The Rings

The Rings (1)

Third Class

By
Dr. Nuhad Salim

Definition:

A ring is an ordered triple $(R,+, \cdot)$, where R is a nonempty set and + , are binary operation on R such that

1) $(R,+)$ is an abelian group.

Mean:(a) $(a+b)+c=a+(b+c), \forall a, b, c \in R$.
(b) $\exists 0 \in R$ such that $a+0=0+a=a$.
(c) $\forall a \in R \exists(-a) \in R$ such that $a+(-a)=(-a)+a=0$.
(d) $a+b=b+a \quad \forall a, b \in R$.
2) $(a \cdot c) \cdot c=a \cdot(b \cdot c) \quad \forall a, b, c \in R$.
3) $\mathrm{a} \cdot(b+c)=a \cdot b+a \cdot c$, and $(a+b) . c=a \cdot c+b \cdot c \quad \forall a, b, c \in R$.

Example:(1) ($Z,+$,)

1) $(Z,+)$ is abelian group.
2) $(a . b) . c=a .(b . c)$.
3) $a \cdot(b+c)=a \cdot c+a \cdot c$ And $(a+b) \cdot c=a \cdot c+b \cdot c$.
$\therefore(Z,+$,$) Is a ring.$
Example:(2)
$(Q,+, \cdot)$ is a ring.

Example:(3)

$\left(Z_{n},+_{n}, \cdot{ }_{n}\right)$ is a ring.
$Z_{n}=\{\overline{0}, \overline{1}, \overline{2}, \cdots, \bar{n}\}$
$\left(Z_{n},+_{n}\right)$ is abelian group.

Definition:

Let $(R,+, \cdot)$ be a ring, then R commutative if $a \cdot b=b \cdot a \quad \forall a, b \in R$.

Definition:

Let $(R,+, \cdot)$ be a ring, then R is said to have identity if there exists $1 \in R$ such that $1 \cdot a=a \cdot 1=a, \forall a \in R$ and a is invertible (unit) if there exists $b \in R$ such that $a \cdot b=b \cdot a=1$.

Examples:

(1) $(Z,+$,) is a ring with identity, commutative, $1,-1$ are only invertible element.
(2) $(Q,+, \cdot)$ is a ring with identity commutative, and every element in Q has inverse except 0 .
(3) $(3 Z,+, \cdot)$ is a commutative with no identity.
(4) $\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),+, \cdot\right)$ is a ring not comm. with identity $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

Example: $(p(X), \Delta, \cap)$ is a ring?

1) $(p(X), \cap)$ is an abelian group, commutative. $A \cap A=A$ (identity) no inverse.
2) $(A \cap B) \cap C=A \cap(B \cap C) \quad \forall A, B, C \in X$
3) $\forall A, B, C \in X \quad A \cap(B \Delta C)=(A \cap B) \Delta(A \cap C)$?
$A \cap(B \Delta C)=A \cap[(B-C) \cup(C-B)]$

The Rings

$$
\begin{gathered}
=A \cap(B-C) \cup A \cap(C-B)) \\
=[(A \cap B)-(A \cap C)] \cup[(A \cap C)-(A \cap B)] \\
=(A \cap B) \Delta(A \cap C)
\end{gathered}
$$

Remark:

Let R be a ring such that $R \neq\{0\}$ is a ring with identity 1 , then $1 \neq 0$.

Proof: Suppose that $1=0$, let $a \neq 0 \in R, a=a \cdot 1=a \cdot 0=0 \mathrm{C}$!
$\therefore 1 \neq 0$.

Definition:

Let R be commutative ring. An element $a \in R$ is called zero divisor if $a \neq 0$ and there exists $b \in R, b \neq 0$ with $a \cdot b=0$.

Example: $Z_{6}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$
Solution: $\overline{2} \cdot \overline{3}=\overline{0}, \quad \overline{3} \cdot \overline{4}=\overline{0} \overline{2}, \overline{3}, \overline{4}$ are zero divisors of Z_{6}
Example: $Z_{5}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ has no zero divisor.
Example: $(Z,+, \cdot),(\boldsymbol{C},+, \cdot),(\boldsymbol{R},+, \cdot),(Q,+, \cdot)$ has no zero divisor.
$\underline{\boldsymbol{H} . \boldsymbol{W}} \boldsymbol{:}(p(x), \Delta, \cap)$ has zero divisor or not?

Lemma: Let R be a ring, then
(1) $a \cdot 0=0 \cdot a=0$.
(2) $(-a) \cdot b=a \cdot(-b)=-(a . b)$.
(3) $(-a)(-b)=a \cdot b$.
(4) $a(b-c)=a b-a c \quad \forall a, b, c \in R$.

Proof(1): $a \cdot 0=a \cdot(0+0)=a \cdot 0+a \cdot 0 \Rightarrow 0=a \cdot 0$
Proof(2): $0=0 \cdot b=(a+(-a)) b=a b+(-a) b \Rightarrow(-a) b=-(a b)$
$\operatorname{Proof}(3):(-a)(-b)=-(a \cdot(-b))=-(-(a \cdot b))=a \cdot b$
$\operatorname{Proof}(4): a \cdot(b-c)=a \cdot[b+(-c)]$

$$
=a \cdot b+a \cdot(-c)=a \cdot b-a \cdot c .
$$

Definition:

A commutative ring with identity is called integral domain if it has no zero divisors.

Example:

$(Z,+, \cdot),(Q,+, \cdot),(\boldsymbol{R},+, \cdot),\left(Z_{p},+_{p},{ }^{\cdot} p\right)$ where p is prime are integral domains.

Lemma:

Let R be commutative ring with identity, R is integral domain if and only if a. $b=a \cdot c ; a \neq o$, then $b=c, b . a=c . a \quad ; a \neq 0$, then $b=c$

The Rings

Proof: $\Rightarrow)$ suppose $a \cdot b=a \cdot c \quad ; \quad a \neq 0$
$(a \cdot b)-(a \cdot c)=0$ [associative]
$a \cdot(b-c)=0[R$ is integral domain $]$
$\because R$ has no zero divisor and $a \neq 0$
$\therefore b-c=0 \Rightarrow b=c$.
$\Leftarrow)$ Let $a \in R, a \neq 0$
$a \cdot b=0$, and we have $0 \cdot a=a \cdot 0=0, a \cdot b=a \cdot 0$
$\therefore b=0$.

Definition:

Let $(R,+, \cdot)$ be a ring, and $\emptyset=S \subseteq R$, then $(S,+, \cdot)$ is called subring if $(S,+, \cdot)$ is a ring itself.

Example:

$(2 Z,+, \cdot)$ subring of $(Z,+, \cdot)$.

Definition:

Let $(R,+, \cdot)$ be a ring $\emptyset \neq S \subseteq R$, then $(S,+, \cdot)$ is subring if:
(1) $a-b \in S \quad \forall a, b \in S$.
(2) $a . b \in S \quad \forall a, b \in S$.

Example:

Z is a subring of $(Q,+,$.$) .$

The Rings

Q is a subring of $(R,+,$.$) .$
R is a subring of $(C,+,$.$) .$
$(\{\overline{0}, \overline{2}, \overline{4}\},+, \cdot)$ is a subring of Z_{6}
$(\{\overline{0}, \overline{3}\},+, \cdot)$ is a subring of Z_{6}.

Example:

Let $(R,+,$.$) be a ring R \times R=\{(a, b): a, b \in R)\}$

$$
\begin{gathered}
(a, b)+(c, d)=(a+c, b+c) \\
(a, b) \cdot(c, d)=(a c, b d)
\end{gathered}
$$

Proof: (1) $(R \times R,+)$ is abelian group
(2) $(a, b) \cdot[(c, d)+(e, f)]=(a, b) \cdot(c+e, d+f)$

$$
\begin{gathered}
=(a(c+e), b(d+f)) \\
=(a c+a e, b d+b f)=(a c, b d)+(a e, b f) \\
=(a, b) \cdot(c, d)+(a, b) \cdot(e, f)
\end{gathered}
$$

(3)Identity $=(1,1) \quad ; \quad(a, b) \cdot(1,1)=(a \cdot 1, b \cdot 1)=(a, b)$
$\therefore(R \times R,+,$.$) is a ring with identity$.
(4) $S=R \times\{e\}=\{(a, 0): a \in R\} . S$ is a subring of $R \times R$.

Proof: $S \neq \varnothing$ since $(0,0) \in S$

$$
\begin{aligned}
(a, 0)-(b, 0)= & (a-b, 0) \in S \\
& (a, 0) \cdot(b, 0)=(a . b, 0) \in S
\end{aligned}
$$

Identity $=(1,0)$

The Rings

Definition:

Let R be a ring the center of a ring R is denoted by $\operatorname{Cent} R$ is the set Cent $R=\{x \in R: x \cdot r=r \cdot x \quad \forall r \in R\}$.

Lemma:

Cent R is a subring of R.
Proof: Cent $R \neq \varnothing[0 \in \operatorname{Cent} R, 0 . a=a .0=0]$, let $a, b \in \operatorname{Cent} R$ $\Rightarrow a \cdot x=x \cdot a \quad, b \cdot x=x \cdot b \quad \forall x \in R$

$$
x \cdot(a-b)=x \cdot a-x \cdot b=a \cdot x-b \cdot x=(a-b) \cdot x[\text { Since } a, b \in
$$

Cent R]

$$
x \cdot(a \cdot b)=x \cdot a b=a x . b=a . b x
$$

\therefore Cent R is subring.

Remark:

(1) Let R be a ring, n positive integer,

$$
n a=\underbrace{a+a+\cdots+a}_{n \text { times }}, \quad a^{n}=\underbrace{a \cdot a \ldots a}_{n \text { times }}
$$

(2) If R is a ring with 1 and a is invertible

$$
a^{-n}=\underbrace{a^{-1} \cdot a^{-1} \ldots a^{-1}}_{n \text { times }} a^{0}=1 .
$$

Remark:

Let R be a ring and $n, m \in Z$
(1) $(n+m) a=n a+m a$.
(2) $n(a-b)=n a-n b$.
(3) $(n m) a=n(m a)=m(n a)$.

