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Definition: 

 A ring is an ordered triple  (𝑅,+,∙), where R is a nonempty set and  + ,∙ are 

binary operation on 𝑅 such that  

1)  (𝑅, +)is an abelian group. 

Mean:(a)   (𝑎 +  𝑏) +  𝑐  𝑎 + (𝑏 +  𝑐) ,  𝑎, 𝑏, 𝑐 ∈  𝑅. 

(b) ∃ 0 ∈  𝑅  such that 𝑎 +  0  0 +  𝑎  𝑎. 

(c)  ∀𝑎 ∈  𝑅  ∃(−𝑎) ∈ 𝑅 such that  𝑎 + (−𝑎)  (−𝑎)  +  𝑎  0 . 

(d) 𝑎 +  𝑏  𝑏 +  𝑎     ∀𝑎, 𝑏  𝑅. 

2) (𝑎 ∙ 𝑐) ∙  𝑐 =  𝑎 ∙ (𝑏 ∙ 𝑐)    𝑎, 𝑏, 𝑐 ∈  𝑅. 

3) a ∙  (𝑏 +  𝑐)  𝑎 ∙ 𝑏 +  𝑎 ∙  𝑐, and (𝑎 +  𝑏). 𝑐  𝑎 ∙  𝑐 +  𝑏 ∙  𝑐   𝑎, 𝑏, 𝑐 ∈ 𝑅. 

 

Example:(1) (𝑍,+,∙) 

1) (𝑍,+)  is abelian group. 

2) (𝑎. 𝑏). 𝑐  𝑎. (𝑏. 𝑐) . 

3)  𝑎 ∙ (𝑏 +  𝑐)  𝑎 ∙  𝑐 +  𝑎 ∙ 𝑐And  (𝑎 +  𝑏) ∙  𝑐  𝑎 ∙  𝑐 +  𝑏 ∙  𝑐. 

(𝑍,+,∙) Is a ring. 

Example:(2) 

(𝑄, +,∙) is a ring. 

Example:(3) 

(𝑍𝑛 , +𝑛 , ∙𝑛) is a ring. 

𝑍𝑛 {0̅, 1̅, 2̅, ⋯ , �̅�}  

(𝑍𝑛 , +𝑛)  is abelian group. 
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Definition: 

Let (𝑅,+,∙) be a ring, then R commutative if  𝑎 ∙ 𝑏  𝑏 ∙ 𝑎   𝑎, 𝑏  𝑅. 

 

Definition: 

Let (𝑅,+,∙) be a ring, then R is said to have identity if there exists 1 ∈ 𝑅  such 

that  1 ∙ 𝑎  𝑎 ∙ 1  𝑎, ∀ 𝑎  𝑅  and a is invertible (unit) if there exists 𝑏 ∈  𝑅 

such that  𝑎 ∙ 𝑏  𝑏 ∙ 𝑎  1. 

 

Examples: 

(1) (𝑍,+,∙) is a ring with identity, commutative, 1 , 1 are only invertible 

element. 

(2) (𝑄, +,∙) is a ring with identity commutative, and every element in 𝑄 has 

inverse except 0. 

(3) (3𝑍, +,∙) .is a commutative with no identity. 

(4)  ((
a b

c d
) ,+,∙)is a ring not comm. with identity  (

1 0

0 1
). 

 

Example: (𝑝(𝑋), , ∩) .is a ring? 

1) (𝑝(𝑋) , ∩) .is an abelian group, commutative. 𝐴 ∩  𝐴  𝐴 (identity) no 

inverse. 

2)   (𝐴 ∩ 𝐵) ∩ 𝐶 = 𝐴 ∩ (𝐵 ∩ 𝐶)       ∀ 𝐴 , 𝐵, 𝐶 ∈ 𝑋   

3) ∀ 𝐴 , 𝐵, 𝐶 ∈ 𝑋   𝐴 ∩ (𝐵∆𝐶) = (𝐴 ∩ 𝐵)∆(𝐴 ∩ 𝐶) ?  

 𝐴 ∩  (𝐵∆𝐶) = 𝐴 ∩ [(𝐵 − 𝐶) ∪ (𝐶 − 𝐵)]  



The Rings                                                Dr. Nuhad Salim  

 

4 
 

                      = 𝐴 ∩ (𝐵 − 𝐶) ∪ 𝐴 ∩ (𝐶 − 𝐵))  

            = [(𝐴 ∩ 𝐵) − (𝐴 ∩ 𝐶)] ∪ [(𝐴 ∩ 𝐶) − (𝐴 ∩ 𝐵)]  

                     =  ( 𝐴 ∩ 𝐵 )∆( 𝐴 ∩ 𝐶 )  

 

Remark: 

 Let 𝑅 be a ring such that  𝑅  {0} is a ring with identity  1, then 

1  0. 

Proof: Suppose that  1  0, let 𝑎  0 ∈  𝑅 , 𝑎  𝑎 ∙  1  𝑎 ∙  0  0 C!  

1  0. 

 

Definition: 

 Let 𝑅 be commutative ring. An element 𝑎 ∈  𝑅 is called zero divisor if 𝑎  0 

and there exists  𝑏  𝑅 , 𝑏  0 with  𝑎 ∙  𝑏  0. 

 

Example:𝑍6 {0̅, 1̅, 2̅, 3̅, 4̅, 5̅} 

Solution:2̅. 3̅ = 0̅,    3̅. 4̅  = 0̅2̅, 3̅, 4̅ are zero divisors of Z6 

Example:𝑍5 {0̅, 1̅, 2̅, 3̅, 4̅} has no zero divisor. 

Example:(𝑍,+,∙), (𝑪,+,∙), (𝑹,+,∙), (𝑄, +,∙) has no zero divisor. 

H.W:(𝑝(𝑥),,∩) has zero divisor or not?  
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Lemma: Let 𝑅 be a ring, then 

(1) 𝑎 ∙  0  0 ∙  𝑎  0 . 

(2) (−𝑎) ∙  𝑏  𝑎 ∙  (−𝑏) − (𝑎. 𝑏) . 

(3) (−𝑎)(−𝑏) 𝑎 ∙  𝑏 . 

(4) 𝑎(𝑏  𝑐) = 𝑎𝑏  𝑎𝑐      ∀𝑎, 𝑏, 𝑐  𝑅. 

Proof(1):  𝑎 ∙ 0  𝑎 ∙ (0 +  0) = 𝑎 ∙ 0 +  𝑎 ∙ 0          0  𝑎 ∙ 0 

Proof(2):  0 =  0 ∙ 𝑏 =  (𝑎 + (−𝑎))𝑏 =  𝑎𝑏 + (−𝑎)𝑏     (−𝑎)𝑏 =  (𝑎𝑏) 

Proof(3): (−𝑎)(−𝑏) =  −(𝑎 ∙ (−𝑏)) =  −(−(𝑎 ∙ 𝑏)) 𝑎 ∙ 𝑏   

Proof(4):   𝑎 ∙ (𝑏 − 𝑐) = 𝑎 ∙ [𝑏 + (−𝑐)] 

                                       = 𝑎. 𝑏 +  𝑎 ∙ (−𝑐)      = 𝑎 ∙ 𝑏 −  𝑎 ∙ 𝑐. 

 

Definition: 

A commutative ring with identity is called integral domain if it has no zero 

divisors. 

 

Example: 

(𝑍,+,∙), (𝑄,+,∙), (𝑹, +,∙), (𝑍𝑝, +𝑝, ∙𝑝)  where  𝑝 is prime are integral domains. 

 

Lemma: 

Let R be commutative ring with identity, R is integral domain if and only if  𝑎 ∙

𝑏   𝑎 ∙ 𝑐  ;  𝑎  𝑜 , then  𝑏  𝑐 ,   𝑏. 𝑎  𝑐. 𝑎     ; 𝑎  𝑜   , then  𝑏  𝑐 
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Proof:) suppose  𝑎 ∙  𝑏  𝑎 ∙  𝑐    ;   𝑎  0 

(𝑎 ∙  𝑏)  (𝑎 ∙ 𝑐)  0 [associative] 

𝑎 ∙ (𝑏  𝑐)  0 [𝑅  is integral domain] 

∵ 𝑅  has no zero divisor and  𝑎  0 

 𝑏  𝑐  0       𝑏  𝑐 . 

) Let   𝑎  𝑅 , 𝑎  0 

𝑎 ∙ 𝑏  0, and we have  0 ∙ 𝑎  𝑎 ∙ 0  0  ,   𝑎 ∙ 𝑏  𝑎 ∙ 0 

 𝑏  0 . 

 

Definition: 

Let (𝑅,+,∙) be a ring, and  ∅ 𝑆 ⊆  𝑅, then (𝑆, +,∙) is called subring if (𝑆, +,∙) 

is a ring itself. 

Example: 

(2𝑍, +,∙)  subring of (𝑍,+,∙). 

 

Definition: 

Let (𝑅,+,∙) be a ring   ∅ 𝑆 ⊆  𝑅, then  (𝑆, +,∙) is subring if: 

(1)  𝑎  𝑏 ∈  𝑆   ∀ 𝑎, 𝑏  𝑆. 

(2)   𝑎. 𝑏 ∈ 𝑆    ∀𝑎, 𝑏  𝑆. 

Example: 

𝑍  is a subring of (𝑄,+, . ). 
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𝑄  is a subring of  (𝑅,+, . ). 

 𝑅  is a subring of  (𝐶, +, . ). 

({0̅, 2̅, 4̅}, +,∙)is a subring of Z6 

({0̅, 3̅}, +,∙) is a subring of Z6. 

Example: 

Let (𝑅,+, . ) be a ring   𝑅  𝑅  {(𝑎, 𝑏): 𝑎, 𝑏 𝑅)} 

(𝑎, 𝑏) + (𝑐, 𝑑)(𝑎 +  𝑐, 𝑏 +  𝑐), 

(𝑎, 𝑏). (𝑐, 𝑑)  (𝑎𝑐, 𝑏𝑑) 

Proof: (1) (𝑅  𝑅, +) is abelian group  

(2) (𝑎, 𝑏) ∙ [(𝑐, 𝑑) + (𝑒, 𝑓)] =  (𝑎, 𝑏) ∙ (𝑐 +  𝑒 , 𝑑 +  𝑓)  

 (𝑎(𝑐 +  𝑒) , 𝑏(𝑑 +  𝑓))  

 (𝑎𝑐 +  𝑎𝑒, 𝑏𝑑 +  𝑏𝑓)  (𝑎𝑐, 𝑏𝑑)  + (𝑎𝑒, 𝑏𝑓) 

(𝑎, 𝑏) ∙ (𝑐, 𝑑)  + (𝑎, 𝑏) ∙ (𝑒, 𝑓) 

(3)Identity  =  (1, 1)      ;     (𝑎, 𝑏) ∙ (1, 1) =  (𝑎 ∙ 1 , 𝑏 ∙  1) =  (𝑎, 𝑏)  

 ∴  (𝑅 × 𝑅,+, . )is a ring with identity . 

(4) 𝑆 =  𝑅  {𝑒} =  {(𝑎, 0): 𝑎  𝑅} .  𝑆  is a subring of  𝑅  𝑅. 

Proof: 𝑆 ≠   since  (0, 0) ∈  𝑆  

(𝑎, 0)  (𝑏, 0) =  (𝑎  𝑏, 0)  ∈  𝑆 

 (𝑎, 0). (𝑏, 0)  (𝑎. 𝑏, 0)  ∈  𝑆 

Identity  = (1, 0) 
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Definition: 

 Let 𝑅 be a ring the center of a ring 𝑅 is denoted by  𝐶𝑒𝑛𝑡 𝑅 is the set 

𝐶𝑒𝑛𝑡 𝑅  {𝑥 ∈  𝑅 ∶  𝑥 ∙ 𝑟  𝑟 ∙ 𝑥    ∀𝑟 ∈ 𝑅}. 

Lemma: 

𝐶𝑒𝑛𝑡 𝑅  is a subring of  𝑅. 

Proof:  𝐶𝑒𝑛𝑡 𝑅   [ 0 ∈  𝐶𝑒𝑛𝑡 𝑅 , 0. 𝑎    𝑎. 0    0] , let  𝑎, 𝑏 ∈  𝐶𝑒𝑛𝑡 𝑅 

 𝑎 ∙ 𝑥  𝑥 ∙ 𝑎    , 𝑏 ∙ 𝑥  𝑥 ∙ 𝑏   ∀𝑥 ∈ 𝑅 

𝑥 ∙ (𝑎  𝑏)  𝑥 ∙ 𝑎  𝑥 ∙ 𝑏  𝑎 ∙ 𝑥  𝑏 ∙ 𝑥  (𝑎  𝑏) ∙ 𝑥 [Since   𝑎, 𝑏 ∈

 𝐶𝑒𝑛𝑡 𝑅] 

𝑥 ∙ (𝑎 ∙ 𝑏)  𝑥 ∙ 𝑎𝑏  𝑎𝑥. 𝑏  𝑎. 𝑏𝑥 

𝐶𝑒𝑛𝑡 𝑅  is subring. 

