in R \implies ra = t.(1-a)$

 $\therefore a$ is idempotent $\Rightarrow a^2 = a$ Now,

$$w.a = r \ a^{2} = ra = t(1 - a)$$

$$w = t(1 - a)a$$

$$w = t(a - a^{2}) = t(a - a)$$

$$w = 0 \Longrightarrow < a > \bigcirc < 1 - a > = 0$$

$$\Longrightarrow R = \emptyset < 1 - a > .$$

Example: In Z_6

 $\overline{3}$ is idempotent in Z_6

 $(\overline{3})^2 = \overline{3} \implies Z_6 = <\overline{3} > \mathcal{O} < 1 - \overline{3} > = \{\overline{0}, \overline{3}\} \mathcal{O} \{\overline{0}, \overline{2}, \overline{4}\}$

Example:

 $(p(X), \Delta, \cap)$ is a commutative ring with identity,

Let $A \in p(X)$, then $A^2 = A \cap A = A$; A is idempotent.

 $p(X) = <A > \oplus < \overline{X} - A >.$

<u>Remark:</u>

Let $f: R \to R'$ be an eigemorphism, if R is P I R, then so is R'.

Proof:

Dr. Nuhad Salim

Let *K* be an ideal in *R'*, $f^{-1}(K)$ is an ideal in R [theorem] but R is principle ideal ring, then $f^{-1}(K) = \langle x \rangle$; $x \in R$ $x \in f^{-1}(K)$, $f(x) \in K \Rightarrow \langle f(x) \rangle \subseteq K$ we claim that $K = \langle f(x) \rangle$ Let $y \in K$, f is an eipemorphism. $\therefore \exists r \in f^{-1}(K)$ such that $y = f(r) \in K$ but $f^{-1}(K) = \langle x \rangle$ $\therefore r = w.x$ $f(r) = f(w.x) = f(w).f(x) \qquad \therefore y = f(w).f(x)$ $y \in \langle f(x) \rangle \qquad \Rightarrow K = \langle f(x) \rangle$ $\therefore R'$ is P. I. R.

Definition:

Let *I* and *J* be ideals in *R*, then $I.J = \{\sum_{i=1}^{n} a_i b_i : a_i \in I, b_i \in J\}$ is called the product of *I* and *J*.

Theorem:

Let $f: R \to R'$ be an epimorphism and let I, J be ideals in R, then 1) $f(I \cap J) \subseteq f(I) \cap f(J)$ and if $ker f \subseteq I$ or $ker f \subseteq J$, then 2) f(I + J) = f(I) + f(J)3) f(I.J) = f(I).f(J)<u>Remark:</u>

Let I, J, K be ideals in R, then

Dr. Nuhad Salim

1)
$$I(J + K) = IJ + IK$$
.
2) If $J \subseteq I$, then $I \cap (J + K) = J + (I \cap K)$
Proof(I): Let $w \in I(J + K)$
 $w = a_1b_1 + a_2b_2 + ... + a_nb_n$
 $a_i \in I , b_i \in J + K \quad b_i = c_i + d_i ; c_i \in J, d_i \in K$
 $w = a_1(c_1 + d_1) + ... + a_n(c_n + d_n)$
 $= a_1c_1 + a_2c_2 + ... + a_nc_n + a_1d_1 + ... + a_nd_n \in IJ + IK$
 \Leftrightarrow) Let $x \in IJ + IK \Rightarrow a = a + b ; a \in IJ, b \in IK$
 $a = c_1d_1 + ... + c_nd_n , c_i \in I, d_i \in J$
 $b = c_1e_1 + ... + c_ne_n ; c_i \in I , e_i \in K$
 $x = a + b = c_1d_1 + ... + c_nd_n + c_1e_1 + ... + c_ne_n =$
 $c_1(d_1 + e_1) + ... + c_n(d_n + e_n) \in I(J + K)$
Proof(2):
Let $w \in I \cap (J + K) ; w \in I$ and $w \in J + K$
 $w = a_1 + b_1 ; a_1 \in J , b_1 \in K$
 $w = a_1 + (w - a_1); w - a_1 \in I , w - a_1 = b_1 \in K$
 $a_1 + w - a_1 = w$
 $\therefore w \in J + (I \cap K)$
 \Leftrightarrow) $y \in J + (I \cap K)$
 $\varphi = a + b ; a \in J , b \in I , b \in K$

Dr. Nuhad Salim

 $a \in J \subseteq I$, $a \in I$, $b \in I$

 $\therefore a + b = y \in J + K \therefore y \in I \cap (J + K)$.