Proof :(1): $(n+m) a=\underbrace{a+a+\cdots+a}_{(n+m) \text { times }}=\underbrace{a+a+\cdots+a}_{n \text { times }}+\underbrace{a+a+\cdots+a}_{m \text { times }}$

$$
=n a+m a
$$

Proof: (2): $n(a-b)=\underbrace{(a-b)+(a-b)+\cdots+(a-b)}_{n \text { times }}$

$$
\begin{gathered}
=\underbrace{\mathrm{a}+\mathrm{a}+\cdots+\mathrm{a}}_{\mathrm{n} \text { times }}-\underbrace{\mathrm{b}-\mathrm{b}-\cdots-\mathrm{b}}_{\mathrm{n} \text { times }} \\
=n a-n b
\end{gathered}
$$

Definition:

Let $(R,+$,) be a ring, if there exists a positive integer n such that $n a=0, \forall a \in R$, then the smallest positive integer with this property is called the characteristic of R. If no such positive integer exists we say R has characteristic zero, we denote the characteristic of R by Char R.

Example:

Char $Z=0, \operatorname{Char} Q=0, \operatorname{Char} Z_{6}=6, \quad \operatorname{Char} Z_{4}=4, \quad \operatorname{Char} Z_{n}=n$.

$$
\begin{gathered}
(p(x), \Delta, \cap), \text { Char } p(x)=2 \\
2 A=A \Delta A=(A-A) \cup(A-A)=\varnothing
\end{gathered}
$$

Theorem:(1)

Let R be a ring with identity, then Char $R=n>0$ if and only if n is the smallest positive integer such that $n .1=0$.

Proof: $\Rightarrow)$ Char $R=n>0$, then $n . a=0$, then $n .1=0$ suppose \exists positive integer m such that $m<n, m .1=0$ and let $a \in R$

$$
m a=\underbrace{\mathrm{a}+\mathrm{a}+\cdots+\mathrm{a}}_{\mathrm{m} \text { times }}=\underbrace{\mathrm{a} \cdot 1+\mathrm{a} \cdot 1+\cdots+\mathrm{a} \cdot 1}_{\mathrm{m} \text { times }}=m(1 \cdot a)
$$

$=(m \cdot 1) \cdot a=0 \cdot a=0 \mathrm{C}$!
Since n is Char R.

$$
\Leftrightarrow) \text { Let } a \in R, n a=n \cdot(1 \cdot a)=(n \cdot 1) \cdot a=0 \cdot a=0
$$

\therefore Char $R=n$ since n is the smallest positive integer; $n .1=0$.

Corollary:

Let R be an integral domain, then Char R is either zero or prime integer.
Proof: Suppose Char $R>0$, suppose $n=n_{1} . n_{2}, 1<n_{1} \leq n_{2}<n$.
$0=n .1=\left(n_{1} \cdot n_{2}\right) \cdot 1$
$\left(n_{1} \cdot n_{2}\right) \cdot 1=\left(n_{1} \cdot 1\right) \cdot\left(n_{2} \cdot 1\right)[R$ integral domain]
But R is integral domain, then either $n_{1} .1=0$ or $n_{2} .1=0 \mathrm{C}!$ by theorem(1) since $n_{1}, n_{2}<n$ and n is the smallest integer such that $n .1=0$.
$\therefore n$ is a prime integer.

Definition:

Let R and R^{\prime} be rings $f: R \rightarrow R^{\prime}$, then f is a ring homomorphism if
(1) $f(a+b)=f(a)+f(b)$.
(2) $f(a . b)=f(a) \cdot f(b)$.

Example:

(1)Let $\emptyset: R \longrightarrow R^{\prime} ; ~ \emptyset(r)=0 \quad \forall r \in R$ is a ring homomorphism is called zero homo.
(2) $I: R \longrightarrow R \quad ; \quad I(r)=r \quad \forall r \in R$ the identity homomorphism.
(3) $h: Z \longrightarrow Z_{n}$; $h(n)=\bar{n} \quad \forall n \in Z$.

Definition:

Let $f: R \longrightarrow R^{\prime}$ be a ring homomorphism.

1) If f is one to one, then f is monomorphism.
2) If f is onto, then f is epimorphism.

3) If f is (1-1) and onto, then f is isomorphism.

Definition:

If $f: R \longrightarrow R^{\prime}$ and f is isomorphism, then we say that R is isomorphic to R^{\prime}, $R \simeq R^{\prime}$.

Remark:

If $f: R \longrightarrow R^{\prime}$ is homomorphism, then:

1) $f\left(0_{R}\right)=0_{R^{\prime}}$.
2) $f(-a)=-f(a) \quad \forall a \in R$.
3) $f\left(1_{R}\right)=1_{R^{\prime}}$, when R and R^{\prime} are rings with identity.

Theorem:

Any ring can be imbedded in a ring with identity.
Proof: Let $R \times Z=\{(r, n): \quad r \in R, n \in Z\}$
Define + and . on $R \times Z$ as follows

$$
\begin{gathered}
(r, n)+(t, m)=(r+t, n+m) \\
(r, n) \cdot(t, m)=(r t+n t+m r, n m)
\end{gathered}
$$

Then $R \times Z$ is a ring with identity $(0,1)$.

$$
\begin{aligned}
& (r, n) .(0,1)=(r, n) \\
& R \times\{0\} \subseteq R \times Z
\end{aligned}
$$

Now we must show that $R \times\{0\}$ is subring of $R \times Z$

$$
\begin{gathered}
(a, 0)\{\in R \times\{0\}\}-(b, 0)\{\in R \times\{0\} f=(a-b, 0) \in R \times\{0\} \\
(a, 0) \cdot(b, 0)=(a b, 0) \in R \times\{0\}
\end{gathered}
$$

Now we define a map $\varnothing: R \rightarrow R \times\{0\} ; \quad \varnothing(r)=(r, 0) \quad \forall r \in R$
(1) Let $\emptyset\left(r_{1}\right)=\emptyset\left(r_{2}\right)$

$$
\left(r_{1}, 0\right)=\left(r_{2}, 0\right) \Rightarrow r_{1}=r_{2}
$$

$\therefore \varnothing$ is $(1-1)$
(2) Let $(w, 0) \in R \times\{0\}$.

$$
\emptyset(w)=(w, 0) .
$$

$\therefore \emptyset$ is onto, \emptyset is homo.
(3) $\varnothing\left(r_{1}+r_{2}\right)=\left(r_{1}+r_{2}, 0\right)=\left(r_{1}, 0\right)+\left(r_{2}, 0\right)=\emptyset\left(r_{1}\right)+\emptyset\left(r_{2}\right)$.
$\emptyset\left(r_{1} \cdot r_{2}\right)=\left(r_{1} r_{2}, 0\right)$.
$\emptyset\left(r_{1}\right) . \emptyset\left(r_{2}\right)=\left(r_{1}, 0\right) .\left(r_{2}, 0\right)=\left(r_{1} r_{2}, 0\right)$.
$\therefore \emptyset$ is homomorphism.
$\therefore R \simeq R \times\{0\}$.
$\therefore R$ is imbedded in a ring $R \times Z$.

Definition:

Let R be a ring an element $a \in R$ is said to be idempotent element if $a^{2}=a$.

Definition:

An element $a \in R$ is called nilpotent if there exists an integer n such that $a^{n}=0$.

Examples:

(1) $Z_{6}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$

Solution: $\overline{0}, \overline{1}, \overline{3}, \overline{4}$ are idempotent. $\overline{0}$ is nilpotent only.
(2) $Z_{8}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\}$

Solution: $\overline{0}, \overline{2}, \overline{4}, \overline{6}$ are nilpotent elements.
(3) Z_{5} : the idempotent element are $\overline{0}, \overline{1}$ and nilpotent is $\overline{0}$.
(4) $(p(x), \Delta, \cap)$

Solution: $A \cap A=A, \forall A$ is idempotent $A \cap \ldots \cap A=\emptyset$, just when $A=\varnothing$.

Definition:

Let R be a ring such that every element of R is idempotent, then R is Boolean ring.

Example :

In $Z_{2}=\{0,1\},(\overline{0})^{2}=0,(\overline{1})^{2}=1$.
$\therefore Z_{2}$ is Boolean ring.

Theorem:

Let R be a ring such that every element in R is idempotent (R is Boolean ring), then R is commutative.

Proof: $(a+b)=(a+b)^{2}=(a+b)(a+b)=a \cdot a+a . b+b \cdot a+b \cdot b$

$$
\begin{gathered}
a+b=a^{2}+a \cdot b+b \cdot a+b^{2} \\
a+b=a+b+a \cdot b+b \cdot a \\
0=a b+b a \Rightarrow a b=-b a \\
a b=(-b a)=(-b a)^{2}=b^{2} a^{2}=b a
\end{gathered}
$$

$\therefore R$ is commutative.

Remark:

Let R be a ring if there exists an element $a \in R$, such that:
(1) ais idempotent.
(2) a is not zero divisor. Then a must be the identity of the ring.

Proof: (2) Let $b \in R$
$a \cdot b=a^{2} b \quad \Rightarrow \quad\left(a^{2} \cdot b\right)-a . b=0$.
$a(a b-b)=0 \quad[a$ is not zero divisor]
$\therefore a b-b=0 \Rightarrow a b=b$.
$\therefore \quad a$ is identity.

Example:

Consider the $\operatorname{ring}(p(x), \Delta, \cap) ; p(x)=\{A: A \subseteq X\}$, for a fixed subset $S \subseteq X, S \in p(x)$, define $f: p(x) \longrightarrow p(x)$ by

$$
f(A)=A \cap S
$$

(1) $A=B \Rightarrow A \cap S=B \cap S$.

$$
f(A)=f(B)
$$

$\therefore f$ is well defined.
(2) $f(A \Delta B)=f(A) \Delta f(B)$?

$$
\begin{aligned}
f(A \Delta B) & =(A \Delta B) \cap S \\
& =[(A-B) \cup(B-A)] \cap S \\
& =[(A-B) \cap S] \cup[(B-A) \cup S] \\
& =(A \cap S-B \cap S) \cup(B \cap S-A \cap S) \\
& =(A \cap S) \Delta(B S)=f(A) \Delta f(B)
\end{aligned}
$$

(2) $f(A \cap B)=(A \cap B) \cap S=(A \cap S) \cap(B \cap S)=f(A) \cap f(B)$
$\therefore f$ is homomorphism.
(3) $\operatorname{ker} f=\{A \subseteq p(x): f(A)=\emptyset\}=\{A \subseteq p(x): A \cap S=\emptyset\}=S^{c} \neq$ identity.
(4) $\forall A \subseteq X \Rightarrow X \cap A=A$, identity $=X$
$\therefore f$ is not $(1-1)$.