Remark: 

(1) Let 𝑅 be a ring, 𝑛 positive integer,  

𝑛𝑎 𝑎 + 𝑎 +⋯+ 𝑎  ⏟          
𝑛 𝑡𝑖𝑚𝑒𝑠

,   𝑎𝑛𝑎. 𝑎 …  𝑎⏟    
𝑛 𝑡𝑖𝑚𝑒𝑠

 

(2) If 𝑅 is a ring with 1  and a is invertible  

𝑎−𝑛𝑎−1. 𝑎−1… 𝑎−1⏟          
𝑛 𝑡𝑖𝑚𝑒𝑠

𝑎0 1. 

Remark: 

Let 𝑅 be a ring and 𝑛,𝑚 ∈  𝑍 

(1) (𝑛 +  𝑚)𝑎  𝑛𝑎 +  𝑚𝑎. 

(2) 𝑛(𝑎  𝑏)  𝑛𝑎  𝑛𝑏. 

(3) (𝑛𝑚)𝑎  𝑛(𝑚𝑎)  𝑚(𝑛𝑎). 
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Proof :(1):(𝑛 +  𝑚)𝑎 𝑎 + 𝑎 +⋯+ 𝑎⏟        
(𝑛+𝑚) 𝑡𝑖𝑚𝑒𝑠

= 𝑎 + 𝑎 +⋯+ 𝑎⏟        
𝑛 𝑡𝑖𝑚𝑒𝑠

+ 𝑎 + 𝑎 +⋯+ 𝑎⏟        
𝑚 𝑡𝑖𝑚𝑒𝑠

 

 𝑛𝑎 +  𝑚𝑎 

Proof: (2): 𝑛(𝑎  𝑏)  (𝑎 − 𝑏) + (𝑎 − 𝑏) +⋯+ (𝑎 − 𝑏)⏟                      
𝑛 𝑡𝑖𝑚𝑒𝑠

 

= a + a +⋯+ a⏟        
n times

− b − b −⋯− b⏟        
n times

 

 𝑛𝑎  𝑛𝑏 

 

Definition: 

Let (𝑅,+,∙) be a ring, if there exists a positive integer 𝑛 such that 

 𝑛𝑎  0 , 𝑎  𝑅, then the smallest positive integer with this property is called 

the characteristic of  𝑅. If no such positive integer exists we say 𝑅 has 

characteristic zero, we denote the characteristic of  𝑅  by 𝐶ℎ𝑎𝑟 𝑅. 

Example: 

𝐶ℎ𝑎𝑟 𝑍  0  , 𝐶ℎ𝑎𝑟 𝑄  0   ,   𝐶ℎ𝑎𝑟 𝑍6 6,     𝐶ℎ𝑎𝑟 𝑍4 4,   𝐶ℎ𝑎𝑟 𝑍𝑛 𝑛. 

(𝑝(𝑥),,∩) , 𝐶ℎ𝑎𝑟 𝑝(𝑥)  2 

2𝐴  𝐴  𝐴  (𝐴 −  𝐴) ∪ ( 𝐴 𝐴 ) ∅ 

 

Theorem:(1) 

Let 𝑅 be a ring with identity, then 𝐶ℎ𝑎𝑟 𝑅  𝑛 >  0if and only if  𝑛 is the 

smallest positive integer such that  𝑛. 1  0. 

Proof:) 𝐶ℎ𝑎𝑟 𝑅  𝑛 >  0, then  𝑛. 𝑎  0, then  𝑛. 1  0 suppose ∃ positive 

integer 𝑚such that   𝑚 <  𝑛  ,   𝑚. 1  0 and let  𝑎  𝑅 
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𝑚 𝑎 = a + a + ⋯+ a⏟        
m times

= a. 1 + a. 1 + ⋯+ a. 1⏟            
m times

= 𝑚(1. 𝑎) 

 (𝑚. 1). 𝑎  0. 𝑎  0 C! 

Since  𝑛  is Char R. 

 

) Let  𝑎 ∈  𝑅  ,   𝑛𝑎  𝑛. (1. 𝑎) = (𝑛. 1). 𝑎 = 0. 𝑎  0 

𝐶ℎ𝑎𝑟 𝑅  𝑛  since   𝑛  is the smallest positive integer; 𝑛. 1  0. 

 

Corollary: 

 Let 𝑅 be an integral domain, then  𝐶ℎ𝑎𝑟 𝑅 is either zero or prime integer. 

Proof: Suppose  𝐶ℎ𝑎𝑟 𝑅 >  0, suppose  𝑛 = 𝑛1. 𝑛2  , 1 < 𝑛1 𝑛2 <  𝑛 . 

0 = 𝑛. 1 = (𝑛1  ∙ 𝑛2 ) ∙ 1   

(𝑛1. 𝑛2). 1  (𝑛1. 1). (𝑛2. 1) [𝑅 integral domain] 

But 𝑅 is integral domain, then either  𝑛1. 1  0  or  𝑛2. 1  0  C! by theorem(1) 

since   𝑛1, 𝑛2 <  𝑛  and  𝑛  is the smallest integer such that   𝑛. 1  0. 

 𝑛  is a prime integer. 

 

Definition: 

Let  𝑅  and  𝑅  be rings   𝑓: 𝑅  𝑅 , then 𝑓 is a ring homomorphism if  

(1) 𝑓(𝑎 +  𝑏)  𝑓(𝑎)  +  𝑓(𝑏). 

(2) 𝑓(𝑎. 𝑏)  𝑓(𝑎). 𝑓(𝑏). 

Example: 
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(1)Let  ∅: 𝑅  𝑅   ;   ∅(𝑟) 0    ∀𝑟 ∈ 𝑅 is a ring homomorphism is called zero 

homo. 

(2) 𝐼 ∶  𝑅  𝑅    ;     𝐼(𝑟) 𝑟    ∀𝑟 ∈ 𝑅 the identity homomorphism. 

(3)  ℎ ∶  𝑍 𝑍𝑛   ;     ℎ(𝑛) = �̅�      ∀𝑛 ∈ 𝑍  . 

Definition: 

Let  𝑓 ∶  𝑅  𝑅  be a ring homomorphism.  

1) If 𝑓 is one to one, then f is monomorphism. 

2) If 𝑓 is onto, then f is epimorphism. 

3) If 𝑓 is (1  1) and onto, then 𝑓 is isomorphism. 

Definition: 

If 𝑓 ∶  𝑅  𝑅   and  𝑓  is isomorphism, then we say that 𝑅 is isomorphic to 𝑅, 

𝑅 ≃  𝑅. 

Remark: 

 If 𝑓 ∶  𝑅  𝑅   is homomorphism, then: 

1) 𝑓(0𝑅) = 0𝑅,. 

2) 𝑓( 𝑎) =  𝑓(𝑎)      ∀𝑎 ∈ 𝑅 . 

3)  𝑓(1𝑅) 1𝑅, when  𝑅 and 𝑅 are rings with identity. 

Theorem: 

Any ring can be imbedded in a ring with identity. 

Proof: Let    𝑅 ×  𝑍  {(𝑟, 𝑛):   𝑟  𝑅 , 𝑛  𝑍} 

Define  +  and  . on  𝑅 ×  𝑍  as follows  
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  (𝑟, 𝑛) + (𝑡,𝑚) (𝑟 +  𝑡, 𝑛 +  𝑚). 

(𝑟, 𝑛). (𝑡,𝑚)  (𝑟𝑡 +  𝑛𝑡 +  𝑚𝑟, 𝑛𝑚) . 

Then  𝑅 ×  𝑍 is a ring with identity  (0, 1). 

(𝑟, 𝑛). (0, 1)  (𝑟, 𝑛). 

𝑅 × {0}  ⊆  𝑅 ×  𝑍. 

Now we must show that  𝑅 × {0} is subring of  𝑅 × 𝑍 

(𝑎, 0){∈  𝑅 ×  {0}}  (𝑏, 0){∈  𝑅 × {0}𝑓 =  (𝑎  𝑏, 0)  ∈  𝑅 × {0}  

(𝑎, 0). (𝑏, 0) =  (𝑎𝑏, 0)  𝑅  {0} 

Now we define a map  ∅: 𝑅  𝑅 × {0} ;    ∅(𝑟) =  (𝑟, 0)      ∀𝑟 ∈ 𝑅  

(1) Let  ∅(𝑟1) = ∅(𝑟2) 

  (𝑟1, 0) =  (𝑟2, 0)       𝑟1 = 𝑟2  

∴ ∅  is  (1  1)  

(2) Let   (𝑤, 0)  ∈  𝑅 × {0}. 

  ∅(𝑤) =  (𝑤, 0). 

 ∅  is onto,  ∅  is homo. 

(3)  ∅(𝑟1  +  𝑟2) =  (𝑟1  +  𝑟2, 0) =  (𝑟1, 0) + (𝑟2, 0) =  ∅(𝑟1)  +  ∅(𝑟2). 

∅(𝑟1. 𝑟2) =  (𝑟1𝑟2, 0). 

 ∅(𝑟1). ∅(𝑟2) = (𝑟1, 0). (𝑟2, 0) =  (𝑟1𝑟2, 0)  . 

 ∴  ∅  is homomorphism. 

  ∴   𝑅 ≃  𝑅 × {0} . 

  ∴  𝑅 is imbedded in a ring  𝑅 ×  𝑍. 
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Definition: 

Let 𝑅 be a ring an element  𝑎 ∈  𝑅  is said to be idempotent element if  𝑎2 𝑎. 

Definition: 

An element  𝑎 ∈  𝑅  is called nilpotent if there exists an integer  𝑛  such that 

 𝑎𝑛 0. 

Examples:  

(1) 𝑍6 {0̅, 1̅, 2̅, 3̅, 4̅, 5̅} 

Solution:0̅, 1̅, 3̅, 4̅ are idempotent.  0̅ is nilpotent only. 

(2) 𝑍8 {0̅, 1̅, 2̅, 3̅, 4̅, 5̅, 6̅, 7̅} 

Solution:0̅, 2̅, 4̅, 6̅ are nilpotent elements. 

(3) 𝑍5: the idempotent element are  0̅ , 1̅  and nilpotent is  0̅. 

(4) (𝑝(𝑥), , ∩) 

Solution:  𝐴 ∩ 𝐴  𝐴  ,   ∀ 𝐴  is idempotent   𝐴 ∩ … ∩ 𝐴  ∅ , just when   𝐴  ∅. 

 

Definition: 

 Let 𝑅 be a ring such that every element of R is idempotent, then R is Boolean 

ring. 

Example : 

In   𝑍2 {0, 1}  , (0̅)
2 =  0  , (1̅)2 1. 

 ∴   𝑍2 is Boolean ring. 
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Theorem: 

 Let  𝑅 be a ring such that every element in 𝑅 is idempotent (𝑅 is Boolean ring), 

then 𝑅 is commutative. 

Proof: (𝑎 +  𝑏) (𝑎 +  𝑏)2 (𝑎 +  𝑏) (𝑎 +  𝑏)  𝑎. 𝑎 +  𝑎. 𝑏 +  𝑏. 𝑎 +  𝑏. 𝑏  

𝑎 +  𝑏 𝑎2 +  𝑎. 𝑏 +  𝑏. 𝑎 + 𝑏2 

𝑎 +  𝑏  𝑎 +  𝑏 +  𝑎. 𝑏 +  𝑏. 𝑎 

0  𝑎𝑏 +  𝑏𝑎  𝑎𝑏 𝑏𝑎 

𝑎𝑏  (𝑏𝑎) (𝑏𝑎)2𝑏2𝑎2 𝑏𝑎 

𝑅is commutative. 

Remark: 

Let 𝑅 be a ring if there exists an element 𝑎 ∈ 𝑅 , such that: 

(1) 𝑎is idempotent. 

(2) 𝑎  is not zero divisor. Then  𝑎 must be the identity of the ring. 

Proof: (2) Let   𝑏 ∈  𝑅 

𝑎. 𝑏 = 𝑎2𝑏        (𝑎2. 𝑏) 𝑎. 𝑏 =  0. 

   𝑎(𝑎𝑏  𝑏) =  0   [ 𝑎is not zero divisor] 

∴  𝑎𝑏  𝑏  0         𝑎𝑏  𝑏 . 

∴   𝑎  is identity. 

Example: 

Consider the ring (𝑝(𝑥), , ∩)   ;    𝑝(𝑥)  {𝐴: 𝐴 ⊆  𝑋}, for a fixed subset  

𝑆 ⊆  𝑋  ,   𝑆 ∈  𝑝(𝑥), define  𝑓 ∶  𝑝(𝑥) 𝑝(𝑥)   by  
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  𝑓(𝐴)  𝐴 ∩  𝑆. 

