UNIVERSITY OF BAGHDAD - COLLEGE OF SCIENCE - DEPT. OF MATHEMATICS

FUNCTIONAL ANALYSIS

FOURTH CLASS

SECOND CORES

By

Dr. Zeana Zaki Jamil

Dr. Eman Hassan

Zainab Abdulkareem Abd

© Copyright by Dr. Zeana Zaki Jamil Dr. Eman Hassan Zainab Abdulkareem Abd , 2020-2021

Table of Contents

Table of Contents			ii	
1	Basic Elements of Metric Spaces		1	
	1.1	Vector Spaces	1	
	1.2	Metric spaces	5	
	1.3	Normed vector spaces	7	
	1.4	Inner Product spaces	11	
2	Complete Metric Spaces		15	
	2.1	Convergence Sequences	15	
	2.2	ORTHOGONALITY	20	
		2.2.1 Orthonormal Bases	24	
3	Hilbert Space Geometry		29	
	3.1	Nearest Point Property	29	
	3.2	Projection Theorems	33	
4	Linear Operators		39	
	4.1	Bounded Linear Operators	39	
	4.2	The Norm of a Bounded Linear Operators	43	
	43	The Space $B(\mathcal{X}, \mathcal{V})$	43	

Chapter 1

Basic Elements of Metric Spaces

1.1 Vector Spaces

Definition 1.1.1. A vector space \mathcal{V} is a collection of objects with a (vector) addition and scalar multiplication defined that closed under both operations and which in addition satisfies the following axioms:

- 1. $(\alpha + \beta)x = \alpha x + \beta x$ for all $x \in \mathcal{V}$ and $\alpha, \beta \in \mathbb{F}$.
- $2. \ \alpha(\beta x) = (\alpha \beta) x.$
- 3. x + y = y + x for all $x, y \in \mathcal{V}$.
- 4. x + (y + z) = (x + y) + z for all $x, y, z \in \mathcal{V}$.
- 5. $\alpha(x+y) = \alpha x + \alpha y$.
- 6. There is $0 \in \mathcal{V}$ such that 0 + x = x; 0 is usually called the origin.
- 7. 0x = 0.
- 8. ex = x where e is the multiplicative unit in \mathbb{F} .

Examples 1.1.2.

1. $\mathbb{R}^n = \{(a_1, a_2, \dots, a_n) | a_1, a_2, \dots, a_n \in \mathbb{R}\}$ n-dimensional space, for all $n \ge 1$.

- 2. \mathbb{C}^2 and \mathbb{C}^n respectively to \mathbb{R}^2 and \mathbb{R}^n where the underlying field is \mathbb{C} , the complex numbers.
- 3. $P_n = \left\{ \sum_{j=0}^n a_j x^j | a_0, a_1, \cdots, a_n \in \mathbb{R} \right\}$ is called **the polynomial space of all polynomials of degree** "n". Note this includes not just the polynomials of exactly degree "n" but also those of lesser degree.
- 4. $\ell_p = \{(a_i, \dots) | a_i \in \mathbb{R}, \sum |a_i|^p < \infty\}$. This space is comprised of vectors in the form of infinite-tuples of numbers. Properly we would write

$$\ell_p(\mathbb{R})$$
 or $\ell_p(\mathbb{C})$

to designate the field.

Definition 1.1.3. Let \mathcal{V} be a vector space and $\mathcal{U} \subset \mathcal{V}$. We will call \mathcal{U} a subspace of \mathcal{V} if \mathcal{U} is closed under vector addition, scalar multiplication and satisfies all of the vector space axioms.

Example 1.1.4. let $V = \mathbb{R}^3 = \{(a, b, c) | a, b, c \in \mathbb{R}\}$

$$\mathcal{U} = \{(a, b, 0) | a, b \in \mathbb{R}\}.$$

Clearly $U \subset \mathcal{V}$ and also \mathcal{U} is a subspace of \mathcal{V} .

Definition 1.1.5. let $S \subset \mathcal{V}$, a vector space, have the form

$$S = \{v_1, v_2, \cdots, v_k\}.$$

The span of S is the set

$$\mathcal{U} = \left\{ \sum_{j=1}^{k} a_j v_j | a_1, \cdots, a_k \in \mathbb{R} \right\}.$$

Remark 1.1.6. span of the set S is a subspace.

Definition 1.1.7. Let X be a vector space. A set of "n" vectors $\{x_1, \dots, x_n\} \subset X$ is called **linear independent**, if the following equation gives that

$$\sum_{j=1}^{n} \alpha_j x_j = 0 \Rightarrow \alpha_1 = \dots = \alpha_n = 0$$

is the only solution. If there is just one $\alpha_i \neq 0$ then the system $\{x_1, \dots, x_n\}$ is called **linear dependent**.

Definition 1.1.8. The set $B = \{x_1, \dots, x_n\}$ is called a **basis** of X if:

- 1. the elements of B are linear independent.
- 2. and $span \{x_1, \dots, x_n\} = X$.

Remark 1.1.9. If every $x \in X$ can be expressed as a unique linear combination of the elements out of the set $\{x_1, \dots, x_n\}$ then that set is called a **basis** of X.

Definition 1.1.10. The number of elements, needed to describe a vector space X, is called the **dimension** of X, abbreviated by dim X.

Remark 1.1.11. Let X be a vector space.

- 1. If $X = \{0\}$, then dim X = 0.
- 2. if X has a basis $\{x_1, \dots, x_n\}$, then dim X = n.
- 3. If $X \neq \{0\}$ has no finite basis, then dim $X = \infty$.