Definition:

Let R be a commutative ring with identity. An ideal M of a ring R is called maximal ideal if

1) $M \neq R$.

2) Whenever *J* is an ideal with $J \supseteq M$, then J = R.

Example: In the ring Z_6 , $\{\overline{0}, \overline{3}\}$, $\{\overline{0}, \overline{2}, \overline{4}\}$ are maximal ideals

 $2Z \subset Z$ ideal, $4Z \subset Z$ is not maximal ideal, since $\langle 4 \rangle \subset \langle 2 \rangle$

Example: Q, R, C, Z_p ; p is prime are fields so $\{0\}$ is the only ideal

 \therefore {0} is the only maximal ideal

<u>Theorem:</u>

Let *M* be a proper ideal of a ring R, then M is maximal ideal if and only if the ideal $\langle M, a \rangle = R$, $\forall a \in R$, $a \notin M$. *Proof:* \Rightarrow) Let $w \in \langle M, a \rangle = M + \langle a \rangle = m + ra$ $M \subseteq \langle M, a \rangle$ [since $a \notin M$] $\therefore \langle M, a \rangle = R$

Dr. Nuhad Salim

 \Leftarrow) let *J* be an ideal in *R* such that $J \supseteq M$

 $\therefore \exists x \in J \text{ and } x \notin M, \text{ since } < M, x > = R$

 $J \supseteq < M, x > = R$

 $\therefore J = R$, so M is maximal ideal.

Definition:

Let $\{A_{\alpha}\}_{\alpha \in \lambda}$ be a family of ideals of a ring R, $\{A_{\alpha}\}_{\alpha \in \lambda}$ is called a chain if $\forall \gamma$, $\beta \in \lambda$ either $A_{\beta} \subseteq A_{\gamma}$ or $A_{\gamma} \subseteq A_{\beta}$.

Zorn's Lemma:

Let *F* be a family of subsets of fixed nonempty set *X*. If for each chain $\{A_{\alpha}\}_{\alpha \in \lambda}$ in *F* the $\bigcup_{\alpha \in \lambda} A_{\alpha}$ is a member of *F*, then *F* contains a maximal element *M* in the sense that *M* is not contained properly in any member of *F*.

Theorem:

Let I be a proper ideal of a commutative ring with 1. Then there exists a maximal ideal M containing I.

Proof: Let *I* be a proper ideal of *R*, let $F = \{J: J \text{ is an ideal with } J \supseteq I, J \neq R\}$

 $F \neq \emptyset$ [since I ideal proper]

Let $\{C_{\alpha}\}_{\alpha \in \lambda}$ be a chain in F. Then $\bigcup_{\alpha \in \lambda} C_{\alpha}$

(1) $\bigcup_{\alpha \in \lambda} C_{\alpha}$ is an ideal, $\bigcup_{\alpha \in \lambda} C_{\alpha} \neq \emptyset$ since $F \neq \emptyset$

Dr. Nuhad Salim

Let $x, y \in \bigcup_{\alpha \in \lambda} C_{\alpha}$, then $x \in C_{\beta}$, $y \in C_{\gamma}$, $\gamma, \beta \in \lambda$ But $\{C_{\alpha}\}$ is a chain then either $C_{\beta} \subseteq C_{\gamma}$ or $C_{\gamma} \subseteq C_{\beta}$. If $C_{\beta} \subseteq C_{\gamma}$, then $x, y \in C_{\gamma} C_{\gamma}$ is ideal so $x - y \in C_{\gamma}$. Or $C_{\gamma} \subseteq C_{\beta}$, then $x, y \in C_{\beta}$, then $x - y \in C_{\beta} \Rightarrow x - y \in \bigcup_{\alpha \in \lambda} C_{\alpha}$ Let $w \in \bigcup_{\alpha \in \lambda} C_{\alpha}$; $r \in R$ $\therefore w \in C_{\beta}$, $\beta \in \lambda \Rightarrow rw \in C_{\beta}$ so $rw \in \bigcup_{\alpha \in \lambda} C_{\alpha}$, then $\bigcup_{\alpha \in \lambda} C_{\alpha}$ is an ideal. (2) $I \subseteq \bigcup_{\alpha \in \lambda} C_{\alpha}$ since $I \subseteq C_{\alpha}$, $\forall \alpha \in \lambda$ (3) $\bigcup_{\alpha \in \lambda} C_{\alpha} \neq R$, $I \in \bigcup_{\alpha \in \lambda} C_{\alpha} \Rightarrow I \in C_{\alpha}$ for some $\alpha \in \lambda C$! $(J \neq R) \forall J \in F$ \therefore By Zorn's Lemma F has maximal element say M. We claim that M is maximal ideal if K ideal of R such that $K \supseteq M$, then $K \notin F$ (since M is maximal element in F)