Problems:

1) Let R be a ring and $a \in R$, If $C(a)$ the set of all elemente with a, $C(a)=\{r \in R: r a=a r\}$ show that $C(a)$ is subring of R. and Cent $R=\cap_{a \in R} C(a)$.
2) Let $(G,+)$ be abelian group, R set of all groups homomorphism of G in to itself $(f+g)(x)=f(x)+g(x), f \circ g(x)=f(g(x))$, show that ($R,+, \circ$)form a ring, determine the invertible elements of R.
3) Given that f is homomorphism. from the ring R in to the ring R^{\prime}, prove that
A. $f(\operatorname{Cent}(R)) \subseteq \operatorname{Cent}(f(R))$
B. If $a \in R$ is nilpotent, then $f(a)$ is nilpotent in R^{\prime}.
C. If R has positive characteristic, then $\operatorname{Char} f(R) \leq \operatorname{Char} R$.
4) Let R be a ring without zero divisors:
i. $\quad a \cdot b=1$ iff $b \cdot a=1$
ii. If $a^{2}=1$ then either $a=1$ or $a=-1$.

Sol(i):
If $a . b=1$, then $b \neq 0$
[If $b=0 \Rightarrow a \cdot 0=0 \neq 1$]
$\therefore a \cdot b=1 \Rightarrow b \cdot a \cdot b=b$
$b . a . b-b=0 \Rightarrow(b a-1) b=0 \quad, b \neq 0$
$\therefore b a=1$
Sol (ii):
$a^{2}=1, a \cdot a=1-a+a$
$a \cdot a+a-a-1=0$
$a \cdot(a+1)-(a+1)=0$

The Rings

$$
(a+1) \cdot(a-1)=0
$$

Either $a=1$ or $a=-1$.

Definition:

Let I be a nonempty subset of ring R, then I is ideal of R if
(1) $a-b \in I \forall a, b \in I$.
(2) $a r \in I, \quad(r a \in I) \quad \forall a \in I, r \in R$.
(3) $I \neq \varnothing$.

Remark:

Every ideal is subring.
Proof: Let I be an ideal, to show that I is subring
(1) $I \neq \varnothing$.
(2)Let $a, b \in I \Rightarrow a . b \in I, a-b \in I$
$\therefore I$ is subring
But the converse is not true for example:
$(Q,+,$.$) is a ring, Z \subseteq Q ; Z$ is subring
$3 \in Z, \frac{1}{2} \in Q, \quad 3 \cdot \frac{1}{2}=\frac{3}{2} \notin Z$.
$\therefore Z$ is not ideal
Example: In the ring Z
(1) $2 Z$ is subring and ideal.
(2) $5 Z, 3 Z$ are ideals.

In general $n Z$ is an ideal $\forall n$.

$\underline{\operatorname{Remark}(1):}$

Let I be an ideal of a ring with 1 . If $1 \in I$, then $I=R$.
Proof: $I \subseteq R$, let $r \in R, 1 \in I$ but I is ideal
\therefore 1.r $\quad I \Rightarrow r \in I \Rightarrow R \subseteq I$.
Thus $I=R$

Remark(2):

Let I be an ideal of a ring with 1 and I contains an invertible element, then $I=R$.

Proof: $a \in I$ but a is invertible then $\exists b \in R$ such that $a . b \in I \Rightarrow 1 \in I$ $\therefore \quad I=R$, by remark (1).

Definition: An ideal I of a ring R is called a proper ideal if $I \neq R$ and I is called nontrivial ideal if $I \neq\{0\}$ and $I \neq R$.

Theorem: Let $\left\{I_{\alpha}: \alpha \in \Lambda\right\}$ be a family of ideals of a ring R , then $\bigcap_{\alpha \in \Lambda} \mathrm{I}_{\alpha}$ is an ideal in R.

Proof: $\bigcap_{\alpha \in \Lambda} \mathrm{I}_{\alpha} \neq \emptyset \quad\left[0 \in I_{\alpha} \quad \forall \alpha \in \Lambda\right]$
Let $a, b \in \bigcap_{\alpha \in \Lambda} I_{\alpha} \Rightarrow a \in I_{\alpha} \quad \forall \alpha \in \Lambda \quad$ and $b \in I_{\alpha} \quad \forall \alpha \in \Lambda$
$\therefore \quad a-b \in I_{\alpha} \quad \forall \alpha \in \Lambda$ [ideal def.] $\therefore a-b \in \bigcap_{\alpha \in \Lambda} I_{\alpha}$
Let $a \in \bigcap_{\alpha \in \Lambda} I_{\alpha}, \quad r \in R$
$\therefore a \in I_{\alpha} \quad \forall \alpha \in \Lambda \Rightarrow r a \in I_{\alpha} \quad \forall \alpha$
$r a \in \bigcap_{\alpha \in \Lambda} I_{\alpha}$
$\therefore \bigcap_{\alpha \in \Lambda} I_{\alpha} \quad$ is ideal.
But the union is not ideal for example:
$2 Z$ is ideal, $3 Z$ is ideal, $2 \in 2 Z, 3 \in 3 Z$
If $2 Z \cup 3 Z$ is ideal
$\therefore \quad 2,3 \in 2 Z \cup 3 Z \therefore 3-2 \in 2 Z \cup 3 Z C!1 \notin 2 Z \cup 3 Z$
$\therefore 2 Z \cup 3 Z$ is not ideal.

Definition:

Let S be a nonempty subset of a ring R the set $\langle S\rangle$, where:

$$
<S>=\cap\{I: I \text { is an ideal of } R \text { containing } S\}
$$

is called the ideal generated by S.

Remark:

1. $\langle S\rangle$ is smallest ideal containing S.
2. $\langle S\rangle=S$ if and only if S is an ideal.
3. If $S=\{a\},\langle S\rangle=\langle a\rangle$ is called principle ideal.

Remark:

If R is commutative ring with identity and $x \in R$, then

$$
<x>=\{r x: r \in R\}=R x
$$

For example: $<2>=2 Z,<3>=3 Z$

The Rings

Definition:

A ring R is called principle ideal ring if every ideal in R is principle ideal.

Theorem:

$(Z,+,$.$) is P. I. R.$
Proof: Suppose I be an ideal in Z if $I=\{0\}$, then $I=<0>$ if $I \neq\{0\}$, then \exists an integer $0 \neq m \in I$, if it is negative then $-m \in I$, then Icontains a positive integer, let n be the least positive integer such that $n \in I$, we claim that $I=<$ $n>$.

It's clear that $\langle n\rangle \subseteq I$ since $n \in I$.
Now, let $m \in I$ by division algorithm theorem $\exists q, r \in Z$, such that:

$$
m=n q+r, 0 \leq r<n, \quad r=m(\in I)-n q(\in I)
$$

$\therefore r \in I \mathrm{C}$! since n is the least positive integer $n \in I$ and $r<n$.
$\therefore r=0 \Rightarrow m=n q$
$\therefore m \in\langle n\rangle$
$\therefore I=\langle n\rangle$
The union is not ideal for example:
$Z_{6}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}, \quad I_{1}=\{\overline{0}, \overline{2}, \overline{4}\}, \quad I_{2}=\{\overline{0}, \overline{3}\}$
$\cup I_{i}=\{\overline{0}, \overline{2}, \overline{3}, \overline{4}\}$

$$
3-2=1 \notin \cup I_{i}, i=1,2 .
$$

The Rings

Definition:

Let I and J be ideals of a ring R, then the sum of I and J denoted by:

$$
I+J=\{a+b: a \in I, b \in J\} .
$$

Remark:

If I and J ideals in R then $I+J$ is also ideal in R .
Proof: $I+J \neq \emptyset[0 \in I, 0 \in J \therefore 0 \in I+J]$
Let $w_{1}, w_{2} \in I+J \Rightarrow w_{1}=a_{1}+b_{1}, a_{1} \in I, b_{1} \in J, w_{2}=a_{2}+b_{2}, a_{2} \in I$, $b_{2} \in J$

$$
w_{1}-w_{2}=a_{1}+b_{1}-a_{2}-b_{2}=\left(a_{1}-a_{2}\right)(\in I)+\left(b_{1}-b_{2}\right)(\in J)
$$

$\therefore w_{1}-w_{2} \in I+J$.
Let $w \in I+J, r \in R, w=a+b ; a \in I, b \in J$

$$
r w=r(a+b)=r a(\in I)+r b(\in J) \in I+J
$$

$\therefore I-J$ is an ideal.

Example: $Z_{6}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}, I=\{\overline{0}, \overline{3}\}, J=\{\overline{0}, \overline{2}, \overline{4}\}$
$I+J=\{\overline{0}, \overline{2}, \overline{4}, \overline{3}, \overline{5}, \overline{1}\}=Z_{6}$
$I+J$ is an ideal

Example:

In $(Z,+,$.
$2 Z+3 Z=$ ideal.

The Rings

Definition:

Let I and J be ideals in a ring R we say that R is internal direct sum of I and J if:
(1) $R=I+J$
(2) $I \cap J=\{\varnothing\}$

We denote that by: $R=I \oplus J$.
Example: $Z_{6}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$
$I=\{\overline{0}, \overline{3}\}, J=\{\overline{0}, \overline{2}, \overline{4}\}$
$\therefore Z_{6}=I \oplus J$ or $Z_{6}=Z_{6} \oplus\{0\}$

Theorem:

Let I and J be ideal in R, then $R=I \oplus J$ if and only if every element in R can be written in only one way.