(1) 𝐴  𝐵     𝐴 ∩ 𝑆 =   𝐵 ∩  𝑆  . 

 𝑓(𝐴) =   𝑓(𝐵)    

  ∴  𝑓  is well defined. 

(2)  𝑓(𝐴  𝐵) =  𝑓(𝐴) 𝑓(𝐵) ? 

𝑓(𝐴  𝐵) = (𝐴  𝐵)  ∩ 𝑆      

= [(𝐴  𝐵)  ∪  (𝐵  𝐴)]  ∩ 𝑆       

= [(𝐴  𝐵)  ∩ 𝑆]  ∪ [(𝐵  𝐴)  ∪  𝑆]     

= (𝐴 ∩  𝑆  𝐵 ∩ 𝑆)  ∪  (𝐵 ∩  𝑆  𝐴 ∩ 𝑆)     

= (𝐴 ∩ 𝑆) (𝐵  𝑆) 𝑓(𝐴) 𝑓(𝐵)    

(2) 𝑓(𝐴 ∩  𝐵) = (𝐴 ∩  𝐵)  ∩  𝑆  (𝐴 ∩  𝑆)  ∩ (𝐵 ∩  𝑆)  𝑓(𝐴)  ∩  𝑓(𝐵) 

   ∴  𝑓  is homomorphism. 

(3) 𝑘𝑒𝑟 𝑓  {𝐴 ⊆  𝑝(𝑥): 𝑓(𝐴)  ∅}  {𝐴 ⊆  𝑝(𝑥): 𝐴 ∩  𝑆  ∅} 𝑆𝑐  identity. 

(4) ∀ 𝐴 ⊆  𝑋     𝑋 ∩ 𝐴  𝐴    , identity  𝑋 

  ∴  𝑓  is not (1  1). 

 

Problems: 

1) Let 𝑅 be a ring and 𝑎 ∈ 𝑅, If  𝐶(𝑎) the set of all elemente with 𝑎 ,             

𝐶(𝑎)  = { 𝑟 ∈ 𝑅 ∶  𝑟𝑎 =  𝑎𝑟 } show that 𝐶(𝑎) is subring of 𝑅. and 

𝐶𝑒𝑛𝑡 𝑅 = ∩𝑎∈𝑅  𝐶(𝑎). 
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2) Let (𝐺, +) be abelian group, 𝑅 set of all groups homomorphism of   𝐺 in 

to itself  (𝑓 +  𝑔)(𝑥)  =  𝑓(𝑥) + 𝑔(𝑥), 𝑓 ∘ 𝑔(𝑥) =  𝑓(𝑔(𝑥)), show that 

( 𝑅, +, ∘ )form a ring, determine the invertible elements of 𝑅. 

3) Given that  𝑓 is homomorphism. from the ring 𝑅 in to the ring 𝑅,prove 

that  

A.   𝑓( 𝐶𝑒𝑛𝑡 (𝑅))  ⊆  𝐶𝑒𝑛𝑡 ( 𝑓(𝑅)) 

B. If  𝑎 ∈  𝑅 is nilpotent, then  𝑓(𝑎) is nilpotent in 𝑅. 

C.  If  𝑅 has positive characteristic,then  𝐶ℎ𝑎𝑟 𝑓(𝑅)  ≤  𝐶ℎ𝑎𝑟 𝑅. 

4) Let  𝑅 be a ring without zero divisors: 

i.  𝑎 . 𝑏 = 1  iff  𝑏 . 𝑎 =  1 

ii. If  𝑎2 =  1  then either  𝑎 = 1  or  𝑎 =  −1. 

Sol( 𝒊 ): 

If  𝑎. 𝑏 = 1, then  𝑏 ≠ 0 

[If    𝑏 = 0   ⟹  𝑎 . 0 = 0 ≠ 1] 

 ∴  𝑎 . 𝑏 = 1   ⟹   𝑏 . 𝑎 . 𝑏 =  𝑏   

𝑏. 𝑎. 𝑏 –  𝑏 = 0  ⟹ ( 𝑏𝑎 − 1)𝑏 = 0     , 𝑏 ≠ 0         

 ∴   𝑏𝑎 = 1    

Sol ( 𝒊 𝒊 ):  

𝑎2  = 1   ,    𝑎 . 𝑎 = 1 − 𝑎 +  𝑎    

𝑎 . 𝑎 +  𝑎 –  𝑎 −  1 =  0    

  𝑎. ( 𝑎 +  1 ) − (𝑎 +  1) =  0    



The Rings                                                Dr. Nuhad Salim  

 

17 
 

(𝑎 +  1). (𝑎 − 1) =  0    

Either   𝑎 = 1  or    𝑎 =  −1. 

 

Definition: 

Let 𝐼 be a nonempty subset of ring 𝑅, then 𝐼 is ideal of  𝑅 if  

(1)  𝑎  𝑏 ∈  𝐼  𝑎, 𝑏 ∈  𝐼. 

(2)  𝑎𝑟 ∈  𝐼   ,     (𝑟𝑎 ∈ 𝐼 )      𝑎 ∈  𝐼 , 𝑟 ∈  𝑅. 

(3)  𝐼  ∅ . 

Remark: 

Every ideal is subring. 

Proof: Let 𝐼 be an ideal, to show that 𝐼 is subring  

(1)  𝐼  ∅  . 

(2)Let   𝑎, 𝑏 ∈  𝐼      𝑎. 𝑏 ∈  𝐼  ,   𝑎  𝑏 ∈  𝐼 

 ∴ 𝐼  is subring 

But the converse is not true for example: 

(𝑄,+, . ) is a ring,   𝑍 ⊆  𝑄  ;   𝑍 is subring  

  3 ∈  𝑍   ,
1

2
 ∈  𝑄  ,    3.

1

2
=
3

2
  ∉ 𝑍   . 

  ∴  𝑍  is not ideal 

Example: In the ring  𝑍  

 (1) 2𝑍  is subring and ideal. 

(2)  5𝑍 , 3𝑍   are ideals. 
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In general  𝑛𝑍 is an ideal ∀𝑛 . 

 

Remark(1): 

Let 𝐼 be an ideal of a ring with 1. If  1 ∈  𝐼, then 𝐼  𝑅. 

Proof:  𝐼 ⊆  𝑅, let   𝑟 ∈  𝑅  , 1 ∈  𝐼 but 𝐼 is ideal  

∴   1. 𝑟 ∈  𝐼      𝑟 ∈  𝐼      𝑅 ⊆  𝐼 . 

Thus   𝐼  𝑅 

 

Remark(2): 

Let  𝐼 be an ideal of a ring with 1 and  𝐼 contains an invertible element, then 

𝐼  𝑅. 

Proof: 𝑎 ∈  𝐼 but a is invertible then  ∃  𝑏 ∈  𝑅such that  𝑎. 𝑏 ∈  𝐼  1 ∈  𝐼 

  ∴   𝐼  𝑅, by remark (1). 

 

Definition: An ideal  𝐼 of a ring  𝑅 is called a proper ideal if  𝐼  𝑅 and  𝐼 is 

called nontrivial ideal if  𝐼  {0}  and  𝐼  𝑅. 

 

Theorem: Let {𝐼𝛼: 𝛼 ∈ } be a family of ideals of a ring R, then  ⋂ I  is an 

ideal in 𝑅. 

Proof:  ⋂ I ≠ ∅      [0 ∈  𝐼𝛼    ∀] 

Let     𝑎, 𝑏 ∈ ⋂ 𝐼        𝑎 ∈ 𝐼      ∀    and   𝑏 ∈  𝐼     ∀ ∈   

    𝑎  𝑏 ∈ 𝐼      ∀ ∈  [ideal def.]   𝑎  𝑏 ∈ ⋂ 𝐼    

Let    𝑎 ∈  ⋂ 𝐼   ,     𝑟 ∈  𝑅    
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𝑎 ∈  𝐼    ∀ ∈           𝑟𝑎 ∈  𝐼      

    𝑟𝑎 ∈  ⋂ 𝐼     

⋂ 𝐼            is ideal. 

But the union is not ideal for example: 

 2𝑍  is ideal,  3𝑍  is ideal,     2 ∈  2𝑍  , 3 ∈ 3𝑍 

If 2𝑍 ∪ 3𝑍   is ideal  

    2, 3 ∈  2𝑍 ∪ 3𝑍  3  2 ∈  2𝑍 ∪ 3𝑍 𝐶!    1  2𝑍 ∪  3𝑍 

   2𝑍 ∪ 3𝑍   is not ideal. 

 

Definition: 

Let  𝑆  be a nonempty subset of a ring 𝑅 the set  < 𝑆 > , where: 

 < 𝑆 >  ∩ {𝐼 ∶  𝐼 𝑖𝑠 𝑎𝑛 𝑖𝑑𝑒𝑎𝑙 𝑜𝑓 𝑅 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑆} 

is called the ideal generated by 𝑆. 

Remark: 

1. < 𝑆 >is smallest ideal containing 𝑆. 

2.   < 𝑆 > = 𝑆 if and only if 𝑆 is an ideal. 

3. If  𝑆  {𝑎} , < 𝑆 > = < 𝑎 >   is called principle ideal. 

Remark: 

If 𝑅 is commutative ring with identity and 𝑥 ∈  𝑅, then 

< 𝑥 >  {𝑟𝑥:  𝑟 ∈  𝑅}  𝑅𝑥 

For example:< 2 > =  2𝑍 , < 3 > = 3𝑍 
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Definition: 

A ring 𝑅 is called principle ideal ring if every ideal in 𝑅 is principle ideal. 

Theorem: 

(𝑍,+, . )  is P. I. R. 

Proof: Suppose 𝐼 be an ideal in 𝑍 if  𝐼 =  {0}, then  𝐼 =< 0 > if 𝐼  {0}, then ∃ 

an integer  0  𝑚 ∈  𝐼 , if it is negative then  −𝑚 ∈  𝐼 , then  𝐼contains a positive 

integer, let 𝑛 be the least positive integer such that 𝑛 ∈  𝐼, we claim that 𝐼  <

𝑛 >.  

It's clear that  < 𝑛 > ⊆ 𝐼  since  𝑛 ∈  𝐼. 

Now, let  𝑚 ∈  𝐼 by division algorithm theorem  ∃  𝑞, 𝑟 ∈  𝑍, such that: 

𝑚  𝑛𝑞 +  𝑟   ,   0  𝑟 <  𝑛    , 𝑟  𝑚(∈ 𝐼)  𝑛𝑞(∈  𝐼)  

 𝑟 ∈ 𝐼 C! since  𝑛 is the least positive integer  𝑛 ∈  𝐼 and   𝑟 <  𝑛. 

 𝑟  0      𝑚  𝑛𝑞 

  𝑚 ∈ < 𝑛 > 

 𝐼 =< 𝑛 > 

The union is not ideal for example:  

 𝑍6{0̅, 1̅, 2̅, 3̅, 4̅, 5̅}, 𝐼1 {0̅, 2̅, 4̅}, 𝐼2 {0̅, 3̅}   

∪ 𝐼𝑖 {0̅, 2̅, 3̅, 4̅}   

3  2  1 ∉ ∪ 𝐼𝑖 , 𝑖 1, 2  . 
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Definition: 

Let 𝐼 and 𝐽 be ideals of a ring 𝑅, then the sum of  𝐼  and  𝐽  denoted by: 

𝐼 +  𝐽  {𝑎 +  𝑏:  𝑎 ∈  𝐼 , 𝑏 ∈ 𝐽}. 

Remark: 

If 𝐼 and 𝐽 ideals in 𝑅 then  𝐼 +  𝐽  is also ideal in R. 

Proof: 𝐼 +  𝐽  ∅   [0 ∈  𝐼 , 0 ∈  𝐽  0 ∈  𝐼 +  𝐽] 

Let 𝑤1, 𝑤2 ∈ 𝐼 +  𝐽    𝑤1 𝑎1  +  𝑏1  , 𝑎1 ∈  𝐼  , 𝑏1 ∈ 𝐽, 𝑤2 𝑎2  +  𝑏2 , 𝑎2 ∈ 𝐼,

𝑏2 ∈  𝐽 

𝑤1 −𝑤2 𝑎1  +  𝑏1 𝑎2 𝑏2 (𝑎1𝑎2)(∈  𝐼) + (𝑏1𝑏2)(∈  𝐽)   

𝑤1 𝑤2 ∈  𝐼 +  𝐽. 

Let 𝑤  𝐼 +  𝐽 , 𝑟  𝑅 , 𝑤  𝑎 +  𝑏   ;   𝑎 ∈ 𝐼 , 𝑏 ∈  𝐽 

𝑟𝑤   𝑟(𝑎 +  𝑏)  𝑟𝑎(∈  𝐼)  +  𝑟𝑏(∈  𝐽)  ∈  𝐼 +  𝐽  

 𝐼  𝐽  is an ideal. 