 \therefore K = R so M is maximal ideal.

Corollary:

Every commutative ring with identity has at least one maximal ideal.

Theorem:

let *R* be a commutative ring with identity, an element $x \in R$ is invertible if and only if it belongs to no maximal ideal.

Proof:

 \Rightarrow) Let *x* be an invertible element of R.

Suppose $x \in M$ and M is a maximal ideal

Dr. Nuhad Salim

Since x invertible, then $\exists y \in R$ such that $x \cdot y = 1$. $x \in M$, then $x. y \in M, 1 \in M$, then M = R C! \Leftrightarrow) let $x \in R$ and x dose not belong to any maximal ideal Now, $\langle x \rangle$ is an ideal in R. If $\langle x \rangle = R \Rightarrow 1 \in \langle x \rangle \Rightarrow 1 = r. x \Rightarrow x$ invertible If $\langle x \rangle \neq R$, by the previous theorem there exist a maximal ideal M $M \ni \langle x \rangle \subseteq M \Rightarrow x \in M C!$.

<u>Remark:</u>

Let R be a ring with only one maximal ideal, then the only idempotent of R are zero and one.

Proof: let x be an idempotent element $x \neq 0$ and

 $x^2 = x \implies x^2 - x = 0 \implies x(x - 1) = 0$ so x, x - 1 are zero divisors. Hence x and x - 1 are not invertible?

But *R* has only one maximal ideal *M* so $x, x - 1 \in M$, then $x + (x - 1) \in M$. Thus $1 \in M \mathbb{C}!$

Theorem:

Let *R* be a commutative ring with 1, let *M* be a proper ideal of *R*, then *M* is maximal if and only if $\frac{R}{M}$ is a field.

Proof:

 $\Rightarrow) R \text{ is commutative with 1, then } \frac{R}{M} \text{ is commutative with 1, let } x + M \in \frac{R}{M}$ and $x + M \neq M \Rightarrow x \notin M$, $\because M$ is maximal, then < M, x > = R, then $1 = m + rx \Rightarrow 1 - rx = m \in M$, then $1 - rx \in M$ [$aH = bH \Leftrightarrow a - b \in H$], then 1 + M = rx + M. Hence 1 + M = (r + M).(x + M)Thus x + M is invertible and $\frac{R}{M}$ is a field. \Leftrightarrow) Let J be ideal Suppose that $J \supseteq M$, then $\exists x \in J, x \notin M$, then $x + M \neq M$. But $\frac{R}{M}$ is a field $\Rightarrow \exists y + M \in \frac{R}{M}$ Such that (x + M)(y + M) = 1 + Mxy + M = 1 + M. Then $1 - xy \in M \subset J$ $(1 - xy) + xy \in J \Rightarrow 1 \in J = R$ $\therefore M$ is maximal.

Definition:

The intersection of all maximal ideal in a ring R is called the Jacoson radical of a ring R it is denoted by rad(R).

<u>Example:</u> (1) In Z, $(2Z) \cap (3Z) \cap (7Z) \cap ... = \{0\}$, rad(Z) = 0(2) In Z_6 , $\{\overline{0}, \overline{2}, \} \cap \{\overline{0}, \overline{3}\} = \{0\}$, $rad(Z_6) = 0$ (3) In Z_4 , $M = \{0, 2\}$ $\therefore rad(Z_4) = \{0, 2\}$

Definition:

An ideal *P* of a ring *R* is called prime ideal if $P \neq R$ and for every $a.b \in P$ either $a \in P$ or $b \in P \quad \forall a, b \in R$.