Proof: $\Rightarrow)$ Let $R=I \oplus J \Rightarrow R=I+J, I \cap J=\{0\}$ let $r \in R$
$\therefore \exists a \in I, b \in J$ such that $r=a+b$ if not $r=a 1+b 1, a 1 \in I, b 1 \in$ J

$$
\begin{aligned}
& \quad a_{1}+b_{1}=a+b \Rightarrow a_{1}-a=b-b_{1} \in I \cap J=\{0\} \\
& \therefore a_{1}-a=0 \Rightarrow a=a_{1}, b-b_{1}=0 \Rightarrow b=b_{1} \\
& \qquad \Leftrightarrow I+J \subseteq R, \text { let } w \in R, w=w+0 \in I+J \\
& \therefore R \subseteq I+J \therefore R=I+J \\
& \text { Let } w \in I \cap J \Rightarrow w \in I \text { and } w \in J, w=w+0=0+w C! \\
& \therefore w=0
\end{aligned}
$$

Definition:

Let R_{1}, R_{2} be rings consider the set $R_{1} \times R_{2}=\left\{(x, y): x \in R_{1}, y \in R_{2}\right\}$, define + , on $R_{1} \times R_{2}$

$$
\begin{gathered}
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \\
\left(x_{1}, y_{1}\right) \cdot\left(x_{2}, y_{2}\right)=\left(x_{1} \cdot x_{2}, y_{1} \cdot y_{2}\right)
\end{gathered}
$$

Then we can show that $R_{1} \times R_{2}$ is a ring? Is called the external direct sum of R_{1} and R_{2}

$$
R_{1} \simeq R_{1} \times\{0\} \quad, \quad R_{2} \simeq\{0\} \times R_{2}
$$

Theorem:

Let $f: R \longrightarrow R^{\prime}$ be ring homomorphism.
(1) If K is an ideal in R^{\prime}, then $f^{-1}(K)$ is an ideal in R.
(2) If J is an ideal in R and f is onto then $f(J)$ is ideal in R^{\prime}

Proof: $f^{-1}(K)=\{r \in R: f(r) \in K\} \neq \emptyset$ since $\left[0 \in f^{-1}(K), f(0)=\overline{0} \in K\right]$ Let $x, y \in f^{-1}(K) \Rightarrow f(x) \in K, f(y) \in K$
K is ideal $\Rightarrow f(x)-f(y) \in K, f$ is ring homomorphism $\Rightarrow f(x-y) \in K$
$\therefore x-y \in f^{-1}(K)$
Let $w \in f^{-1}(K), r \in R, f(w) \in K, f(r) \in R$ and K is ideal
$\therefore f(w) . f(r) \in K[f$ isring homomorphism $] f(w . r) \in K \Rightarrow w . r \in f^{-1}(K)$
$\therefore f^{-1}(K)$ is ideal.
(2) $f(J) \neq \varnothing$ since $\left[0_{R^{\prime}}=f\left(0_{R}\right) . \therefore 0_{R^{\prime}} \in f(J)\right]$

Let $x, y \in f(J) \Rightarrow x=f\left(w_{1}\right), w_{1} \in J, y=f\left(w_{2}\right), w_{2} \in J$
$w_{1}-w_{2} \in J$ [Since J is an ideal], $f\left(w_{1}-w_{2}\right) \in f(J)$ [f is homomorphism]

$$
f\left(w_{1}\right)-f\left(w_{2}\right) \in f(J), \quad x-y \in f(J)
$$

Let $a \in f(J), r^{\prime} \in R^{\prime}, a=f(w), w \in J$
$r^{\prime} \in R^{\prime}$ since f is onto then $\exists r \in R$ such that $f(r)=r^{\prime}$
$\therefore r w \in J[J$ is ideal]
$f(r w) \in f(J), f(r) f(w) \in f(J) \quad[f$ is homomorphism $], r^{\prime} a \in f(J)$
$\therefore f(J)$ is an ideal.

Corollary:

Let $f: R \rightarrow R^{\prime}$ be a ring homomorphism, then $\operatorname{ker} f$ is ideal in R.
Proof: $\operatorname{ker} f=\{r \in R: f(r)=0\}=f^{-1}\left(O_{\dot{R}}\right), O_{\dot{R}}$ is ideal by theorem $f^{-1}\left(O_{\dot{R}}\right)$ is ideal
$\therefore \operatorname{ker} f$ is ideal.
The quotient ring, let I be an ideal in a ring $R, \frac{R}{I}=\{x+I: x \in R\}$. Define + , - as:

$$
\begin{aligned}
& (x+I)+(y+I)=(x+y)+I \in \frac{R}{I} \\
& (x+I) \cdot(y+I)=(x \cdot y)+I \in \frac{R}{I}
\end{aligned}
$$

To show that + , is well define (1) is well defined, by (1)

$$
\begin{aligned}
& x+I=x_{1}+I \Leftrightarrow x-x_{1} \in I \\
& y+I=y_{1}+I \Leftrightarrow y-y_{1} \in I \\
& (x+I) \cdot(y+I)=\left(x_{1}+I\right) \cdot\left(y_{1}+I\right) \\
& x y+I=x_{1} y_{1}+I \Leftrightarrow x y-x_{1} y_{1} \in I
\end{aligned}
$$

$$
x y-x_{1} y_{1}=x y-x y_{1}+x y_{1}-x_{1} y_{1}
$$

$=x\left(y-y_{1}\right)+\left(x-x_{1}\right) y_{1} \in I \quad(I$ is ideal $)$
Then $x y-x_{1} y_{1} \in I \Rightarrow$ is well defined.

Theorem:

Let I be an ideal of a ring R, then $\left(\frac{R}{I},+, \cdot\right)$ is a ring which is called the quotient ring of R by I.

Proof: (1) well defined

$$
\begin{aligned}
& a+I=a_{1}+I \Leftrightarrow a-a_{1} \in I, \quad b+I=b_{1}+I \Leftrightarrow b-b_{1} \in I \\
& (a+I)+(b+I)=?\left(a_{1}+I\right)+\left(b_{1}+I\right) \\
& (a+b)+I=\left(a_{1}+b_{1}\right)+I \Leftrightarrow a+b-\left(a_{1}+b_{1}\right) \in I \\
& a+b-a_{1}-b_{1}=a-a_{1}(\in I)+b-b_{1}(\in I) \in I
\end{aligned}
$$

$\therefore+$ is well define \cdot is well define.
(2) Associative

$$
\begin{gathered}
r+I+\left[\left(r_{1}+I\right)+\left(r_{2}+I\right)\right]=?\left[(r+I)+\left(r_{1}+I\right)\right]+\left(r_{2}+I\right) \\
(r+I)+\left(r_{1}+r_{2}+I\right)=\left(r+r_{1}+I\right)+\left(r_{2}+I\right) \\
\therefore\left(r+r_{1}+r_{2}\right)+I=\left(r+r_{1}+r_{2}\right)+I
\end{gathered}
$$

(3)The identity

$$
(r+I)+(0+I)=(r+0)+I=r+I
$$

$\therefore 0+I=I$ is the identity.
(4)

$$
(r+I)+[(-r)+I]=(r-r)+I=0+I=I
$$

$\therefore(-r)+I$ is the inverse

$$
\begin{equation*}
(r+I)+\left(r_{1}+I\right)=\left(r_{1}+I\right)+(r+I) \tag{5}
\end{equation*}
$$

$$
\left(r+r_{1}\right)+I=\left(r_{1}+r\right)+I
$$

$\left(r+r_{1}\right)+I=\left(r+r_{1}\right)+I$, since $r+r_{1} \in R$ and R is a ring $r+$ $r_{1}=r_{1}+r$ [abelian group]
$\therefore \quad(R / I,+)$ is abelian group.
(6) $[(a+I) \cdot(b+I))] \cdot(c+I)=(a . b+I) \cdot(c+I)=a \cdot b \cdot c+I$

$$
(a+I) \cdot[(b+I) \cdot(c+I)]=(a+I) \cdot(b \cdot c+I)=a \cdot b \cdot c+I
$$

$$
(7)(a+I) \cdot[(b+I)+(c+I)]=(a+I)(b+c+I)
$$

$$
\begin{aligned}
& =a \cdot(b+c)+I \\
& =a \cdot b+a \cdot c+I \\
& =(a b+I)+(a \cdot c+I) \\
& =(a+I)(b+I)+(a+I)(c+I) .
\end{aligned}
$$

\therefore Is associative $\therefore\left(\frac{\mathrm{R}}{\mathrm{I}},+, \cdot\right)$ is a ring.

Note: If R with identity 1 , then $\frac{\mathrm{R}}{\mathrm{I}}$ with identity $1+I$.

Example: Let Z be a ring,
(1) $\frac{Z}{3 Z}=\{3 Z, 1+3 Z, 2+3 Z, \cdots\}$.
(2) $\frac{Z}{4 Z}=\{4 Z, 1+4 Z, 2+4 Z, 3+4 Z, \cdots\}$.
(3) $\frac{\mathrm{Z}}{2 \mathrm{Z}}=\{2 Z, 1+2 Z, \cdots\}$.

Remark:

Let I be an ideal of R, the function $\pi: R \rightarrow R / I$ defined by $\pi(r)=r+I$, for all $r \in R$, is a ring epimorphism, it is called the natural epemorphism.
$\pi\left(r_{1}+r_{2}\right)=? \pi\left(r_{1}\right)+\pi\left(r_{2}\right)$
$\left(r_{1}+r_{2}\right)+\mathrm{I}=\left(r_{1}+I\right)+\left(r_{2}+\mathrm{I}\right)$
$\pi\left(r_{1} \cdot r_{2}\right)=? \pi\left(r_{1}\right) \cdot \pi\left(r_{2}\right)$
$\left(r_{1} \cdot r_{2}\right) \cdot I=\left(r_{1}+I\right) \cdot\left(r_{2}+I\right)$.