 

Example:𝑍6 {0̅, 1̅, 2̅, 3̅, 4̅, 5̅} , 𝐼  {0̅, 3̅}  , 𝐽  {0̅, 2̅, 4̅} 

𝐼 +  𝐽  {0̅, 2̅, 4̅, 3̅, 5̅, 1̅} 𝑍6  

𝐼 +  𝐽  is an ideal 

Example: 

In (𝑍, +, . ) 

2𝑍 +  3𝑍 ideal. 
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Definition: 

 Let 𝐼 and 𝐽 be ideals in a ring 𝑅 we say that 𝑅 is internal direct sum of  𝐼 and  𝐽 

if: 

(1) 𝑅  𝐼 +  𝐽 

(2) 𝐼 ∩  𝐽  {∅} 

We denote that by:  𝑅  𝐼 ⨁ 𝐽  . 

Example:𝑍6 {0̅, 1̅, 2̅, 3̅, 4̅, 5̅}    

 𝐼  {0̅, 3̅}  ,   𝐽  {0̅, 2̅, 4̅}    

  ∴  𝑍6 =  𝐼 ⨁𝐽   𝑜𝑟  𝑍6 = 𝑍6⨁ {0}     

Theorem: 

 Let 𝐼 and 𝐽 be ideal in 𝑅, then 𝑅  𝐼 ⨁ 𝐽if and only if every element in 𝑅 can be 

written in only one way. 

Proof:) Let 𝑅  𝐼 ⨁𝐽         𝑅  𝐼 +  𝐽  ,   𝐼 ∩  𝐽  {0} let 𝑟  𝑅 

∃  𝑎 ∈  𝐼  , 𝑏 ∈  𝐽  such that  𝑟  𝑎 +  𝑏  if not  𝑟  𝑎1 +  𝑏1  , 𝑎1 ∈  𝐼 , 𝑏1 ∈

 𝐽  

𝑎1  +  𝑏1 𝑎 +  𝑏     𝑎1 𝑎  𝑏  𝑏1 ∈  𝐼 ∩  𝐽  {0} 

𝑎1 𝑎  0      𝑎  𝑎1 , 𝑏  𝑏1 0        𝑏   𝑏1 

) 𝐼 +  𝐽 ⊆ 𝑅   ,   𝑙𝑒𝑡 𝑤 ∈  𝑅   , 𝑤  𝑤 +  0 ∈  𝐼 +  𝐽 

𝑅 ⊆  𝐼 +  𝐽       𝑅  𝐼 +  𝐽 

Let   𝑤 ∈  𝐼 ∩ 𝐽       𝑤 ∈  𝐼 and   𝑤 ∈  𝐽 ,   𝑤   𝑤 +  0 =   0 +  𝑤 𝐶! 

𝑤  0 
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Definition: 

 Let  𝑅1, 𝑅2 be rings consider the set  𝑅1 × 𝑅2  {(𝑥, 𝑦): 𝑥 ∈ 𝑅1 , 𝑦 ∈ 𝑅2}, 

define  +, ⋅  on  𝑅1 × 𝑅2 

(𝑥1, 𝑦1)  + (𝑥2, 𝑦2)  (𝑥1  +  𝑥2,  𝑦1 + 𝑦2) 

(𝑥1, 𝑦1). (𝑥2, 𝑦2)  (𝑥1. 𝑥2 ,  𝑦1. 𝑦2) 

Then we can show that  𝑅1 × 𝑅2  is a ring? Is called the external direct sum of 𝑅1 

and 𝑅2 

𝑅1 ≃ 𝑅1 × {0}    ,   𝑅2 ≃ {0}  × 𝑅2 

Theorem: 

Let 𝑓 ∶  𝑅  𝑅 be ring homomorphism.  

(1) If  𝐾 is an ideal in 𝑅 , then 𝑓−1(𝐾) is an ideal in 𝑅. 

(2) If  𝐽 is an ideal in 𝑅 and 𝑓 is onto then  𝑓(𝐽) is ideal in 𝑅 

Proof:  𝑓−1(𝐾) {𝑟  𝑅: 𝑓(𝑟) 𝐾} ≠ ∅   since [0 ∈  𝑓−1(𝐾), 𝑓(0) 0̅  ∈  𝐾] 

Let  𝑥, 𝑦 ∈  𝑓−1(𝐾) 𝑓(𝑥) ∈  𝐾  ,   𝑓(𝑦) ∈  𝐾  

 𝐾is ideal       𝑓(𝑥) 𝑓(𝑦) ∈  𝐾  , 𝑓 is ring homomorphism   𝑓(𝑥  𝑦)  ∈  𝐾  

   𝑥  𝑦 ∈  𝑓−1(𝐾) 

Let   𝑤 ∈  𝑓−1(𝐾)  ,   𝑟 ∈  𝑅  ,   𝑓(𝑤) ∈  𝐾 , 𝑓(𝑟)  ∈  𝑅and  𝐾 is ideal 

 𝑓(𝑤). 𝑓(𝑟)  ∈  𝐾 [ 𝑓 isring homomorphism]  𝑓(𝑤. 𝑟)  ∈  𝐾  𝑤. 𝑟 ∈  𝑓−1(𝐾) 

 𝑓−1(𝐾)is ideal. 

(2)  𝑓(𝐽)  ≠  ∅ since [ 0𝑅 𝑓(0𝑅) 0𝑅 ∈ 𝑓(𝐽)] 

Let   𝑥, 𝑦 ∈  𝑓(𝐽)      𝑥  𝑓(𝑤1)   , 𝑤1 ∈  𝐽  , 𝑦  𝑓(𝑤2)  ,   𝑤2 ∈  𝐽 
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𝑤1 𝑤2 ∈  𝐽 [ Since  𝐽 is an ideal],   𝑓(𝑤1𝑤2)  ∈  𝑓(𝐽) [𝑓 is homomorphism] 

    𝑓(𝑤1) 𝑓(𝑤2) ∈  𝑓(𝐽)  , 𝑥  𝑦 ∈  𝑓(𝐽)  

Let   𝑎  𝑓(𝐽) ,   𝑟 ∈  𝑅  ,   𝑎  𝑓(𝑤)  ,   𝑤 ∈  𝐽 

𝑟 𝑅   since  𝑓 is onto then   ∃ 𝑟  𝑅  such that  𝑓(𝑟)  𝑟 

  𝑟𝑤 ∈  𝐽 [𝐽is ideal] 

 𝑓(𝑟𝑤) 𝑓(𝐽), 𝑓(𝑟)𝑓(𝑤) 𝑓(𝐽)    [𝑓  is homomorphism ],   𝑟𝑎  𝑓(𝐽) 

  𝑓(𝐽)  is an ideal. 

Corollary: 

Let 𝑓: 𝑅  𝑅 be a ring homomorphism, then 𝑘𝑒𝑟𝑓 is ideal in 𝑅. 

Proof:  ker 𝑓 = {𝑟  𝑅 ∶  𝑓(𝑟) 0 } = 𝑓−1(𝑂�́�), 𝑂�́� is ideal by theorem 

 𝑓−1(𝑂�́�)is ideal  

 𝑘𝑒𝑟 𝑓  is ideal. 

The quotient ring, let I be an ideal in a ring 𝑅  ,   
𝑅

𝐼
 {𝑥 +  𝐼: 𝑥  𝑅} . Define +,

∙  as: 

(𝑥 +  𝐼) + (𝑦 +  𝐼) (𝑥 +  𝑦) +  𝐼   
𝑅

𝐼
   

(𝑥 +  𝐼). (𝑦 +  𝐼) =  (𝑥. 𝑦) +  𝐼  
𝑅

𝐼
    

To show that  +,∙ is well define (1) is well defined, by (1) 

𝑥 +  𝐼  𝑥1  +  𝐼        𝑥  𝑥1 𝐼    

𝑦 +  𝐼  𝑦1  +  𝐼       𝑦  𝑦1 𝐼     

(𝑥 +  𝐼). (𝑦 +  𝐼) (𝑥1  +  𝐼). (𝑦1  +  𝐼)     

𝑥𝑦 +  𝐼  𝑥1𝑦1  +  𝐼        𝑥𝑦  𝑥1𝑦1 𝐼     
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𝑥𝑦   𝑥1𝑦1 = 𝑥𝑦  𝑥𝑦1  +  𝑥𝑦1 𝑥1𝑦1    

=  𝑥(𝑦 𝑦1) + (𝑥 𝑥1)𝑦1   𝐼   (𝐼   is ideal)  

Then   𝑥𝑦  𝑥1𝑦1  𝐼      is well defined. 

 

Theorem: 

Let 𝐼 be an ideal of a ring 𝑅, then (
R

I
, +, ∙) is a ring which is called the quotient 

ring of 𝑅 by 𝐼. 

Proof: (1) well defined 

𝑎 +  𝐼  𝑎1  +  𝐼       𝑎  𝑎1 𝐼, 𝑏 +  𝐼   𝑏1  +  𝐼      𝑏  𝑏1 𝐼 

(𝑎 +  𝐼 ) + ( 𝑏 +  𝐼 ) =? (𝑎1  +  𝐼 ) + ( 𝑏1  +  𝐼)    

  (𝑎 +  𝑏) +  𝐼 =  (𝑎1  +  𝑏1) +  𝐼      𝑎 +  𝑏  ( 𝑎1  +  𝑏1) 𝐼     

𝑎 +  𝑏   𝑎1   𝑏1 𝑎   𝑎1( 𝐼) +  𝑏   𝑏1( 𝐼) 𝐼     

+  is well define∙ is well define. 

(2) Associative  

𝑟 +  𝐼 + [ (𝑟1  +  𝐼 ) + (𝑟2  +  𝐼)] =? [ (𝑟 +  𝐼) + ( 𝑟1  +  𝐼)]  + (𝑟2 +  𝐼 ) 

  (𝑟 +  𝐼 ) + ( 𝑟1  +  𝑟2  +  𝐼 ) =  (𝑟 +  𝑟1  +  𝐼 ) + (𝑟2  +  𝐼)  

( 𝑟 + 𝑟1  +  𝑟2) +  𝐼 =    (𝑟 +  𝑟1  + 𝑟2)  +  𝐼 

(3)The identity  

  (𝑟 +  𝐼) + (0 +  𝐼 ) =   (𝑟 +  0) +  𝐼 =  𝑟 +  𝐼 

 0 +  𝐼  𝐼    is the identity. 

(4)   (𝑟 +  𝐼 ) + [( 𝑟) +  𝐼] =   (𝑟 –  𝑟) +  𝐼 =  0 +  𝐼 =  𝐼  
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( 𝑟) +  𝐼   is the inverse  

(5)   (𝑟 +  𝐼 ) + (𝑟1  +  𝐼) (𝑟1  +  𝐼 ) + (𝑟 +  𝐼)  

   (𝑟 + 𝑟1) +  𝐼    (𝑟1  +  𝑟)  +  𝐼 

  (𝑟 +  𝑟1) +  𝐼   (𝑟 + 𝑟1) +  𝐼 , since   𝑟 + 𝑟1 𝑅 and 𝑅 is a ring  𝑟 +

 𝑟1𝑟1  +  𝑟 [abelian group]  

   (𝑅/𝐼, +)is abelian group. 

(6) [(𝑎 +  𝐼). (𝑏 +  𝐼))]. (𝑐 +  𝐼)  (𝑎. 𝑏 +  𝐼). (𝑐 +  𝐼)  𝑎. 𝑏. 𝑐 +  𝐼 

(𝑎 +  𝐼). [(𝑏 +  𝐼). (𝑐 +  𝐼)]  (𝑎 +  𝐼). (𝑏. 𝑐 +  𝐼)  𝑎. 𝑏. 𝑐 +  𝐼  

(7)(𝑎 +  𝐼). [(𝑏 +  𝐼) + ( 𝑐 +  𝐼)]  (𝑎 +  𝐼)(𝑏 +  𝑐 + 𝐼)     

  𝑎. (𝑏 +  𝑐)  +  𝐼    

                                               =  𝑎. 𝑏 +  𝑎. 𝑐 +  𝐼   

 = (𝑎𝑏 +  𝐼 ) + ( 𝑎. 𝑐 +  𝐼)    

 (𝑎 +  𝐼)(𝑏 +  𝐼)  + (𝑎 +  𝐼)(𝑐 +  𝐼). 

 ∙ Is associative   (
R

I
 , + , ∙)   is a ring. 

 

Note: If  𝑅  with identity 1, then   
R

I
  with identity  1 +  𝐼 . 

 

Example: Let Z be a ring, 

(1)  
Z

3Z
= {3𝑍 , 1 +  3𝑍 , 2 +  3𝑍 ,⋯ }. 

(2)  
Z

4Z
= {4𝑍 , 1 +  4𝑍 , 2 +  4𝑍 , 3 +  4𝑍 ,⋯ }. 
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(3)  
Z

2Z
 {2𝑍 , 1 +  2𝑍 ,⋯ }. 