<u>Example</u>: (1) In the ring Z_6 , let $P = \{\overline{0}, \overline{2}, \overline{4}\}$, $\overline{2}, \overline{4} = \overline{2} \in P$

- (2) $P \neq Z_6$, $6 \in P$
- $6=2.3\;,\;2\in P,$
- 6 = 6.1, $6 \in P$.
- \therefore *P* is a prime ideal.

<u>Remark:</u>

 $\{0\}$ is a prime ideal if and only if *R* is an integral domain.

Proof: \Rightarrow) Let $a \neq 0$, $b \in R$ such that a, b = 0

 $\therefore a.b \in \{0\}$ but $\{0\}$ is prime and $a \neq 0 \Rightarrow b \in \{0\}$

 $\therefore b = 0$.

 $\therefore R$ is an integral domain.

Theorem:

Let *R* be commutative ring with 1 and *P* be a proper ideal of *R*, *P* is a prime ideal if and only if $\frac{R}{p}$ is integral domain.

Proof: \Rightarrow) Since *R* is commutative ring with 1 so is $\frac{R}{p}$

Dr. Nuhad Salim

Let b + P, $a + P \in \frac{R}{p}$, then $(a + P) \cdot (b + P) = P$, then $a \cdot b + P = P \Leftrightarrow ab \in P$ P is prime $\Rightarrow a \in P$ or $b \in P$ if $a \in P$, then a + P = POr $b \in P \Rightarrow b + P = P$. $\Leftrightarrow) \frac{R}{p}$ is an integral domain, let $a.b \in P$ Then ab + P = P, (a + P)(b + P) = P. Since $\frac{R}{p}$ is an integral domain, then either $a + P = P \Leftrightarrow a \in P$ or $b + P = P \Leftrightarrow b \in P$. Thus P is prime.

Corollary:

Let *R* be a commutative ring with 1, then every maximal ideal is prime ideal.

Proof: *M* maximal ideal $\Rightarrow \frac{R}{M}$ is a field $\Rightarrow \frac{R}{M}$ is integral domain [Every field is integral domain]

Thus *M* is prime.

Example: In *Z*, 2*Z*, 3*Z*

(1) 2Z is a ring without 1,4Z is not maximal ideal and is not prime since $4 \in 4Z$ for example 4 = 2.2, $2 \notin 4Z$

<u>*Q*</u>: $I \subseteq rad(R) \Leftrightarrow \forall a \in 1 + I$, *a* is invertible.

Proof:⇒) Let $I \subseteq rad(R)$ and assume that $\exists a \in I$ such that 1 + a has no inverse \exists maximal ideal*M* such that $1 + a \in M$, $a \in I \subseteq rad(R) \subseteq M$, $a \in M$, $1 + a - a \in M \implies 1 \in M$

Hence M = R C!. Thus 1 + I has inverse.

⇐) Suppose that each member of 1 + I has inverse, but $I \nsubseteq rad(R) = \cap$ *M*; *M* is maximal ideal, then $I \nsubseteq M$.

Now, if $a \in I$, then $a \notin M$. Since M is maximal, then $\langle M, a \rangle = R$ [Theorem], hence $1 \in R \implies 1 = m + ra$; $r \in R, m \in M \implies m = 1 - ra$, but $1 - ra \in 1 + I$, then $m \in 1 + I$, then m has inverse.

Thus *M* has inverse C! [since M = R]

Q: a is invertible in $R \Leftrightarrow a + rad(R)$ invertible in $\frac{R}{rad(R)}$ Proof:⇒) a is invertible, $\exists b \in R$ such that a.b = 1 (a + rad(R))(b + rad(R)) = ab + rad(R) = 1 + rad(R)So a + rad(R) is invertible in $\frac{R}{rad(R)}$ $\Leftrightarrow) (a + radR)(b + radR) = 1 + rad(R)$ $\Rightarrow ab rad(R) = 1 + rad(R)$ $\Leftrightarrow) ab - 1 \in rad(R)$ Then 1 + ab - 1 is invertible, ab invertible.