Remark: (Fundamental Homomorphism Theorem of rings)
Let $f: R \longrightarrow R^{\prime}$ be a ring homomorphism, which is onto, then $R /$ ker $f \simeq R^{\prime}$

Proof: Define $g: \frac{R}{\text { ker } f} \longrightarrow R^{\prime}$ by $g(r+K)=f(r)$ where $\operatorname{ker} f=K$
(1) $r+K=r_{1}+K \Leftrightarrow r-r_{1} \in K$

$$
\begin{aligned}
& \Rightarrow f\left(r-r_{1}\right)=0, f(r)-f\left(r_{1}\right)=0 \Rightarrow f(r)=f\left(r_{1}\right) \\
& \therefore g(r+K)=g\left(r_{1}+K\right)
\end{aligned}
$$

\therefore Well defined

(2) g is homomorphism

$$
\begin{aligned}
& g\left((r+K)+\left(r_{1}+K\right)\right)=g(r+K)+g\left(r_{1}+K\right) \\
& g\left(r+r_{1}+K\right)=f(r)+f\left(r_{1}\right) \\
& \quad \therefore f\left(r+r_{1}\right)=f\left(r+r_{1}\right)(\text { since } f \text { is homo. })
\end{aligned}
$$

The Rings

$g\left((r+K) \cdot\left(r_{1}+K\right)\right)=? g(r+K) \cdot g\left(r_{1}+K\right)$
$\therefore g$ is homo.
(3) $g(r+K)=g\left(r_{1}+K\right) \Rightarrow f(r)=f\left(r_{1}\right) \Rightarrow f(r)=f\left(r_{1}\right)=0$ [Since f is homomorphism]

$$
f\left(r-r_{1}\right)=0 \Rightarrow r-r_{1} \in \operatorname{ker} f=K \quad \Leftrightarrow r+K=r_{1}+K \Rightarrow g \text { is }(1-1)
$$

(4) Let $w \in R^{\prime}$ since f is onto $\exists x \in R$, such that $f(x)=w$

$$
g(x+K)=f(x)=w \Rightarrow g \text { is onto. }
$$

Example: Show that $\frac{\mathrm{Z}}{\mathrm{nZ}} \simeq Z_{n}$
Solution: $f: Z \longrightarrow Z_{n}, f(x)=\bar{x} \quad \forall x \in Z$

$$
\begin{gathered}
f(x+y)=\overline{x+y}=\bar{x}+\bar{y}=f(x)+f(y) \\
f(x y)=\overline{x y}=\bar{x} \cdot \bar{y}=f(x) \cdot f(y)
\end{gathered}
$$

$\therefore f$ is homo.
Let $\bar{w} \in Z_{n} \Rightarrow \exists w \in Z$ such that $f(w)=\bar{w}$
$\therefore f$ is onto
by F. H. Th. $\frac{\mathrm{Z}}{\operatorname{kerf}} \simeq Z_{n}$

$$
\operatorname{ker} f=\{x \in Z: f(x)=\overline{0}\}=\{x \in Z: \bar{x}=\overline{0}\}=n Z
$$

$\therefore \frac{Z}{n Z} \simeq Z_{n}$.

Remark:

The only nontrivial homomorphism from Z to Z is the identity.
Proof: $f: Z \longrightarrow Z ; 0 \neq n \in Z$,

$$
f(n)=\underbrace{f(1+1+\cdots+1)}_{n \text { times }}=\underbrace{f(1)+f(1)+\cdots+f(1)}_{n \text { times }}
$$

[Since f is homomorphism]

$$
\begin{aligned}
& f(n)=n f(1) \ldots \ldots \ldots(*) \\
& f(n)=f(n \cdot 1) \\
& f(n) \cdot 1=f(n) \cdot f(1) \Rightarrow f(1)=1 \quad[\mathrm{by}(*)]
\end{aligned}
$$

$\therefore f(n)=n$
$\therefore f$ is identity.

Corollary (1):

Let R be a ring and suppose that f, g a ring isomorphism, then
$f=g: R \longrightarrow Z$.
Proof: $f: R \longrightarrow Z, g: R \rightarrow Z \quad ; \quad R \simeq Z$
$g^{-1}: Z \longrightarrow R$ is a ring isomorphism

$$
f \circ g^{-1}: Z \longrightarrow Z,\left(Z \xrightarrow{g^{-1}} R \stackrel{f}{\rightarrow} Z\right) \Rightarrow f \circ g^{-1}: Z \longrightarrow Z
$$

$\therefore f \circ g^{-1}=I \quad$ [by Remark]
$\therefore g=f$

Corollary (2):

Let R be a ring and $f, g: R \rightarrow Z$ be an epimorphism, then if $\operatorname{ker} f=\operatorname{ker} g$, then $f=g$.

Proof: by F.H.Th. $R /$ ker $f \simeq Z$ and $\frac{R}{\text { kerg }} \simeq Z$, by coro.(1) $f^{*}=g^{*}$; $f^{*}: R /$ ker $f \rightarrow Z$ and $g^{*}: R / \operatorname{ker} g \rightarrow Z$. To prove that $f=g$

Let $r \in R, f(r)=f^{*}(r+\operatorname{ker} f)=g^{*}(r+\operatorname{Kerg})=g(r)$;
$\therefore f=g$.

Theorem:

$Z_{n} \oplus Z_{m} \simeq Z_{n m}$ if and only if g.c.d $(n, m)=1$.
Proof: We only have to show that $\frac{Z}{n Z} \oplus \frac{Z}{m Z} \simeq \frac{Z}{n m Z}$ since by F. H. Th. $\frac{Z}{n Z} \simeq Z n$ and $Z_{n m} \simeq \frac{Z}{n m Z}$

Define $\varnothing: Z \longrightarrow \frac{Z}{n Z} \oplus \frac{Z}{m Z}$
Ву $\emptyset(x)=(x+n Z, x+m Z) \quad \forall x \in Z$
\emptyset is a ring homomorphism?
$\operatorname{ker} \emptyset=\{x \in Z: \emptyset(x)=(n Z, m Z)\}$
$=\{x \in Z:(x+n Z, x+m Z)=(n Z, m Z)\}$
$=\{x \in Z:(x \in n Z, x \in m Z)\}=\{x \in Z: x \in n Z \cap m Z\}=n m Z$
since g.c.d $(n, m)=1$
\varnothing is onto: Let $(a+n Z, b+m Z) \in \frac{\mathrm{Z}}{\mathrm{nZ}} \oplus \frac{\mathrm{Z}}{\mathrm{mZ}}$
$g . c . d(n, m)=1 \Rightarrow \exists s, t \in Z$
$\Rightarrow s n+t m=1 \ldots \ldots \ldots . .(* *)$,since $s n-1 \in m Z$ and $t m-1 \in n Z$
Let $x=a t m+b s n$ \qquad

$$
\begin{equation*}
\emptyset(x)=(x+n Z, x+m Z) \tag{*}
\end{equation*}
$$

The Rings

$$
\begin{aligned}
= & (a t m+n Z, b s n+m Z) \\
& =(a+n Z, b+m Z)
\end{aligned}
$$

$a+n Z=a t m+n Z \Leftrightarrow a-a t m \in n Z \Leftrightarrow a(1-t m) \in n Z \Leftrightarrow a \in n Z$
Similarly

$$
b s n+m Z=b+
$$

$$
m Z \Leftrightarrow(b-b s n) \in m Z \Leftrightarrow b(1-s n) \in m Z \Leftrightarrow b t m \in m Z
$$

$\therefore \emptyset$ is onto.

Definition:

A proper ideal M of a ring R is called maximal ideal if where ever I is an ideal of R with $M \subset I$, then $I=R$.

Example: In Z_{6} the ideals are:
$\{0\}, Z_{6},\{\overline{0}, \overline{3}\},\{\overline{0}, \overline{2}, \overline{4}\}$
$\{\overline{0}, \overline{3}\}$ is the maximal in Z_{6}
$\{\overline{0}, \overline{2}, \overline{4}\}$ is the maximal in Z_{6}.

Definition:

A proper ideal P of a ring R is called a prime ideal if for all a, b in R with $a . b \in P$ either $a \in P$ or $b \in P$.

Example:

The Rings

1) $4 Z$ is an ideal in Z, but not a prime ideal in Z.
2) $\{0\}$ is a prime ideal in Z.but not maximal.
3) $\{0\}$ is not a prime ideal in Z_{6}.

Definition:

A commutative ring with identity is called an integral domain if it has no zero divisor.

Definition:

A ring $(R,+, \cdot)$ is said to be field if $(R-\{0\}, \cdot)$ forms a commutative ring (with identity 1$)$.

Or
The field is commutative ring with identity in which each nonzero element has inverse under multiplication.

Remark:

Every field is an integral domain.
Proof: Let R be a field and let $a, b \in R$ such that $a . b=0$
If $a \neq 0 \Rightarrow a$ has inverse say a^{-1} [since $a \in$ field] $\Rightarrow a^{-1} . a . b=0 \Rightarrow b=0$ i.e., R is integral domain.

The Rings

Remark:

Let R be a commutative ring with identity, then R is a field if and only if $\{0\}$ and R are the only ideals of R.

Proof: \Rightarrow let $I \neq 0$ be an ideal in R let $a \neq 0, a \in I$, but R is a field $\Rightarrow \exists a^{-1}$ and $a . a^{-1}=1 \in I[I$ ideal $a \in I, r \in R \Rightarrow a r \in I] \Rightarrow I=R$ [by remark]
$\Leftarrow)$ Let $a \neq 0, a \in R,<a\rangle$ is an ideal in R but $\langle a\rangle \neq\{0\} \Rightarrow\langle a\rangle=R$
$\therefore 1 \in R \Rightarrow 1 \in\langle a\rangle \Rightarrow 1=r . a$

Example: Q have ideals $\{0\}, Q$.
R have ideals $\{0\}, R$.
C have ideals $\{0\}, C$
Z_{3}, Z_{5}, Z_{7} are fields.

Remark:

Every finite integral domain is field.
Proof: Let $R=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be an integral domain and $0 \neq a_{j} \in R$ consider the set $S=\left\{a_{1} a_{j}, a_{2} a_{j}, \ldots, a_{n} a_{j}\right\}$ all elements of S are distinct since if $a_{l} a_{j}=a_{k} a_{j} \Rightarrow a_{l}=a_{k} \mathrm{C}!$

Clearly $S \subseteq R$ and $R \subseteq S \Rightarrow S=R \Rightarrow 1 \in S$
$\Rightarrow 1 \in a_{n} a_{j} \Rightarrow a_{j}$ has inverse $\Rightarrow R$ is field.

The Rings

Remark:

Let R be an integral domain with only finite number of ideals in R, then R is a field.