Remark: 

Let 𝐼 be an ideal of 𝑅, the function  𝜋 ∶ 𝑅 ⟶ 𝑅/𝐼 defined by  𝜋(𝑟) =  𝑟 +  𝐼, for 

all   𝑟 ∈  𝑅, is a ring epimorphism , it is called the natural epemorphism. 

 𝜋 (𝑟1 + 𝑟2) =?  𝜋 (𝑟1)  +  𝜋 (𝑟2)      

 ( 𝑟1 + 𝑟2) + I = (𝑟1 + 𝐼) + (𝑟2 + I)     

  𝜋 (𝑟1. 𝑟2) =?  𝜋 (𝑟1). 𝜋 (𝑟2)     

   (𝑟1. 𝑟2) . 𝐼 =  (𝑟1  +  𝐼) . (𝑟2  +  𝐼).  

 

Remark: (Fundamental Homomorphism Theorem of rings) 

 Let 𝑓 ∶  𝑅  𝑅 be a ring homomorphism, which is onto, then  𝑅/𝑘𝑒𝑟 𝑓 ≃  𝑅 

. 

Proof: Define  𝑔: 
𝑅

𝑘𝑒𝑟 𝑓
 𝑅  by  𝑔(𝑟 +  𝐾) =  𝑓(𝑟) where  𝑘𝑒𝑟 𝑓  𝐾 

(1) 𝑟 +  𝐾 =  𝑟1  +  𝐾       𝑟  𝑟1 𝐾 

   𝑓(𝑟  𝑟1) = 0    ,    𝑓(𝑟) 𝑓(𝑟1) = 0     𝑓(𝑟) = 𝑓(𝑟1)    

       𝑔(𝑟 +  𝐾) =  𝑔(𝑟1  +  𝐾)    

Well defined 

(2) 𝑔   is homomorphism 

𝑔((𝑟 + 𝐾) + (𝑟1  +  𝐾)) =  𝑔(𝑟 + 𝐾) +  𝑔(𝑟1  + 𝐾)    

 𝑔(𝑟 + 𝑟1  +  𝐾) = 𝑓(𝑟) +  𝑓(𝑟1)     

 𝑓(𝑟 + 𝑟1) 𝑓(𝑟 + 𝑟1)(𝑠𝑖𝑛𝑐𝑒 𝑓 𝑖𝑠 ℎ𝑜𝑚𝑜. )   
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𝑔((𝑟 + 𝐾) ∙  (𝑟1  +  𝐾)) =?  𝑔(𝑟 + 𝐾) ∙  𝑔(𝑟1  + 𝐾)    

 𝑔  is homo. 

(3) 𝑔(𝑟 +  𝐾) 𝑔(𝑟1  +  𝐾)    𝑓(𝑟)  𝑓(𝑟1)       𝑓(𝑟)  𝑓(𝑟1)  0 [Since𝑓 is 

homomorphism] 

𝑓(𝑟  𝑟1) 0  𝑟  𝑟1 𝑘𝑒𝑟 𝑓  𝐾       𝑟 +  𝐾   𝑟1  + 𝐾      𝑔 𝑖𝑠 (1  1) 

(4) Let   𝑤  𝑅  since  𝑓 is onto    𝑥  𝑅,such that 𝑓(𝑥)  𝑤  

 𝑔(𝑥 +  𝐾) 𝑓(𝑥) 𝑤     𝑔is onto. 

 

Example: Show that   
Z

nZ
≃ 𝑍𝑛   

Solution:   𝑓 ∶  𝑍 𝑍𝑛    ,    𝑓(𝑥) = �̅�       ∀𝑥 ∈ 𝑍    

𝑓(𝑥 +  𝑦) =   𝑥 + 𝑦̅̅ ̅̅ ̅̅ ̅ =  �̅�  + �̅�  = 𝑓(𝑥)  +  𝑓(𝑦) 

𝑓(𝑥𝑦) = 𝑥𝑦̅̅ ̅  = �̅�. �̅� =  𝑓(𝑥). 𝑓(𝑦) 

𝑓  is homo. 

Let  w̅𝑍𝑛   𝑤  𝑍  such that  𝑓(𝑤)�̅�  

𝑓   is onto 

by F. H. Th.   
Z

ker f
≃ 𝑍𝑛   

  𝑘𝑒𝑟 𝑓 =  {𝑥  𝑍: 𝑓(𝑥) = 0̅} = {𝑥  𝑍: �̅� = 0̅} =  𝑛𝑍  

   
𝑍

𝑛𝑍
≃ 𝑍𝑛  . 

Remark: 

The only nontrivial homomorphism from 𝑍 to 𝑍 is the identity. 

Proof:   𝑓 ∶  𝑍  𝑍   ;    0  𝑛  𝑍   ,  



The Rings                                                Dr. Nuhad Salim  

 

29 
 

𝑓(𝑛) = 𝑓(1 + 1 +⋯+ 1)⏟          
𝑛 𝑡𝑖𝑚𝑒𝑠

= 𝑓(1) + 𝑓(1) + ⋯+ 𝑓(1)⏟                
𝑛 𝑡𝑖𝑚𝑒𝑠

 

[Since 𝑓 is homomorphism] 

𝑓(𝑛)  𝑛𝑓(1) ………()  

𝑓(𝑛) 𝑓(𝑛. 1)    

𝑓(𝑛). 1  𝑓(𝑛). 𝑓(1) 𝑓(1) 1   [ by()] 

  𝑓(𝑛)  𝑛  

 𝑓   is identity. 

 

Corollary (1): 

 Let 𝑅 be a ring and suppose that 𝑓, 𝑔 a ring isomorphism, then  

𝑓 =  𝑔 ∶  𝑅  𝑍. 

Proof:  𝑓 ∶  𝑅  𝑍  ,    𝑔: 𝑅  𝑍     ;       𝑅 ≃  𝑍  

  𝑔−1: 𝑍  𝑅   is a ring isomorphism  

  𝑓 ∘ 𝑔−1 ∶  𝑍  𝑍   ,   (𝑍 
𝑔−1

→   𝑅 
𝑓 
→  𝑍)     𝑓 ∘ 𝑔−1 ∶  𝑍  𝑍    

  𝑓 ∘ 𝑔−1 𝐼   [by Remark] 

 𝑔  𝑓 

 

Corollary (2): 

Let 𝑅 be a ring and   𝑓, 𝑔: 𝑅  𝑍 be an epimorphism, then if  

  𝑘𝑒𝑟 𝑓  𝑘𝑒𝑟 𝑔 , then  𝑓  𝑔 . 
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Proof: by 𝐹.𝐻. 𝑇ℎ.  𝑅/𝑘𝑒𝑟 𝑓 ≃  𝑍and  
𝑅

𝑘𝑒 𝑟 𝑔
≃  𝑍 , by coro.(1)  𝑓 = 𝑔; 

 𝑓: 𝑅/𝑘𝑒𝑟 𝑓 →  𝑍 and  𝑔: 𝑅/𝑘𝑒𝑟 𝑔 →  𝑍 .  To prove that  𝑓  𝑔 

Let  𝑟  𝑅 ,   𝑓(𝑟)𝑓 (𝑟 +  𝑘𝑒𝑟 𝑓) = 𝑔(𝑟 + 𝐾𝑒𝑟𝑔) = 𝑔(𝑟);   

𝑓  𝑔. 

Theorem: 

𝑍𝑛 𝑍𝑚  ≃ 𝑍𝑛𝑚  if and only if   𝑔. 𝑐. 𝑑(𝑛,𝑚)  1. 

Proof: We only have to show that  
𝑍

𝑛𝑍


𝑍

𝑚𝑍
 ≃  

𝑍

𝑛𝑚𝑍
  since by F. H. Th.  

𝑍

𝑛𝑍
≃  𝑍𝑛 

and  𝑍𝑛𝑚 ≃
𝑍

𝑛𝑚𝑍
 

Define ∅: 𝑍 
𝑍

𝑛𝑍


𝑍

𝑚𝑍
 

By ∅(𝑥)  (𝑥 +  𝑛𝑍 , 𝑥 +  𝑚𝑍)   ∀𝑥  𝑍 

 ∅  is a ring homomorphism?  

 ker ∅ = {𝑥  𝑍: ∅(𝑥) = (𝑛𝑍 ,𝑚𝑍)}    

 {𝑥  𝑍: (𝑥 +  𝑛𝑍 , 𝑥 +  𝑚𝑍)  (𝑛𝑍,𝑚𝑍)}    

= {𝑥  𝑍: (𝑥  𝑛𝑍, 𝑥  𝑚𝑍)} = {𝑥  𝑍: 𝑥  𝑛𝑍 ∩ 𝑚𝑍} 𝑛𝑚𝑍    

since   𝑔. 𝑐. 𝑑(𝑛,𝑚) = 1 

∅  is onto: Let  (𝑎 +  𝑛𝑍 , 𝑏 +  𝑚𝑍) 
Z

nZ

Z

mZ
 

𝑔. 𝑐. 𝑑(𝑛,𝑚)  1     ∃ 𝑠, 𝑡  𝑍 

𝑠𝑛 +  𝑡𝑚  1 …………() ,since   𝑠𝑛 − 1 ∈ 𝑚𝑍    and   𝑡𝑚 −  1 ∈ 𝑛𝑍  

Let 𝑥  𝑎 𝑡𝑚 +  𝑏𝑠𝑛 ………()  

   ∅(𝑥) =  (𝑥 +  𝑛𝑍 , 𝑥 +  𝑚𝑍)     
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  =  (𝑎𝑡𝑚 +  𝑛𝑍, 𝑏𝑠𝑛 +  𝑚𝑍)     

       =  (𝑎 +  𝑛𝑍, 𝑏 +  𝑚𝑍)     

 𝑎 +  𝑛𝑍  𝑎𝑡𝑚 +  𝑛𝑍     𝑎  𝑎𝑡𝑚  𝑛𝑍  𝑎(1  𝑡𝑚)  𝑛𝑍    𝑎 𝑛𝑍    

Similarly 𝑏𝑠𝑛 +  𝑚𝑍  𝑏 +

 𝑚𝑍  (𝑏  𝑏𝑠𝑛) 𝑚𝑍      𝑏(1  𝑠𝑛) 𝑚𝑍   𝑏𝑡𝑚  𝑚𝑍   

∅  is onto. 

 

Definition: 

 A proper ideal  𝑀 of a ring R is called maximal ideal if where ever 𝐼 is an ideal 

of  𝑅  with  𝑀 ⊂ 𝐼, then  𝐼 =  𝑅. 

 

Example: In 𝑍6the ideals are: 

   {0}  , 𝑍6  , {0 , 3}  , {0 , 2 , 4 }  

{0 , 3} is the maximal in Z6 

{0 , 2 , 4 }  is the maximal in Z6. 

 

Definition: 

      A proper ideal 𝑃 of a ring 𝑅 is called a prime ideal if for all 𝑎 , 𝑏 in 𝑅 with  

𝑎. 𝑏 ∈  𝑃  either 𝑎 ∈ 𝑃 𝑜𝑟 𝑏 ∈ 𝑃. 

 

Example: 
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1)4𝑍  is an ideal in 𝑍, but not a prime ideal in  𝑍. 

2){0} is a prime ideal in 𝑍.but not maximal. 

3){0} is not a prime ideal in 𝑍6 . 

 

Definition: 

A commutative ring with identity is called an integral domain if it has no zero 

divisor. 

 

Definition: 

 A ring (𝑅,+,∙) is said to be field if (𝑅  {0},∙ ) forms a commutative ring (with 

identity 1). 

Or  

   The field is commutative ring with identity in which each nonzero element has 

inverse under multiplication. 

 

Remark: 

Every field is an integral domain. 

Proof: Let 𝑅 be a field and let  𝑎, 𝑏  𝑅such that  𝑎. 𝑏  0 

If  𝑎  0  𝑎  has inverse say  𝑎−1 [since  𝑎  field]  𝑎−1. 𝑎. 𝑏  0  𝑏  0 

i.e., 𝑅 is integral domain. 
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Remark: 

 Let 𝑅 be a commutative ring with identity, then 𝑅 is a field if and only if  {0} 

and 𝑅 are the only ideals of 𝑅. 

Proof: let 𝐼  0 be an ideal in 𝑅  let 𝑎  0 , 𝑎  𝐼, but 𝑅 is a field  

 ∃ 𝑎−1 𝑎𝑛𝑑  𝑎. 𝑎−1 =  1  𝐼 [𝐼 ideal   𝑎  𝐼 , 𝑟  𝑅  𝑎𝑟  𝐼]   𝐼 =  𝑅  [by 

remark]  

) Let  𝑎  0 , 𝑎  𝑅  , < 𝑎 > is an ideal in  𝑅  but  < 𝑎 >  {0}  < 𝑎 > =  𝑅 

1  𝑅      1  < 𝑎 >      1  𝑟. 𝑎   

 

Example:𝑄 have ideals   {0} , 𝑄. 