Hence $\exists x \in R$ such that (ab)x = 1, a(bx) = 1

Dr. Nuhad Salim

Thus *a* is invertible.

 $Q: a \in rad(R) \Leftrightarrow 1 + ra \text{ has inverse } \forall r \in R$ $Proof: \Rightarrow) \text{ Let } a \in rad(R) , \Rightarrow \langle a \rangle \subseteq rad(R) ,$ $\langle a \rangle = \{ra: r \in R\} , 1 + \langle a \rangle \text{ has inverse}$ $Then 1 + ra \text{ has inverse } \forall r \in R.$ $\Leftrightarrow) \text{ Let } 1 + ra \ \forall r \in R \text{ has inverse}$ $1 + \langle a \rangle \text{ has inverse } \Leftrightarrow \langle a \rangle \subseteq rad(R) ,$ $\Rightarrow a \in rad(R)$

Theorem:(Boolean ring)

Let *R* be a ring with $a^2 = a$, $\forall a \in R$, then every prime ideal is maximal ideal. **Proof:** Let *M* be a prime ideal and *J* ideal of *R* such that $M \subseteq J \subseteq R$, then $\exists a \in J, a \notin M$ $a^2 = a \Rightarrow a(a-1) = 0 \in M$ but *M* is prime, $a \notin M$ Then $a - 1 \in M \subseteq J$ and $a \in J$. $\therefore a - 1$, $a \in J$ [*J* is ideal]

Thus $1 \in J \Rightarrow J = R$ [*I* ideal, $1 \in I \Rightarrow R = I$]

<u>Theorem:</u>

Let *R* be principle ideal domain, then every nonzero prime ideal is maximal.

Dr. Nuhad Salim

Proof: Let $I \neq 0$, I is prime and $I \subsetneq J \subseteq R$, R is P. I. D $\exists a, b \in R$ such that $I = \langle a \rangle m J = \langle b \rangle$, $\langle a \rangle \subseteq \langle b \rangle \dots \dots (*)$ So a = rb, $r \in R$, $rb \in \langle a \rangle$, $\langle a \rangle$ is prime Then either $r \in \langle a \rangle$ or $b \in \langle a \rangle$ if $b \in \langle a \rangle \Rightarrow \langle a \rangle = \langle b \rangle C!$ Thus $r \in \langle a \rangle$ and r = sa a.1 = a = rb = sab = a.s.b [R comm.] [R integral domain] $1 = s.b, 1 \in \langle b \rangle = J$

 \therefore J = R.

Definition:

The intersection of all prime ideals in a ring R is called the prime radical of R it is denoted by Rad R

$$rad R \supseteq Rad R$$
$$rad Z = Rad Z$$

<u>Theorem:</u>

Let *R* be a commutative ring with 1, then every maximal ideal is prime ideal.

Proof: Let *M* be a maximal ideal of a ring *R* suppose that $a.b \in M$ and $a \notin M$, *M* is maximal, then $\langle M, a \rangle = R$, then 1 = m + ra; $m \in M, r \in R$, Hence $b = mb + rab \in M$.

Q: Is the converse true?

Example: In the ring $Z \times Z$, $\{0\} \times Z$ is a prime ideal in $Z \times Z$.

 $2Z \times Z$ is an ideal in $Z \times Z$ which is maximal. $\{0\} \times Z \subsetneq 2Z \times Z \subsetneq Z \times Z$.

Definition:

Let *I* be an ideal of a ring *R*. Then the nil radical of *I* denoted by \sqrt{I} is the set:

$$\sqrt{I} = \{r \in R : \exists n \in Z^+ \ni r^n \in I\}$$

<u>Remark:</u>

1. $\sqrt{I} \supseteq I$.

2. \sqrt{I} is an ideal of *R*.

Proof: Let $x, y \in \sqrt{I}, x \in \sqrt{I} \exists n \in Z^+ \ni x^n \in I$,

 $y \in \sqrt{I} \exists m \in Z^+ \ni y^m \in I.$

 $(x - y)^{n+m} = x^{n+m} + ()x^{n+m-1}y + \dots + ()x^ny^m + ()x^{n-1}y^{m+1} + \dots + y^{n+m}.$

Hence $(x - y) \in \sqrt{I}$

Let $r \in R$, $w \in \sqrt{I}$, $w^n \in \sqrt{I}$; $n \in Z^+$. $(rw)^n = r^n w^n \in I$, then $\in \sqrt{I}$.