Proof: Let $a \neq 0, a \in R,\langle a\rangle,\left\langle a^{2}\right\rangle,\left\langle a^{3}\right\rangle, \ldots$ be ideals in R but R has only finite number of ideals $\Rightarrow \exists k, \ell$ such that $k<\ell$ positive integers such that $\left\langle a^{k}\right\rangle=\left\langle a^{\ell}\right\rangle$.
$\Rightarrow a^{k} \in\left\langle a^{k}\right\rangle=\left\langle a^{\ell}\right\rangle \Rightarrow a^{k}=r a^{\ell}$ for some $r \in R \Rightarrow a^{k}=r a^{\ell}=r a^{\ell-k} a^{k}$
$\because R$ is integral domain \Rightarrow cancelation law is valid. $\Rightarrow 1=r a^{\ell-k} \Rightarrow$
$1=\left(r a^{\ell-k-1}\right) \cdot a$ and $\because 1=a^{-1} a$
$\therefore a^{-1}=r a^{\ell-k-1} \Rightarrow a^{-1} \in R$
$\therefore R$ is a field.

Remark:

If R is a field, then either $f: R \rightarrow R^{\prime}$ is 1-1 or $f: R \rightarrow R^{\prime}$ is the zero homomorphism.

Proof:

$\operatorname{Ker} f$ is an ideal in R.
$\operatorname{Ker} f=\{0\}$ or $\operatorname{ker} f=R$.
$\therefore f$ is $1-1$ or f is the zero.

Remark:

The Rings

Let R be a commutative ring with 1 , let N be the set of nilpotent elements of R, then N is an ideal in R and $\frac{\mathrm{R}}{\mathrm{N}}$ has no nonzero nilpotent element.
[a is a nilpotent $a^{n}=0$ for some positive integer n]
Proof: $N \neq \emptyset\left[0 \in N,(0)^{n}=0, \forall n\right]$ let $a \in N$ and $r \in R$
$\because a \in N \Rightarrow \exists$ a positive integer k such that $a^{k}=0$

$$
(a r)^{k}=a^{k} r^{k}=0 \cdot r^{k}=0, r \in R
$$

$\therefore a r \in N$
Let $a, b \in N \Rightarrow \exists n, m$ positive integers such that $a^{n}=0, b^{m}=0$

$$
\begin{gathered}
(a-b)^{n+m}=a^{n+m}-() a^{n+m-1} \mathrm{~b}+() a^{n+m-2} b^{2}-() a^{n+m-3} b^{3}+\ldots+ \\
\\
() a^{n} b^{m}+\cdots+b^{n+m}=0 .
\end{gathered}
$$

$\Rightarrow(a-b)$ is nilpotent $\Rightarrow a-b \in N \Rightarrow N$ is an ideal.
Now, let $r+N$ be nilpotent element in $\frac{\mathrm{R}}{\mathrm{N}}, \exists k \in Z^{+}$such that $(r+N)^{k}=N$

$$
r^{k}+N=N \Leftrightarrow r^{k} \in N
$$

$\Rightarrow \exists s \in Z^{+}$such that $\left(r^{k}\right)^{s}=0 \Rightarrow r^{k s}$ (nilpotent) $=0$
$\Rightarrow r \in N \Rightarrow r+N=N$.

Remark:

Let R be commutative ring with identity and let a be an idempotent element in R, then $R=\langle a\rangle \oplus<1-a\rangle$

Proof: $a \in\langle a\rangle, a \in R,<a\rangle \subseteq R,\langle a\rangle+<1-a\rangle \subseteq R, 1 \in R$

$$
\begin{aligned}
& 1=a+1-a \Rightarrow 1 \in<a\rangle+\langle 1-a\rangle \Rightarrow R \subseteq\langle a\rangle+\langle 1-a\rangle \\
& \quad \Rightarrow R=\langle a\rangle+\langle 1-a\rangle
\end{aligned}
$$

The Rings

Let $w \in\langle a\rangle \cap<1-a\rangle \Rightarrow w=r a ; r \in R$

$$
w=t .(1-a) ; t \in R \Rightarrow r a=t .(1-a)
$$

$\because a$ is idempotent $\Rightarrow a^{2}=a$ Now,

$$
\begin{gathered}
w \cdot a=r a^{2}=r a=t(1-a) \\
w=t(1-a) a \\
w=t\left(a-a^{2}\right)=t(a-a) \\
w=0 \Rightarrow<a>\cap<1-a>=0 \\
\Rightarrow R=<a>\oplus<1-a>.
\end{gathered}
$$

Example: In Z_{6}
$\overline{3}$ is idempotent in Z_{6}
$(\overline{3})^{2}=\overline{3} \Rightarrow Z_{6}=<\overline{3}>\oplus<1-\overline{3}>=\{\overline{0}, \overline{3}\} \oplus\{\overline{0}, \overline{2}, \overline{4}\}$

Example:

($p(X), \Delta, \cap$) is a commutative ring with identity ,
Let $A \in p(X)$, then $A^{2}=A \cap A=A ; A$ is idempotent.
$p(X)=\langle A\rangle \oplus<\bar{X}-A>$.

Remark:

Let $f: R \rightarrow R^{\prime}$ be an eipemorphism, if R is PI , then so is R^{\prime}.

Proof:

Let K be an ideal in $R^{\prime}, f^{-1}(K)$ is an ideal in R [theorem] but R is principle ideal ring, then $f^{-1}(K)=\langle x\rangle ; x \in R$
$x \in f^{-1}(K), f(x) \in K \Rightarrow<f(x)>\subseteq K$ we claim that $K=<f(x)>$ Let $y \in K, f$ is an eipemorphism.
$\therefore \exists r \in f^{-1}(K)$ such that $y=f(r) \in K$ but $f^{-1}(K)=\langle x\rangle$
$\therefore r=w . x$

$$
\begin{aligned}
& f(r)=f(w \cdot x)=f(w) \cdot f(x) \quad \therefore y=f(w) \cdot f(x) \\
& y \in<f(x)>\quad \Rightarrow K=<f(x)>
\end{aligned}
$$

$\therefore R^{\prime}$ is P. I. R.

Definition:

Let I and J be ideals in R, then $I . J=\left\{\sum_{i=1}^{n} a_{i} b_{i}: a_{i} \in I, b_{i} \in J\right\}$ is called the product of I and J.

Theorem:

Let $f: R \rightarrow R^{\prime}$ be an epimorphism and let I, J be ideals in R, then

1) $f(I \cap J) \subseteq f(I) \cap f(J)$ and if $\operatorname{ker} f \subseteq I$ or $\operatorname{ker} f \subseteq J$,then
2) $f(I+J)=f(I)+f(J)$
3) $f(I \cdot J)=f(I) \cdot f(J)$

Remark:

Let I, J, K be ideals in R, then

1) $I(J+K)=I J+I K$.
2) If $J \subseteq I$, then $I \cap(J+K)=J+(I \cap K)$

Proof(1): Let $w \in I(J+K)$

$$
\begin{gathered}
w=a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n} \\
a_{i} \in I, b_{i} \in J+K \quad b_{i}=c_{i}+d_{i} ; c_{i} \in J, d_{i} \in K \\
w=a_{1}\left(c_{1}+d_{1}\right)+\ldots+a_{n}\left(c_{n}+d_{n}\right) \\
=a_{1} c_{1}+a_{1} d_{1}+\ldots+a_{n} c_{n}+a_{n} b_{n} \\
=a_{1} c_{1}+a_{2} c_{2}+\ldots+a_{n} c_{n}+a_{1} d_{1}+\ldots+a_{n} d_{n} \in I J+I K \\
\Leftarrow) \text { Let } x \in I J+I K \Rightarrow a=a+b ; a \in I J, b \in I K \\
a=c_{1} d_{1}+\ldots+c_{n} d_{n}, c_{i} \in I, d_{i} \in J \\
b=c_{1} e_{1}+\ldots+c_{n} e_{n} ; c_{i} \in I, e_{i} \in K \\
x=a+b=c_{1} d_{1}+\ldots+c_{n} d_{n}+c_{1} e_{1}+\ldots+c_{n} e_{n}= \\
c_{1}\left(d_{1}+e_{1}\right)+\ldots+c_{n}\left(d_{n}+e_{n}\right) \in I(J+K)
\end{gathered}
$$

Proof(2):

Let $w \in I \cap(J+K) ; w \in I$ and $w \in J+K$

$$
\begin{aligned}
& \quad w=a_{1}+b_{1} ; a_{1} \in J, \quad b_{1} \in K \\
& \quad w=a_{1}+\left(w-a_{1}\right) ; w-a_{1} \in I, w-a_{1}=b_{1} \in K \\
& a_{1}+w-a_{1}=w \\
& \therefore w \in J+(I \cap K) \\
& \Leftarrow y \in J+(I \cap K) \\
& \quad y=a+b ; \quad a \in J, b \in I, b \in K
\end{aligned}
$$

$$
\begin{gathered}
a \in J \subseteq I, a \in I, b \in I \\
\therefore a+b=y \in J+K \quad \therefore y \in I \cap(J+K) .
\end{gathered}
$$

Definition:

Let R be a commutative ring with identity. An ideal M of a ring R is called maximal ideal if

1) $M \neq R$.
2) Whenever J is an ideal with $J \supseteq M$, then $J=R$.

Example: In the ring $Z_{6},\{\overline{0}, \overline{3}\},\{\overline{0}, \overline{2}, \overline{4}\}$ are maximal ideals $2 Z \subset Z$ ideal, $4 Z \subset Z$ is not maximal ideal, since $<4>\subset<2>$

Example: $Q, R, C, Z_{p} ; p$ is prime are fields so $\{0\}$ is the only ideal
$\therefore\{0\}$ is the only maximal ideal

Theorem:

Let M be a proper ideal of a ring R , then M is maximal ideal if and only if the ideal $\langle M, a\rangle=R, \forall a \in R, a \notin M$.

Proof: $\Rightarrow)$ Let $w \in\langle M, a\rangle=M+\langle a\rangle=m+r a$
$M \subsetneq<M, a\rangle$ [since $a \notin M$]
$\therefore\langle M, a\rangle=R$
$\Leftarrow)$ let J be an ideal in R such that $J \supsetneq M$
$\therefore \exists x \in J$ and $x \notin M$, since $<M, x>=R$

$$
J \supseteq<M, x>=R
$$

$\therefore J=R$, so M is maximal ideal.

Definition:

Let $\left\{\mathrm{A}_{\alpha}\right\}_{\alpha \in \lambda}$ be a family of ideals of a ring $\mathrm{R},\left\{\mathrm{A}_{\alpha}\right\}_{\alpha \in \lambda}$ is called a chain if $\forall \gamma$, $\beta \in \lambda$ either $A_{\beta} \subseteq A_{\gamma}$ or $A_{\gamma} \subseteq A_{\beta}$.