𝑅  have ideals  {0} , 𝑅. 

𝐶 have ideals  {0} , 𝐶 

   𝑍3 , 𝑍5 , 𝑍7  are fields. 

 

Remark: 

Every finite integral domain is field. 

Proof: Let 𝑅  {𝑎1, 𝑎2, … , 𝑎𝑛} be an integral domain and 0  𝑎𝑗 𝑅 consider the 

set 𝑆  {𝑎1𝑎𝑗 , 𝑎2𝑎𝑗 , … , 𝑎𝑛𝑎𝑗} all elements of 𝑆 are distinct since if 

𝑎𝑙𝑎𝑗 𝑎𝑘𝑎𝑗   𝑎𝑙 =  𝑎𝑘 C!  

Clearly  𝑆  𝑅  and  𝑅  𝑆    𝑆 =  𝑅     1  𝑆 

 1  𝑎𝑛𝑎𝑗    𝑎𝑗  has inverse    𝑅  is field. 
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Remark: 

Let 𝑅 be an integral domain with only finite number of ideals in 𝑅, then 𝑅 is a 

field. 

Proof: Let  𝑎  0 , 𝑎  𝑅 , < 𝑎 > , < 𝑎2 > , < 𝑎3 > ,… be ideals in 𝑅 but 𝑅 

has only finite number of ideals   ∃  𝑘, ℓsuch that   𝑘 < ℓ  positive integers 

such that  < 𝑎𝑘 >  < 𝑎ℓ > . 

 𝑎𝑘 < 𝑎𝑘 >  < 𝑎ℓ >  𝑎𝑘  𝑟𝑎ℓ for some  𝑟  𝑅   𝑎𝑘 𝑟𝑎ℓ 𝑟𝑎ℓ−𝑘𝑎𝑘 

∵ 𝑅  is integral domain  cancelation law is valid.   1  𝑟𝑎ℓ−𝑘  

 1  (𝑟𝑎ℓ−𝑘−1). 𝑎   and   ∵   1 𝑎−1𝑎  

 𝑎−1  𝑟𝑎ℓ−𝑘−1    𝑎−1 𝑅 

  𝑅  is a field. 

 

Remark: 

If 𝑅 is a field, then either  𝑓 ∶ 𝑅 → 𝑅  is 1-1 or 𝑓: 𝑅 → 𝑅  is the zero 

homomorphism. 

Proof: 

𝐾𝑒𝑟 𝑓  is an ideal in 𝑅. 

𝐾𝑒𝑟 𝑓 =  { 0 }  or  𝑘𝑒𝑟 𝑓 =  𝑅 . 

∴ 𝑓 is 1 -1 or 𝑓  is the zero. 

 

Remark: 



The Rings                                                Dr. Nuhad Salim  

 

35 
 

Let 𝑅 be a commutative ring with 1, let 𝑁 be the set of nilpotent elements of 𝑅, 

then 𝑁 is an ideal in 𝑅and 
R

N
 has no nonzero nilpotent element. 

[ 𝑎 is a nilpotent 𝑎𝑛 =  0 for some positive integer 𝑛 ] 

Proof: 𝑁 ∅ [0  𝑁  , (0)𝑛 0 , ∀ 𝑛] let 𝑎  𝑁 and 𝑟  𝑅  

∵ 𝑎  𝑁     ∃ a positive integer  𝑘 such that   𝑎𝑘 0 

 (𝑎𝑟)𝑘 = 𝑎𝑘𝑟𝑘 =  0 . 𝑟𝑘 =  0   ,   𝑟 ∈ 𝑅    

∴𝑎𝑟  𝑁 

Let 𝑎, 𝑏  𝑁 ∃ 𝑛,𝑚 positive integers such that𝑎𝑛 0, 𝑏𝑚 0 

(𝑎 − 𝑏)𝑛+𝑚𝑎𝑛+𝑚 ( )𝑎𝑛+𝑚−1b + ( )𝑎𝑛+𝑚−2𝑏2 ( )𝑎𝑛+𝑚−3𝑏3 + … +

 ( )𝑎𝑛𝑏𝑚  +∙∙∙  + 𝑏𝑛+𝑚 = 0. 

(𝑎  𝑏) is nilpotent       𝑎  𝑏 ∈  𝑁     𝑁 is an ideal. 

Now, let   𝑟 +  𝑁 be nilpotent element in   
R

N
  ,    𝑘  𝑍+ such that  (𝑟 + 𝑁)𝑘 𝑁 

  𝑟𝑘 +  𝑁  𝑁       𝑟𝑘 𝑁     

     𝑠  𝑍+   such that  ( 𝑟𝑘)𝑠 =  0       𝑟𝑘𝑠(nilpotent) = 0        

 𝑟 ∈  𝑁    𝑟 +  𝑁  𝑁  . 

Remark: 

Let 𝑅 be commutative ring with identity and let 𝑎 be an idempotent element in 

𝑅, then  𝑅  < 𝑎 >  < 1  𝑎 > 

Proof:  𝑎 ∈ < 𝑎 >   ,   𝑎 ∈  𝑅  , < 𝑎 > ⊆ 𝑅  , < 𝑎 >  + < 1  𝑎 > ⊆  𝑅, 1 ∈ 𝑅 

1  𝑎 +  1  𝑎     1 ∈< 𝑎 >  + < 1  𝑎 > 𝑅 ⊆  < 𝑎 >  + < 1  𝑎 > 

     𝑅 =  < 𝑎 >  + < 1  𝑎 >    
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Let   𝑤 ∈ < 𝑎 >  < 1  𝑎 >     𝑤  𝑟𝑎   ;    𝑟  𝑅  

𝑤  𝑡. (1  𝑎)   ;   𝑡  𝑅      𝑟𝑎 = 𝑡. (1  𝑎) 

∵ 𝑎  is idempotent   𝑎2 𝑎  Now,  

  𝑤. 𝑎  𝑟  𝑎2 𝑟𝑎  𝑡(1  𝑎)     

𝑤  𝑡(1  𝑎)𝑎   

𝑤  𝑡(𝑎   𝑎2)  𝑡(𝑎  𝑎)   

𝑤  0  < 𝑎 >  < 1  𝑎 >  0     

 𝑅  < 𝑎 >  < 1  𝑎 > . 

 

Example: In 𝑍6 

3̅  is idempotent in 𝑍6 

(3̅)2 = 3̅     𝑍6 =< 3̅ >  < 1 3̅ >    {0̅, 3̅} {0̅, 2̅, 4̅}  

 

Example: 

(𝑝(𝑋),, ⋂)  is a commutative ring with identity , 

Let  𝐴 𝜖 𝑝(𝑋), then   𝐴2 𝐴 ⋂𝐴 = 𝐴  ;    𝐴 is idempotent. 

𝑝(𝑋) < 𝐴 >  <
___

X  𝐴 >. 

 

Remark: 

Let 𝑓: 𝑅  𝑅 be an eipemorphism, if  𝑅 is P I R, then so is 𝑅. 

Proof: 
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  Let  𝐾 be an ideal in  𝑅 ,   𝑓−1(𝐾) is an ideal in R [theorem] but R is principle 

ideal ring, then 𝑓−1(𝐾) < 𝑥 >  ;    𝑥  𝑅 

𝑥 ∈ 𝑓−1(𝐾)   ,    𝑓(𝑥) ∈  𝐾   < 𝑓(𝑥) > ⊆  𝐾   we claim that  𝐾 =< 𝑓(𝑥) > 

Let  𝑦 ∈  𝐾 ,   𝑓  is an eipemorphism. 

∃ 𝑟 ∈  𝑓−1(𝐾)  such that  𝑦 =  𝑓(𝑟) ∈  𝐾  but  𝑓−1(𝐾) =< 𝑥 >    

 𝑟  𝑤. 𝑥  

 𝑓(𝑟) =  𝑓(𝑤. 𝑥) =  𝑓(𝑤). 𝑓(𝑥)      𝑦  𝑓(𝑤). 𝑓(𝑥)     

   𝑦 ∈ < 𝑓(𝑥) >         𝐾 =< 𝑓(𝑥) >     

𝑅   is P. I. R. 

 

Definition: 

Let 𝐼 and 𝐽 be ideals in  𝑅, then  𝐼. 𝐽 {∑ aibi
n
i=1 :  ai∈ I   ,   bi∈ J  } is called the 

product of  𝐼  and  𝐽 . 

 

Theorem: 

Let 𝑓: 𝑅  𝑅 be an epimorphism and let  𝐼, 𝐽  be ideals in  𝑅, then  

1) 𝑓(𝐼 ∩  𝐽)  ⊆  𝑓(𝐼)  ∩ 𝑓(𝐽) and if  𝑘𝑒𝑟 𝑓  𝐼 or  𝑘𝑒𝑟 𝑓  𝐽,then 

2) 𝑓(𝐼 +  𝐽)  𝑓(𝐼)  +  𝑓(𝐽) 

3) 𝑓(𝐼. 𝐽)  𝑓(𝐼). 𝑓(𝐽) 

Remark: 

 Let   𝐼, 𝐽, 𝐾   be ideals in  𝑅 , then  
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1) 𝐼(𝐽 +  𝐾)  𝐼𝐽 +  𝐼𝐾. 

2) If  𝐽 ⊆ 𝐼, then    𝐼 ⋂(𝐽 +  𝐾) =  𝐽 + (𝐼 ⋂𝐾)    

Proof(1): Let   𝑤  𝐼(𝐽 +  𝐾)  

𝑤 𝑎1𝑏1  + 𝑎2𝑏2   +  … + 𝑎𝑛𝑏𝑛    

𝑎𝑖 𝐼  , 𝑏𝑖 𝐽 +  𝐾    𝑏𝑖 = 𝑐𝑖  +  𝑑𝑖     ;  𝑐𝑖 ∈ 𝐽, 𝑑𝑖 ∈ 𝐾  

𝑤 𝑎1(𝑐1  +  𝑑1) + … + 𝑎𝑛(𝑐𝑛  +  𝑑𝑛)       

𝑎1𝑐1  +  𝑎1𝑑1  +  … + 𝑎𝑛𝑐𝑛  +  𝑎𝑛𝑏𝑛      

𝑎1𝑐1  +  𝑎2𝑐2  +  … + 𝑎𝑛𝑐𝑛  + 𝑎1𝑑1   +  … + 𝑎𝑛𝑑𝑛 𝐼𝐽 +  𝐼𝐾      

) Let   𝑥  𝐼𝐽 +  𝐼𝐾      𝑎  𝑎 +  𝑏   ;    𝑎  𝐼𝐽, 𝑏  𝐼𝐾 

𝑎 = 𝑐1𝑑1  +  … + 𝑐𝑛𝑑𝑛   , 𝑐𝑖 𝐼 , 𝑑𝑖 𝐽 

𝑏 = 𝑐1𝑒1  +  … + 𝑐𝑛𝑒𝑛     ;    𝑐𝑖 𝐼    , 𝑒𝑖 𝐾     

𝑥  𝑎 +  𝑏 𝑐1𝑑1  +  … + 𝑐𝑛𝑑𝑛  +  𝑐1𝑒1  +  … + 𝑐𝑛𝑒𝑛      

𝑐1(𝑑1  + 𝑒1 )  +  … + 𝑐𝑛( 𝑑𝑛 + 𝑒𝑛)  𝐼(𝐽 +  𝐾)      

Proof(2): 

   Let  𝑤  𝐼 ∩ (𝐽 +  𝐾)  ;   𝑤  𝐼 and   𝑤  𝐽 +  𝐾  

   𝑤 =  𝑎1 + 𝑏1  ;    𝑎1 𝐽  ,    𝑏1 𝐾      

𝑤 = 𝑎1 + ( 𝑤  𝑎1) ;    𝑤  𝑎1 𝐼   , 𝑤  𝑎1 = 𝑏1 𝐾      

      𝑎1  +  𝑤  𝑎1 𝑤    

 𝑤  𝐽 +  (𝐼  𝐾)      

)  𝑦  𝐽 + ( 𝐼  𝐾)   

𝑦  𝑎 +  𝑏  ;       𝑎  𝐽    , 𝑏  𝐼    ,    𝑏  𝐾    
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𝑎  𝐽  𝐼  , 𝑎  𝐼 , 𝑏  𝐼   

   𝑎 +  𝑏  𝑦  𝐽 +  𝐾   𝑦  𝐼  (𝐽 +  𝐾)  . 

 

Definition: 

Let 𝑅 be a commutative ring with identity. An ideal 𝑀 of a ring 𝑅 is called 

maximal ideal if  

1)   𝑀  𝑅. 

2) Whenever  𝐽  is an ideal with 𝐽  𝑀, then     𝐽  𝑅. 