Example: If $\sqrt{I} = \sqrt{J} \Rightarrow I = J$.

$$\sqrt{2Z} = 4Z$$
$$\sqrt{8Z} = 2Z$$

<u>Remark:</u>

1.
$$\sqrt{I \cap J} = \sqrt{IJ} = \sqrt{I} \cap \sqrt{J}$$
.
2. $\sqrt{\sqrt{I}} = \sqrt{I}$.
3. $\sqrt{I+J} \supseteq \sqrt{I} + \sqrt{J}$.

Proof: 1.Let $w \in \sqrt{I \cap J}$, then $\exists n \in Z^+ \ni w^n \in I \cap J$, then $w^n \in I$ and $w^n \in J$, hence $w \in \sqrt{I}$ and $w \in \sqrt{J}$. Thus $w \in \sqrt{I} \cap \sqrt{J}$.

Dr. Nuhad Salim

Let $y \in \sqrt{I} \cap \sqrt{J}$, then $y \in \sqrt{I}$ and $y \in \sqrt{J}$, hence $y^n \in I$ and $y^n \in J$. $y^{n+m} = y^n \cdot y^m \in IJ$, then $y \in \sqrt{IJ}$. $y^{n+m} = y^n \cdot y^m \in I \cap J$, then $y \in \sqrt{I \cap J}$. Thus $\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$ 2. Let $w \in \sqrt{\sqrt{I}} \supseteq \sqrt{I}$. Let $x \in \sqrt{\sqrt{I}} \supseteq \sqrt{I}$. Let $x \in \sqrt{\sqrt{I}} \supseteq \pi \in Z^+ \ni x^n \in \sqrt{I}$, and then $\exists m \in Z^+ \ni (x^n)^m \in I$, hence $x^n \in I$, which implies that $x \in \sqrt{I}$. 3.Let $w \in \sqrt{I} + \sqrt{J}$, then w = x + y; $x \in \sqrt{I}$ and $y \in \sqrt{J}$, then $\exists n \in Z^+ \ni x^n \in I$ and $\exists m \in Z^+ \ni y^m \in J$. $(x + y)^{n+m} = x^{n+m} + (-)x^{n+m-1}y + \dots + (-)x^ny^m + (-)x^{n-1}y^{m+1} + \dots + y^{n+m}$. Thus $x + y \in \sqrt{x + y}$.

<u>Theorem:</u>

Let $f : R \longrightarrow R'$ be a ring epimorphism.

- 1. If M is a maximal (prime) with ker $f \subseteq M$ in R, then f(M) is maximal (prime) ideal in R'.
- 2. If M' is a maximal (prime) in R', then $f^{-1}(M')$ is maximal (prime) in R.

<u>**Proof**</u>:1. Let *M* be a maximal ideal clearly f(M) is an ideal in R If f(M) = R', then $1' \in f(M) \to 1' = f(m)$; $m \in M$ But $f(1) = 1' \to f(m) = f(1) \to f(m-1) = 0$ $\to m - 1 \in \ker f \subseteq M \to m - (m-1) \in M \to 1 \in M$ contradiction.

Dr. Nuhad Salim

Let $J \supseteq f(M)$, $\exists y \in J$ and $y \notin f(M)$ But f is onto $\exists x \in R \exists f(x) = y \rightarrow x \notin M$ Then $\langle M, x \rangle = R \rightarrow 1 = m + tx$; $m \in M$, $t \in R$ $1' = f(1) = f(m) + f(t) \cdot f(x)$ $1' = f(m) + f(t)y \in J \rightarrow J = R$

2. Let M' be a prime ideal of R, then clearly $f^{-1}(M)$ is an ideal in R. If $f^{-1}(M') = R \rightarrow 1 \in f^{-1}(M') \rightarrow f(1) \in M'$ Let $x.y \in f^{-1}(M)$ and $x \notin f^{-1}(M)$ $f(x).f(y) = f(x.y) \in M'$ and $f(x) \notin M$. $\therefore f(y) \in M' \rightarrow y \in f^{-1}(M)$.