Zorn's Lemma:

Let F be a family of subsets of fixed nonempty set X. If for each chain $\left\{\mathrm{A}_{\alpha}\right\}_{\alpha \in \lambda}$ in F the $\mathrm{U}_{\alpha \in \lambda} \mathrm{A}_{\alpha}$ is a member of F, then F contains a maximal element M in the sense that M is not contained properly in any member of F.

Theorem:

Let I be a proper ideal of a commutative ring with 1 . Then there exists a maximal ideal M containing I.

Proof: Let I be a proper ideal of R, let $F=\{\mathrm{J}$: J is an ideal with $\mathrm{J} \supseteq \mathrm{I}, \mathrm{J} \neq \mathrm{R}\}$ $F \neq \emptyset$ [since I ideal proper]

Let $\left\{\mathrm{C}_{\alpha}\right\}_{\alpha \in \lambda}$ be a chain in F . Then $\mathrm{U}_{\alpha \in \lambda} \mathrm{C}_{\alpha}$
(1) $\bigcup_{\alpha \in \lambda} \mathrm{C}_{\alpha}$ is an ideal, $\bigcup_{\alpha \in \lambda} \mathrm{C}_{\alpha} \neq \emptyset$ since $F \neq \emptyset$

Let $x, y \in \mathrm{U}_{\alpha \in \lambda} \mathrm{C}_{\alpha}$, , then $x \in \mathrm{C}_{\beta}, y \in \mathrm{C}_{\gamma}, \gamma, \beta \in \lambda$
But $\left\{\mathrm{C}_{\alpha}\right\}$ is a chain then either $C_{\beta} \subseteq C_{\gamma}$ or $C_{\gamma} \subseteq C_{\beta}$.
If $C_{\beta} \subseteq C_{\gamma}$, then $x, y \in C_{\gamma} C_{\gamma}$ is ideal so $x-y \in C_{\gamma}$.
Or $C_{\gamma} \subseteq C_{\beta}$, then $x, y \in C_{\beta}$, then $x-y \in C_{\beta} \Rightarrow x-y \in \mathrm{U}_{\alpha \in \lambda} \mathrm{C}_{\alpha}$
Let $w \in \mathrm{U}_{\alpha \in \lambda} \mathrm{C}_{\alpha} ; \quad r \in R$
$\therefore w \in C_{\beta}, \beta \in \lambda \Rightarrow r w \in C_{\beta}$ so $r w \in \mathrm{U}_{\alpha \in \lambda} \mathrm{C}_{\alpha}$, then $\mathrm{U}_{\alpha \in \lambda} \mathrm{C}_{\alpha}$ is an ideal.
(2) $I \subseteq \mathrm{U}_{\alpha \in \lambda} C_{\alpha}$ since $I \subseteq C_{\alpha}, \forall \alpha \in \lambda$
(3) $\mathrm{U}_{\alpha \in \lambda} \mathrm{C}_{\alpha} \neq R, I \in \mathrm{U}_{\alpha \in \lambda} C_{\alpha} \Rightarrow I \in C_{\alpha}$ for some $\alpha \in \lambda C!(J \neq R) \forall J \in F$
\therefore By Zorn's Lemma F has maximal element say M.
We claim that M is maximal ideal if K ideal of R such that $K \supsetneq M$, then $K \notin F$ (since M is maximal element in F)
$\therefore K=R$ so M is maximal ideal.

Corollary:

Every commutative ring with identity has at least one maximal ideal.

Theorem:

let R be a commutative ring with identity, an element $x \in R$ is invertible if and only if it belongs to no maximal ideal.

Proof:
$\Rightarrow)$ Let x be an invertible element of R .
Suppose $x \in M$ and M is a maximal ideal

The Rings

Since x invertible, then $\exists y \in R$ such that $x \cdot y=1$.
$x \in M$, then $x . y \in M, 1 \in M$, then $M=R C$!
$\Leftrightarrow)$ let $x \in R$ and x dose not belong to any maximal ideal
Now, $\langle x\rangle$ is an ideal in R .
If $\langle x\rangle=R \Rightarrow 1 \in\langle x\rangle \Rightarrow 1=r . x \Rightarrow x$ invertible
If $\langle x\rangle \neq R$, by the previous theorem there exist a maximal ideal M
$M \ni<x\rangle \subseteq M \Rightarrow x \in M \mathrm{C}!$.

Remark:

Let R be a ring with only one maximal ideal, then the only idempotent of R are zero and one.

Proof: let x be an idempotent element $x \neq 0$ and
$x^{2}=x \Rightarrow x^{2}-x=0 \Rightarrow x(x-1)=0$ so $x, x-1$ are zero divisors. Hence x and $x-1$ are not invertible?

But R has only one maximal ideal M so $x, x-1 \in M$, then $x+(x-1) \in M$. Thus $1 \in M C$!

Theorem:

Let R be a commutative ring with 1 , let M be a proper ideal of R, then M is maximal if and only if $\frac{R}{M}$ is a field.

Proof:

$\Rightarrow R$ is commutative with 1 , then $\frac{R}{M}$ is commutative with 1 , let $x+M \in \frac{R}{M}$ and $x+M \neq M \Rightarrow x \notin M$,
$\because M$ is maximal, then $\langle M, x\rangle=R$, then $1=m+r x \Rightarrow 1-r x=m \in M$, then $1-r x \in M \quad[a H=b H \Leftrightarrow a-b \in H]$, then $1+M=r x+M$. Hence $1+$ $M=(r+M) \cdot(x+M)$

Thus $x+M$ is invertible and $\frac{R}{M}$ is a field.
$\Leftarrow)$ Let J be ideal
Suppose that $J \supsetneq M$, then $\exists x \in J, x \notin M$, then $x+M \neq M$.
But $\frac{\mathrm{R}}{\mathrm{M}}$ is a field $\Rightarrow \exists y+M \in \frac{\mathrm{R}}{\mathrm{M}}$ Such that $(x+M)(y+M)=1+M$ $x y+M=1+M$. Then $1-x y \in M \subset J$
$(1-x y)+x y \epsilon J \Rightarrow 1 \in J=R$
$\therefore M$ is maximal.

Definition:

The intersection of all maximal ideal in a ring R is called the Jacoson radical of a ring R it is denoted by $\operatorname{rad}(R)$.

Example: (1) In $Z,(2 Z) \cap(3 Z) \cap(7 Z) \cap \ldots=\{0\}, \operatorname{rad}(Z)=0$
(2) In $Z_{6},\{\overline{0}, \overline{2},\} \cap\{\overline{0}, \overline{3}\}=\{0\} \quad, \operatorname{rad}\left(Z_{6}\right)=0$
(3)In $Z_{4}, M=\{0,2\}$
$\therefore \operatorname{rad}\left(Z_{4}\right)=\{0,2\}$

Definition:

An ideal P of a ring R is called prime ideal if $P \neq R$ and for every $a . b \in P$ either $a \in P$ or $b \in P \quad \forall a, b \in R$.

Example: (1) In the ring Z_{6}, let $P=\{\overline{0}, \overline{2}, \overline{4}\}, \overline{2} . \overline{4}=\overline{2} \in P$
(2) $P \neq Z_{6}, 6 \in P$
$6=2.3,2 \in P$,
$6=6.1,6 \in P$.
$\therefore P$ is a prime ideal.

Remark:

$\{0\}$ is a prime ideal if and only if R is an integral domain.
Proof: $\Rightarrow)$ Let $a \neq 0, b \in R$ such that $a . b=0$
$\therefore a . b \in\{0\}$ but $\{0\}$ is prime and $a \neq 0 \Rightarrow b \in\{0\}$
$\therefore b=0$.
$\therefore R$ is an integral domain.

Theorem:

Let R be commutative ring with 1 and P be a proper ideal of R, P is a prime ideal if and only if $\frac{R}{p}$ is integral domain.

Proof: \Rightarrow) Since R is commutative ring with 1 so is $\frac{R}{p}$

Let $b+P, a+P \in \frac{R}{p}$, then

$$
(a+P) \cdot(b+P)=P, \text { then } a \cdot b+P=P \Leftrightarrow a b \in P
$$

P is prime $\Rightarrow a \in P$ or $b \in P$ if $a \in P$, then $a+P=P$
Or $b \in P \Rightarrow b+P=P$.

$$
\Leftrightarrow \frac{\mathrm{R}}{\mathrm{p}} \text { is an integral domain, let } a . b \in P
$$

Then $a b+P=P$,
$(a+P)(b+P)=P$.
Since $\frac{\mathrm{R}}{\mathrm{p}}$ is an integral domain, then either $a+P=P \Leftrightarrow a \in P$ or $b+$ $P=P \Leftrightarrow b \in P$. Thus P is prime.

Corollary:

Let R be a commutative ring with 1 , then every maximal ideal is prime ideal.
Proof: M maximal ideal $\Rightarrow \frac{R}{M}$ is a field $\Rightarrow \frac{R}{M}$ is integral domain [Every field is integral domain]

Thus M is prime.

Example: In $Z, 2 Z, 3 Z$
(1) $2 Z$ is a ring without $1,4 Z$ is not maximal ideal and is not prime since $4 \in 4 Z$ for example $4=2.2,2 \notin 4 Z$
$Q: I \subseteq \operatorname{rad}(R) \Leftrightarrow \forall a \in 1+I, a$ is invertible.
Proof: $\Rightarrow)$ Let $I \subseteq \operatorname{rad}(R)$ and assume that $\exists a \in I$ such that $1+a$ has no inverse \exists maximal ideal M such that $1+a \in M, a \in I \subseteq \operatorname{rad}(R) \subseteq$ $M, a \in M, 1+a-a \in M \Rightarrow 1 \in M$

Hence $M=R \mathrm{C}$! Thus $1+I$ has inverse.
$\Leftrightarrow)$ Suppose that each member of $1+I$ has inverse, but $I \nsubseteq \operatorname{rad}(R)=\cap$ M; M is maximal ideal, then $I \nsubseteq M$.