 

Example:In the ring  𝑍6 , {0̅, 3̅}  , {0̅, 2̅, 4̅}   are maximal ideals  

2𝑍  𝑍  ideal,  4𝑍  𝑍  is not maximal ideal, since  < 4 >  < 2 >  

 

Example:   𝑄 , 𝑅 , 𝐶 ,  𝑍𝑝    ;   𝑝 is prime are fields so  {0} is the only ideal 

 {0}  is the only maximal ideal 

 

Theorem: 

Let 𝑀 be a proper ideal of a ring R, then M is maximal ideal if and only if the 

ideal   < 𝑀, 𝑎 > =  𝑅,   ∀ 𝑎  𝑅  , 𝑎  𝑀. 

Proof:) Let   𝑤  < 𝑀, 𝑎 >  𝑀 + < 𝑎 >  𝑚 +  𝑟𝑎 

 𝑀 ⊊< 𝑀, 𝑎 >  [since  𝑎  𝑀] 

 < 𝑀, 𝑎 >  𝑅  
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) let  𝐽  be an ideal in 𝑅 such that  𝐽 ⊋  𝑀 

 𝑥  𝐽and𝑥  𝑀,since< 𝑀, 𝑥 >  𝑅 

𝐽  < 𝑀, 𝑥 >  𝑅 

𝐽  𝑅, so M is maximal ideal. 

 

Definition: 

Let {A} be a family of ideals of a ring R, {A} is called a chain if , 

 either  𝐴𝛽𝐴𝛾  or 𝐴𝛾𝐴𝛽. 

 

Zorn’s Lemma: 

Let 𝐹 be a family of subsets of fixed nonempty set 𝑋. If for each chain {A} 

in 𝐹 the  ⋃ A   is a member of 𝐹, then 𝐹 contains a maximal element 𝑀 in 

the sense that 𝑀 is not contained properly in any member of 𝐹. 

 

Theorem: 

Let 𝐼 be a proper ideal of a commutative ring with 1. Then there exists a 

maximal ideal 𝑀containing 𝐼. 

Proof: Let 𝐼 be a proper ideal of 𝑅, let  𝐹 = {J: J is an ideal with J ⊇ I , J  R} 

𝐹 ≠ ∅  [since I ideal proper]  

Let {C} be a chain in F. Then  ⋃ C   

(1)  ⋃ C   is an ideal,  ⋃ C ≠ ∅ since 𝐹 ≠ ∅ 
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Let  𝑥, 𝑦⋃ C  , , then  𝑥  Cβ , 𝑦  Cγ , , 

But {C} is a chain then either 𝐶𝛽𝐶𝛾  or 𝐶𝛾𝐶𝛽 . 

If  𝐶𝛽𝐶𝛾 , then  𝑥, 𝑦  𝐶𝛾 𝐶𝛾 is ideal so  𝑥  𝑦 𝐶𝛾 . 

Or  𝐶𝛾𝐶𝛽 , then 𝑥, 𝑦 ∈ 𝐶𝛽,then  𝑥  𝑦  𝐶𝛽     𝑥  𝑦⋃ C  

Let  𝑤⋃ C   ;   𝑟 𝑅 

𝑤 𝐶𝛽 , 𝛽  𝑟𝑤 𝐶𝛽 so   𝑟𝑤⋃ C  , then  ⋃ C  is an ideal. 

(2)  𝐼 ⋃ C  since 𝐼  𝐶𝛼  , ∀ 

(3) ⋃ C  𝑅  , 𝐼 ⋃ C     𝐼  𝐶𝛼  for some   𝐶!  (𝐽  𝑅)  ∀ 𝐽  𝐹 

 By Zorn’s Lemma 𝐹 has maximal element say 𝑀. 

We claim that 𝑀 is maximal ideal if 𝐾 ideal of 𝑅such that  𝐾 ⊋  𝑀 , then  𝐾  𝐹 

(since 𝑀 is maximal element in 𝐹)  

 𝐾  𝑅  so  𝑀 is maximal ideal. 

 

Corollary: 

       Every commutative ring with identity has at least one maximal ideal. 

Theorem: 

let 𝑅 be a commutative ring with identity, an element  𝑥 ∈ 𝑅  is invertible if and 

only if it belongs to no maximal ideal. 

Proof: 

⟹) Let  𝑥 be an invertible element of R. 

Suppose  𝑥 ∈ 𝑀  and 𝑀  is a maximal ideal 
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Since  𝑥  invertible, then  ∃ 𝑦 ∈ 𝑅 such that  𝑥 ∙ 𝑦 = 1. 

𝑥 ∈ 𝑀 , then  𝑥. 𝑦 ∈ 𝑀, 1 ∈ 𝑀, then  𝑀 =  𝑅 C! 

⇐) let  𝑥 𝜖 𝑅 and  𝑥  dose not belong to any maximal ideal  

Now,  < 𝑥 >  is an ideal in R. 

If < 𝑥 > =  𝑅 ⇒  1 ∈< 𝑥 >⟹ 1 =  𝑟. 𝑥 ⇒  𝑥  invertible 

If  < 𝑥 >≠  𝑅 , by the previous theorem there exist a maximal ideal  𝑀 

𝑀 ∋ < 𝑥 >⊆  𝑀 ⇒  𝑥𝜖 𝑀  C!. 

 

Remark: 

Let 𝑅 be a ring with only one maximal ideal, then the only idempotent of 𝑅 are 

zero and one. 

Proof: let 𝑥 be an idempotent element 𝑥  0 and  

𝑥2 𝑥   𝑥2 𝑥  0    𝑥(𝑥  1) 0  so   𝑥, 𝑥  1 are zero divisors. Hence 𝑥 and 

𝑥 − 1  are not invertible? 

But 𝑅  has only one maximal ideal   𝑀 so   𝑥, 𝑥  1 ∈ 𝑀, then  𝑥 + ( 𝑥  1) ∈ 𝑀. 

Thus  1 ∈ 𝑀 C! 

Theorem: 

Let 𝑅 be a commutative ring with 1, let 𝑀 be a proper ideal of 𝑅, then 𝑀 is 

maximal if and only if  
R

M
  is a field. 

Proof: 
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) 𝑅 is commutative with 1, then  
R

M
  is commutative with 1, let  𝑥 +  𝑀 

R

M
  

and  𝑥 +  𝑀  𝑀    𝑥  𝑀, 

∵ 𝑀  is maximal, then < 𝑀, 𝑥 >  𝑅, then 1  𝑚 +  𝑟𝑥  1  𝑟𝑥  𝑚  𝑀, then 

 1  𝑟𝑥  𝑀   [ 𝑎𝐻  𝑏𝐻   𝑎  𝑏  𝐻] , then 1 +  𝑀  𝑟𝑥 +  𝑀. Hence 1 +

 𝑀 = (𝑟 +  𝑀). (𝑥 +  𝑀) 

Thus   𝑥 +  𝑀 is invertible and  
R

 M
  is a field. 

) Let  𝐽  be ideal  

Suppose that  𝐽 ⊋  𝑀 , then  ∃𝑥  𝐽 , 𝑥  𝑀, then  𝑥 +  𝑀  𝑀 . 

But  
R

M
  is a field  ⇒ ∃ 𝑦 +  𝑀 ∈

R

M
   Such that  ( 𝑥 +  𝑀)(𝑦 +  𝑀) =  1 +  𝑀  

𝑥𝑦 + 𝑀 =  1 +  𝑀  . Then   1 − 𝑥𝑦 𝜖 𝑀 ⊂  𝐽 

(1 − 𝑥𝑦) + 𝑥𝑦 𝜖 𝐽  ⇒   1 ∈  𝐽 =  𝑅    

∴ 𝑀  is maximal. 

 

Definition: 

The intersection of all maximal ideal in a ring  𝑅 is called the Jacoson radical of 

a ring  𝑅  it is denoted by  𝑟𝑎𝑑(𝑅). 

 

Example: (1) In  𝑍, (2𝑍) ∩ (3𝑍) ∩ (7𝑍) ∩ …   {0}  , 𝑟𝑎𝑑(𝑍) = 0 

(2) In 𝑍6, {0̅, 2̅, } ∩  {0̅, 3̅} {0}    ,   𝑟𝑎𝑑(𝑍6) = 0 

(3)In   𝑍4  ,   𝑀  {0, 2} 

𝑟𝑎𝑑(𝑍4) {0, 2}    
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Definition: 

 An ideal 𝑃 of a ring 𝑅 is called prime ideal if 𝑃  𝑅 and for every  𝑎. 𝑏  𝑃 

either  𝑎  𝑃  or  𝑏  𝑃   ∀ 𝑎, 𝑏  𝑅. 

Example: (1) In the ring  𝑍6  , let   𝑃 = {0̅, 2̅, 4̅}   , 2̅. 4̅2̅  ∈ 𝑃 

(2)   𝑃   𝑍6  , 6  𝑃  

 6  2. 3 , 2  𝑃, 

6  6. 1 , 6  𝑃. 

  𝑃 is a prime ideal. 

 

Remark: 

{0} is a prime ideal if and only if 𝑅 is an integral domain. 

Proof:) Let  𝑎  0 , 𝑏 ∈  𝑅  such that  𝑎. 𝑏  0 

𝑎. 𝑏 ∈  {0}  but  {0}  is prime and   𝑎  0  𝑏 ∈  {0} 

 𝑏  0 . 

𝑅 is an integral domain. 

 

Theorem: 

Let 𝑅 be commutative ring with 1 and  𝑃 be a proper ideal of 𝑅, 𝑃is a prime 

ideal if and only if   
R

p
   is integral domain. 

Proof:) Since 𝑅 is commutative ring with 1 so is   
R

p
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Let   b + P  ,   a + P  ∈  
R

p
  , then  

(𝑎 +  𝑃). (𝑏 +  𝑃)  𝑃 , then  𝑎 ∙ 𝑏 +  𝑃  𝑃    𝑎𝑏  𝑃 

𝑃 is prime     𝑎  𝑃  𝑜𝑟  𝑏  𝑃 if  𝑎  𝑃, then  𝑎 +  𝑃  𝑃 

Or  𝑏 ∈  𝑃  𝑏 +  𝑃  𝑃. 

)  
R

p
  is an integral domain, let 𝑎. 𝑏 ∈ 𝑃  

Then  𝑎𝑏 +  𝑃  𝑃  ,   

(𝑎 +  𝑃)(𝑏 +  𝑃) 𝑃. 

Since  
R

p
 is an integral domain, then either 𝑎 +  𝑃  𝑃  𝑎 ∈  𝑃 or 𝑏 +

 𝑃  𝑃  𝑏 ∈  𝑃. Thus 𝑃 is prime. 

 

 Corollary: 

Let 𝑅 be a commutative ring with 1, then every maximal ideal is prime ideal. 

Proof: 𝑀 maximal ideal    
R

M
 is a field    

R

M
 is integral domain [Every field is 

integral domain] 

Thus  𝑀 is prime. 

 

Example: In   𝑍, 2𝑍, 3𝑍 

(1) 2𝑍 is a ring without  1 , 4𝑍  is not maximal ideal and is not prime since 

4  4𝑍 for example  4  2. 2   , 2  4𝑍   
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Q:   𝐼  𝑟𝑎𝑑(𝑅)         𝑎 ∈  1 +  𝐼   ,   𝑎 is invertible. 

Proof:) Let 𝐼  𝑟𝑎𝑑(𝑅) and assume that ∃ 𝑎 ∈  𝐼such that1 +  𝑎 has no 

inverse  maximal ideal𝑀such that 1 +  𝑎  𝑀  , 𝑎 ∈  𝐼 ⊆  𝑟𝑎𝑑(𝑅) ⊆

𝑀 , 𝑎  𝑀   , 1 +  𝑎  𝑎 ∈  𝑀      1 ∈  𝑀  

Hence   𝑀  𝑅 C! .Thus  1 +  𝐼  has inverse. 

) Suppose that each member of 1 +  𝐼  has inverse, but 𝐼 ⊈  𝑟𝑎𝑑(𝑅) = ∩

𝑀 ;𝑀  is maximal ideal, then  𝐼 ⊈  𝑀. 

Now, if  𝑎 ∈ 𝐼, then  𝑎 ∉  𝑀. Since  𝑀  is maximal, then  < 𝑀, 𝑎 >  𝑅  

[Theorem], hence 1  𝑅    1  𝑚 +  𝑟𝑎  ;  𝑟 ∈ 𝑅 ,𝑚 ∈ 𝑀      𝑚  1  𝑟𝑎 , but 

 1 − 𝑟𝑎 ∈  1 +  𝐼, then  𝑚 ∈ 1 +  𝐼 , then   𝑚  has inverse. 