Now, if $a \in I$, then $a \notin M$. Since M is maximal, then $\langle M, a\rangle=R$ [Theorem], hence $1 \in R \Rightarrow 1=m+r a ; r \in R, m \in M \Rightarrow m=1-r a$, but $1-r a \in 1+I$, then $m \in 1+I$, then m has inverse.

Thus M has inverse C! [since $M=R$]

Q: a is invertible in $R \Leftrightarrow a+\operatorname{rad}(R)$ invertible in $\frac{\mathrm{R}}{\operatorname{rad}(\mathrm{R})}$
Proof $: \Rightarrow) a$ is invertible, $\exists b \in R$ such that $a . b=1$

$$
(a+\operatorname{rad}(R))(b+\operatorname{rad}(R))=a b+\operatorname{rad}(R)=1+\operatorname{rad}(R)
$$

So $a+\operatorname{rad}(R)$ is invertible in $\frac{\mathrm{R}}{\operatorname{rad}(\mathrm{R})}$

$$
\begin{aligned}
& \Leftrightarrow(a+\operatorname{rad} R)(b+\operatorname{rad} R)=1+\operatorname{rad}(R) \\
& \Rightarrow a b \operatorname{rad}(R)=1+\operatorname{rad}(R) \\
& \Leftrightarrow a b-1 \in \operatorname{rad}(R)
\end{aligned}
$$

Then $1+a b-1$ is invertible, $a b$ invertible.
Hence $\exists x \in R$ such that $(a b) x=1, a(b x)=1$

Thus a is invertible.

Q: $a \in \operatorname{rad}(R) \Leftrightarrow 1+r a$ has inverse $\forall r \in R$
Proof: $\Rightarrow)$ Let $a \in \operatorname{rad}(R), \quad \Rightarrow<a\rangle \subseteq \operatorname{rad}(R)$,
$<a\rangle=\{r a: r \in R\}, 1+\langle a\rangle$ has inverse
Then $1+r a$ has inverse $\forall r \in R$.
$\Leftrightarrow)$ Let $1+r a \forall r \in R$ has inverse
$1+\langle a\rangle$ has inverse $\Leftrightarrow\langle a\rangle \subseteq \operatorname{rad}(R)$,
$\Rightarrow a \in \operatorname{rad}(R)$

Theorem: (Boolean ring)

Let R be a ring with $a^{2}=a, \forall a \in R$, then every prime ideal is maximal ideal.
Proof: Let M be a prime ideal and J ideal of R such that
$M \subsetneq J \subseteq R$, then $\exists a \in J, a \notin M$
$a^{2}=a \Rightarrow a(a-1)=0 \in M$ but M is prime, $a \notin M$
Then $a-1 \in M \subseteq J$ and $a \in J$.
$\therefore a-1, a \in J[J$ is ideal]
Thus $1 \in J \Rightarrow J=R[I$ ideal, $1 \in I \Rightarrow R=I]$

Theorem:

Let R be principle ideal domain, then every nonzero prime ideal is maximal.

Proof: Let $I \neq 0, I$ is prime and $I \subsetneq J \subseteq R, R$ is P. I. D
$\exists a, b \in R$ such that $I=\langle a\rangle m J=\langle b\rangle,\langle a\rangle \subsetneq\langle b\rangle$
So $a=r b, r \in R, r b \in\langle a\rangle,\langle a\rangle$ is prime
Then either $r \in\langle a\rangle$ or $b \in\langle a\rangle$ if $b \in\langle a\rangle \Rightarrow\langle a\rangle=\langle b\rangle \mathrm{C}$!
Thus $r \in\langle a\rangle$ and $r=s a$
$a .1=a=r b=s a b=a . s . b[\mathrm{R}$ comm. $][\mathrm{R}$ integral domain $]$

$$
1=\mathrm{s} . \mathrm{b}, 1 \in\langle b\rangle=\mathrm{J}
$$

$\therefore \mathrm{J}=\mathrm{R}$.

Definition:

The intersection of all prime ideals in a ring R is called the prime radical of R it is denoted by Rad R

$$
\begin{aligned}
& \operatorname{rad} R \supseteq \operatorname{Rad} R \\
& \operatorname{rad} Z=\operatorname{Rad} Z
\end{aligned}
$$

Theorem:

Let R be a commutative ring with 1 , then every maximal ideal is prime ideal.
Proof: Let M be a maximal ideal of a ring R suppose that $a . b \in M$ and $a \notin$ M, M is maximal, then $\langle M, a\rangle=R$, then $1=m+r a ; m \in M, r \in R$, Hence $b=m b+r a b \in M$.

Q : Is the converse true?

Example: In the ring $Z \times Z,\{0\} \times Z$ is a prime ideal in $Z \times Z$. $2 Z \times Z$ is an ideal in $Z \times Z$ which is maximal. $\{0\} \times Z \subsetneq 2 Z \times Z \subsetneq Z \times Z$.

Definition:

Let I be an ideal of a ring R. Then the nil radical of I denoted by \sqrt{I} is the set:

$$
\sqrt{I}=\left\{r \in R: \exists n \in Z^{+} \ni r^{n} \in I\right\}
$$

Remark:

1. $\sqrt{I} \supseteq I$.
2. \sqrt{I} is an ideal of R.

Proof: Let $x, y \in \sqrt{I}, x \in \sqrt{I} \exists n \in Z^{+} \ni x^{n} \in I$,

$$
y \in \sqrt{I} \ni m \in Z^{+} \ni y^{m} \in I .
$$

$(x-y)^{n+m}=x^{n+m}+() x^{n+m-1} y+\cdots+() x^{n} y^{m}+() x^{n-1} y^{m+1}+\cdots$ $+y^{n+m}$.

Hence $(x-y) \in \sqrt{I}$
Let $r \in R, w \in \sqrt{I}, w^{n} \in \sqrt{I} ; n \in Z^{+}$.
$(r w)^{n}=r^{n} w^{n} \in I$, then $\in \sqrt{I}$.
Example: If $\sqrt{I}=\sqrt{J} \nRightarrow I=J$.

$$
\begin{aligned}
\sqrt{2 Z} & =4 Z \\
\sqrt{8 Z} & =2 Z
\end{aligned}
$$

Remark:

1. $\sqrt{I \cap J}=\sqrt{I J}=\sqrt{I} \cap \sqrt{J}$.
2. $\sqrt{\sqrt{I}}=\sqrt{I}$.
3. $\sqrt{I+J} \supseteq \sqrt{I}+\sqrt{J}$.

Proof: 1. Let $w \in \sqrt{I \cap J}$, then $\exists n \in Z^{+} \ni w^{n} \in I \cap J$, then $w^{n} \in I$ and $w^{n} \in J$, hence $w \in \sqrt{I}$ and $w \in \sqrt{J}$. Thus $w \in \sqrt{I} \cap \sqrt{J}$.

Let $y \in \sqrt{I} \cap \sqrt{J}$, then $y \in \sqrt{I}$ and $y \in \sqrt{J}$, hence $y^{n} \in I$ and $y^{n} \in J$. $y^{n+m}=y^{n} \cdot y^{m} \in I J$, then $y \in \sqrt{I J}$.
$y^{n+m}=y^{n} \cdot y^{m} \in I \cap J$, then $y \in \sqrt{I \cap J}$. Thus $\sqrt{I \cap J}=\sqrt{I} \cap \sqrt{J}$
2. Let $w \in \sqrt{\sqrt{I}} \supseteq \sqrt{I}$.

Let $x \in \sqrt{\sqrt{I}} \exists n \in Z^{+} \ni x^{n} \in \sqrt{I}$, and then $\exists m \in Z^{+} \ni\left(x^{n}\right)^{m} \in I$, hence $x^{n} \in I$, which implies that $x \in \sqrt{I}$.
3.Let $w \in \sqrt{I}+\sqrt{J}$, then $w=x+y ; x \in \sqrt{I}$ and $y \in \sqrt{J}$, then $\exists n \in Z^{+} \ni$ $x^{n} \in I$ and $\exists m \in Z^{+} \ni y^{m} \in J$.

$$
\begin{aligned}
& (x+y)^{n+m}=x^{n+m}+(\quad) x^{n+m-1} y+\cdots+() x^{n} y^{m}+() x^{n-1} y^{m+1}+\cdots \\
& +y^{n+m} .
\end{aligned}
$$

Thus $x+y \in \sqrt{x+y}$.

Theorem:

Let $f: R \longrightarrow R^{\prime}$ be a ring epimorphism.

1. If M isa maximal (prime) with $\operatorname{ker} f \subseteq M$ in R, then $f(M)$ is maximal (prime) ideal in R^{\prime}.
2. If M^{\prime} is a maximal (prime) in R^{\prime}, then $f^{-1}\left(M^{\prime}\right)$ is maximal (prime) in R.

Proof: $: 1$ Let M be a maximal ideal clearly $f(M)$ is an ideal in R
If $f(M)=R^{\prime}$, then $1^{\prime} \in f(M) \rightarrow 1^{\prime}=f(m) ; m \in M$
But $f(1)=1^{\prime} \rightarrow f(m)=f(1) \rightarrow f(m-1)=0$
$\rightarrow m-1 \in \operatorname{ker} f \subseteq M \rightarrow m-(m-1) \in M \rightarrow 1 \in M$ contradiction.

The Rings

Let $J \supsetneq f(M), \ni y \in J$ and $y \notin f(M)$
But f is onto $\rightarrow \exists x \in R \ni f(x)=y \rightarrow x \notin M$
Then $\langle M, x\rangle=R \rightarrow 1=m+t x \quad ; \quad m \in M, t \in R$

$$
\begin{aligned}
& 1^{\prime}=f(1)=f(m)+f(t) \cdot f(x) \\
& 1^{\prime}=f(m)+f(t) y \in J \rightarrow J=R
\end{aligned}
$$

2. Let M^{\prime} be a prime ideal of R, then clearly $f^{-1}(M)$ is an ideal in R.

If $f^{-1}(M)=R \rightarrow 1 \in f^{-1}(M) \rightarrow f(1) \in M^{\prime}$
Let $x . y \in f^{-1}(M)$ and $x \notin f^{-1}(M)$
$f(x) . f(y)=f(x . y) \in M^{\prime}$ and $f(x) \notin M$.
$\therefore f(y) \in M^{\prime} \rightarrow y \in f^{-1}(M)$.