Thus  𝑀 has inverse C! [since 𝑀 𝑅] 

 

Q: 𝑎  is invertible in  𝑅  𝑎 +  𝑟𝑎𝑑(𝑅) invertible in  
R

rad(R)
 

Proof:) 𝑎 is invertible,  ∃ 𝑏  𝑅 such that  𝑎. 𝑏  1 

 (𝑎 +  𝑟𝑎𝑑(𝑅))(𝑏 +  𝑟𝑎𝑑(𝑅)) = 𝑎𝑏 +  𝑟𝑎𝑑(𝑅) =  1 +  𝑟𝑎𝑑(𝑅)     

So  𝑎 +  𝑟𝑎𝑑(𝑅) is invertible in  
R

rad(R)
  

 ) (𝑎 +  𝑟𝑎𝑑𝑅)(𝑏 +  𝑟𝑎𝑑𝑅) 1 +  𝑟𝑎𝑑(𝑅)     

    𝑎𝑏 𝑟𝑎𝑑(𝑅)  =   1 +  𝑟𝑎𝑑(𝑅)    

  )  𝑎𝑏  1  𝑟𝑎𝑑(𝑅)     

Then   1 +  𝑎𝑏  1  is invertible,  𝑎𝑏  invertible. 

Hence  ∃ 𝑥  𝑅  such that  (𝑎𝑏)𝑥  1  ,   𝑎(𝑏𝑥) 1 
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Thus  𝑎  is invertible. 

 

Q:   𝑎  𝑟𝑎𝑑(𝑅)     1 +  𝑟𝑎   has inverse  ∀  𝑟  𝑅   

Proof: )  Let  𝑎  𝑟𝑎𝑑(𝑅)   ,     < 𝑎 >  𝑟𝑎𝑑(𝑅) ,  

 < 𝑎 >= {𝑟𝑎: 𝑟  𝑅}   ,   1 + < 𝑎 >   has inverse  

Then  1 +  𝑟𝑎  has inverse  ∀ 𝑟  𝑅. 

) Let   1 +  𝑟𝑎   ∀ 𝑟  𝑅 has inverse  

1 + < 𝑎 >  has inverse   < 𝑎 >   𝑟𝑎𝑑(𝑅) ,  

   𝑎 ∈  𝑟𝑎𝑑(𝑅)   

 

Theorem:( Boolean ring)  

 Let 𝑅 be a ring with   𝑎2 𝑎  , ∀ 𝑎  𝑅, then every prime ideal is maximal ideal. 

Proof: Let 𝑀 be a prime ideal and  𝐽 ideal of 𝑅such that 

𝑀 ⊊  𝐽  𝑅, then   ∃  𝑎  𝐽 , 𝑎 ∉  𝑀 

 𝑎2 =  𝑎 𝑎(𝑎  1) =  0  𝑀  but  𝑀 is prime,  𝑎 ∉ 𝑀  

Then  𝑎  1  𝑀  𝐽  and 𝑎  𝐽 . 

𝑎  1  , 𝑎  𝐽  [𝐽 is ideal] 

Thus   1  𝐽    𝐽 =  𝑅  [𝐼 ideal,  1  𝐼    𝑅 =  𝐼] 

 

Theorem: 

 Let 𝑅 be principle ideal domain, then every nonzero prime ideal is maximal. 
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Proof: Let  𝐼  0 , 𝐼 is prime and  𝐼 ⊊  𝐽  𝑅  , 𝑅  is P. I. D  

 ∃  𝑎, 𝑏  𝑅   such that  𝐼  < 𝑎 > 𝑚 𝐽 =< 𝑏 > , < 𝑎 >⊊< 𝑏 >  ………() 

So   𝑎  𝑟𝑏 , 𝑟  𝑅,   𝑟𝑏 ∈ < 𝑎 > , < 𝑎 >  is prime  

Then either  𝑟 ∈< 𝑎 > or 𝑏 ∈ < 𝑎 > if  𝑏 ∈ < 𝑎 > < 𝑎 >=< 𝑏 > C!  

Thus  𝑟  < 𝑎 > and  𝑟  𝑠𝑎  

𝑎. 1 =  𝑎 =  𝑟𝑏 =  𝑠𝑎𝑏 =  𝑎. 𝑠. 𝑏  [R comm.] [R integral domain] 

 1  s. b, 1  < 𝑏 >  J 

 J  R . 

Definition: 

     The intersection of all prime ideals in a ring 𝑅 is called the prime radical of  𝑅 it is 

denoted by    𝑅𝑎𝑑 𝑅 

𝑟𝑎𝑑 𝑅 ⊇  𝑅𝑎𝑑  𝑅 

𝑟𝑎𝑑 𝑍 =  𝑅𝑎𝑑  𝑍 

Theorem: 

Let 𝑅 be a commutative ring with 1, then every maximal ideal is prime ideal. 

Proof: Let 𝑀 be a maximal ideal of a ring  𝑅 suppose that  𝑎. 𝑏  𝑀 and   𝑎 ∉

𝑀 ,𝑀  is maximal, then  < 𝑀, 𝑎 >  𝑅 , then  1  𝑚 +  𝑟𝑎  ;  𝑚 ∈ 𝑀 , 𝑟 ∈ 𝑅 , 

Hence   𝑏 =  𝑚𝑏 +  𝑟𝑎𝑏 ∈ 𝑀. 

Q: Is the converse true? 

 

Example: In the ring 𝑍 × 𝑍 ,{0} × 𝑍 is a prime ideal in  𝑍 × 𝑍. 

2𝑍 × 𝑍is an ideal in  𝑍 × 𝑍 which is maximal. {0} × 𝑍 ⊊ 2𝑍 × 𝑍 ⊊  𝑍 × 𝑍.  
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Definition: 

  Let 𝐼  be an ideal of a ring  𝑅. Then the nil radical of 𝐼  denoted by √𝐼 is the set: 

√𝐼 = {𝑟 ∈ 𝑅 ∶  ∃ 𝑛 ∈ 𝑍+ ∋  𝑟𝑛 ∈ 𝐼} 

Remark: 

1. √𝐼 ⊇ 𝐼. 

2. √𝐼is an ideal of 𝑅. 

Proof: Let 𝑥, 𝑦 ∈  √𝐼,  𝑥 ∈  √𝐼 ∃  𝑛 ∈ 𝑍+ ∋  𝑥𝑛 ∈ 𝐼, 

 𝑦 ∈  √𝐼 ∃  𝑚 ∈ 𝑍+ ∋  𝑦𝑚 ∈ 𝐼. 

(𝑥 − 𝑦)𝑛+𝑚 = 𝑥𝑛+𝑚 + ( )𝑥𝑛+𝑚−1𝑦 +∙∙∙ +( )𝑥𝑛𝑦𝑚 + ( )𝑥𝑛−1𝑦𝑚+1 +∙∙∙

+𝑦𝑛+𝑚. 

Hence (𝑥 − 𝑦) ∈ √𝐼 

Let 𝑟 ∈ 𝑅 , 𝑤 ∈  √𝐼 , 𝑤𝑛 ∈ √𝐼 ;  𝑛 ∈ 𝑍+. 

(𝑟𝑤)𝑛 = 𝑟𝑛𝑤𝑛 ∈ 𝐼, then ∈ √𝐼. 

Example:If  √𝐼 = √𝐽   ⇏  𝐼 = 𝐽. 

√2𝑍 = 4𝑍 

√8𝑍 =  2𝑍 

Remark: 

1. √𝐼 ∩ 𝐽 = √𝐼𝐽 = √𝐼 ∩ √𝐽. 

2. √√𝐼 = √𝐼. 

3. √𝐼 + 𝐽 ⊇  √𝐼 +√𝐽. 

Proof:1.Let  𝑤 ∈  √𝐼 ∩ 𝐽, then  ∃  𝑛 ∈ 𝑍+ ∋  𝑤𝑛 ∈ 𝐼 ∩ 𝐽 , then  𝑤𝑛 ∈ 𝐼  and 𝑤𝑛 ∈ 𝐽, 

hence  𝑤 ∈  √𝐼  and   𝑤 ∈  √𝐽. Thus    𝑤 ∈  √𝐼 ∩ √𝐽. 
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Let  𝑦 ∈  √𝐼 ∩ √𝐽 , then  𝑦 ∈  √𝐼  and  𝑦 ∈  √𝐽, hence  𝑦𝑛 ∈ 𝐼 and  𝑦𝑛 ∈ 𝐽. 

𝑦𝑛+𝑚=𝑦𝑛 ∙ 𝑦𝑚 ∈ 𝐼𝐽, then 𝑦 ∈  √𝐼𝐽. 

𝑦𝑛+𝑚=𝑦𝑛 ∙ 𝑦𝑚 ∈ 𝐼 ∩ 𝐽 , then 𝑦 ∈  √𝐼 ∩ 𝐽. Thus  √𝐼 ∩ 𝐽 = √𝐼 ∩ √𝐽 

    2. Let 𝑤 ∈ √√𝐼 ⊇ √𝐼 . 

Let  𝑥 ∈ √√𝐼    ∃  𝑛 ∈ 𝑍+ ∋  𝑥𝑛 ∈ √𝐼 , and then  ∃  𝑚 ∈ 𝑍+ ∋  (𝑥𝑛)𝑚 ∈ 𝐼 , hence 

 𝑥𝑛 ∈ 𝐼 , which implies that  𝑥 ∈ √𝐼. 

3.Let    𝑤 ∈  √𝐼+ √𝐽 , then  𝑤 = 𝑥 + 𝑦 ;  𝑥 ∈  √𝐼  and  𝑦 ∈  √𝐽 , then  ∃  𝑛 ∈ 𝑍+ ∋

 𝑥𝑛 ∈ 𝐼  and ∃  𝑚 ∈ 𝑍+ ∋  𝑦𝑚 ∈ 𝐽. 

(𝑥 + 𝑦)𝑛+𝑚 = 𝑥𝑛+𝑚 + ( )𝑥𝑛+𝑚−1𝑦 +∙∙∙ +( )𝑥𝑛𝑦𝑚 + ( )𝑥𝑛−1𝑦𝑚+1 +∙∙∙

+𝑦𝑛+𝑚. 

Thus  𝑥 + 𝑦 ∈ √𝑥 + 𝑦. 

 

Theorem: 

Let 𝑓 ∶  𝑅  𝑅 be a ring epimorphism. 

1. If 𝑀 isa maximal (prime) with 𝑘𝑒𝑟 𝑓 ⊆  𝑀 in 𝑅, then 𝑓(𝑀) is maximal 

(prime) ideal in 𝑅. 

2. If  𝑀 is a maximal (prime) in 𝑅, then 𝑓−1 (𝑀 ) is maximal (prime) in 𝑅 . 

 

Proof :1. Let 𝑀 be a maximal  ideal clearly 𝑓(𝑀) is an ideal in R  

If  𝑓(𝑀) =  𝑅, then  1 ∈ 𝑓(𝑀 ) → 1 = 𝑓(𝑚) ;𝑚 ∈ 𝑀   

But 𝑓(1) = 1→  𝑓(𝑚) = 𝑓(1)  →  𝑓(𝑚 − 1) = 0  

→𝑚− 1 ∈ ker 𝑓 ⊆ 𝑀 →  𝑚 − (𝑚 − 1) ∈ 𝑀 →  1 ∈ 𝑀   contradiction. 
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Let  𝐽 ⊋ 𝑓 (𝑀)  , ∋ 𝑦  ∈ 𝐽  𝑎𝑛𝑑   𝑦 ∉ 𝑓(𝑀) 

But  𝑓  𝑖𝑠  𝑜𝑛𝑡𝑜 → ∃𝑥 ∈ 𝑅 ∋ 𝑓 (𝑥) = 𝑦 → 𝑥 ∉ 𝑀   

Then   < 𝑀, 𝑥 > = 𝑅 → 1 = 𝑚 + 𝑡𝑥     ;   𝑚 ∈ 𝑀 , 𝑡 ∈ 𝑅  

  1 = 𝑓(1) = 𝑓(𝑚) + 𝑓(𝑡). 𝑓(𝑥)   

 1 = 𝑓(𝑚) + 𝑓(𝑡)𝑦 ∈ 𝐽  →  𝐽 = 𝑅    

 

2. Let  𝑀  be a prime ideal of  𝑅 , then clearly  𝑓−1(𝑀)  is an ideal in 𝑅. 

If  𝑓−1(𝑀)  =  𝑅 →  1 ∈ 𝑓−1(𝑀) →  𝑓(1) ∈ 𝑀 

Let  𝑥. 𝑦 ∈  𝑓−1(𝑀)  𝑎𝑛𝑑  𝑥 ∉ 𝑓−1(𝑀) 

𝑓(𝑥). 𝑓(𝑦) =  𝑓(𝑥. 𝑦) ∈ 𝑀   𝑎𝑛𝑑    𝑓(𝑥) ∉ 𝑀. 

 ∴  𝑓(𝑦) ∈ 𝑀  →   𝑦 ∈  𝑓−1(𝑀). 

 

 