Definition 1.1.12. Let V, W be two vector spaces. A function $T: V \to W$ is called a **linear transformation** from V to W if the following hold for all vectors u, v in V and for all scalars k.

- 1. T(u+v) = T(u) + T(v)
- 2. T(ku) = kT(u)

Definition 1.1.13. Let $T: V \to W$ is a linear transformation.

1. The set of all vectors v in V for which $T(v) = \vec{0}$ is called the kernel of T.

We denote the kernel of T by ker(T).

i.e.,
$$ker(T) := \{v \in V : T(v) = 0\}.$$

2. The set of all images T(v) of vectors in V via the transformation T is called the range of T. We denote the range of T by R(T).

i.e.,
$$R(T):=\{T(v):v\in V\}.$$

1.2 Metric spaces

Definition 1.2.1. A **metric space** is a non-empty set X with a function

$$d(.,.): X \times X \to \mathbb{R}$$

satisfying, for x, y, and z in X,

- $1. \ d(x,y) \ge 0$
- 2. d(x,y) = 0 if and only if x = y,
- $3. \ d(x,y) = d(y,x),$
- 4. $d(x,y) + d(y,z) \ge d(x,z)$ (the triangle inequality).

Examples 1.2.2.

1. Let $X = \mathbb{C}$, with d(z, w) = |z - w|.

2. Suppose X is a non-empty set and that $d: X \times X \to \mathbb{R}$. defined as

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

is a metric which is called the discrete metric on X.

3. For any integer $n \geq 1$, the function $d_1 : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ defined by

$$d_1(x,y) = \sum_{j=1}^{n} |x_j - y_j|$$

is a metric on the set \mathbb{R}^n .

4. For any integer $n \geq 1$, the function $d_2 : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ defined by

$$d_2(x,y) = \left(\sum_{j=1}^n |x_j - y_j|^2\right)^{1/2}$$

is a metric on the set \mathbb{R}^n . This metric will be called **the standard metric on** \mathbb{R}^n .

5. For any integer $n \geq 1$, the function $d_p : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ defined by

$$d_p(x,y) = \left(\sum_{j=1}^n |x_j - y_j|^p\right)^{1/p}$$

is a metric on the set \mathbb{R}^n .

6. For any integer $n \geq 1$, the function $d_{\infty} : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ defined by

$$d_{\infty}(x,y) = \max_{1 \le i \le n} |x_j - y_j|$$

is a metric on the set \mathbb{R}^n .

1.3 Normed vector spaces

Definition 1.3.1. A normed linear space (V, ||.||) is a (real or complex) linear space V together with a function

$$\|.\|:V\to\mathbb{R}.$$

called a **norm** satisfying four conditions:

- 1. $||v|| \ge 0$ for all $v \in V$.
- 2. ||v|| = 0 if and only if v = 0.
- 3. $\|\lambda v\| = |\lambda| \|v\|$ for all $v \in V$ and $\lambda \in \mathbb{R}$.
- 4. $||v+w|| \le ||v|| + ||w||$ for all $v, w \in V$ (triangle inequality).

Examples 1.3.2.

- 1. $V = \mathbb{R}$. with ||x|| = |x|.
- 2. $V = \mathbb{C}$. with ||z|| = |z|.
- 3. $V = \mathbb{R}^n$ with

$$||x||_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2};$$

for $x = (x_1, x_2, \dots, x_n)$. This is the **usual, standard, or Euclidean norm** on \mathbb{R}^n . It is usually denoted by $\|.\|_2$.

Proof. For $x \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$

(a)
$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} \ge 0.$$

(b) $||x||^2 = 0$ iff $\sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = 0$ iff $x_1^2 + x_2^2 + \dots + x_n^2 = 0$ iff $x_1 = \dots = x_n = 0$.

(c)

$$\|\lambda x\| = \sqrt{(\lambda x_1)^2 + (\lambda x_2)^2 + \dots + (\lambda x_n)^2}$$

$$= \sqrt{\lambda^2 x_1^2 + \lambda^2 x_2^2 + \dots + \lambda^2 x_n^2}$$

$$= \sqrt{\lambda^2 (x_1^2 + x_2^2 + \dots + x_n^2)}$$

$$= |\lambda| \|x\|$$

(d)

$$||x + y|| = \sqrt{(x_1 + y_1)^2 + (x_2 + y_2)^2 + \dots + (x_n + y_n)^2}$$

$$\leq \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} + \sqrt{y_1^2 + y_2^2 + \dots + y_n^2}$$

$$= ||x|| + ||y||$$

4. Let $C_{\mathbb{F}}[a,b]$ be the vector space of continuous functions, where \mathbb{F} is a field either real or complex, on [a,b], under pointwise addition and scalar multiplication.

$$C_{\mathbb{F}}[a,b] = \{f : [a,b] \to \mathbb{F} : f \text{ is continuous function}\}$$

Define a norm on C[a, b] as

$$||f|| = \sup \{|f(x)| : x \in [a, b]\}.$$

Then $(C_{\mathbb{F}}[a,b],\|.\|)$ is a normed space.

Proof. Let $f, g \in C_{\mathbb{F}}[a, b]$ and $\lambda \in_{\mathbb{F}}$

(a) $||f|| = \sup \{|f(x)| : x \in [a, b]\} \ge 0.$

(b) ||f|| = 0 iff $\sup \{|f(x)| : x \in [a, b]\} = 0$ iff f(x) = 0 for all $x \in [a, b]$.

(c)

$$\|\lambda f\| = \sup \{|\lambda f(x)| : x \in [a, b]\}$$
$$= |\lambda| \sup \{|f(x)| : x \in [a, b]\}$$
$$= |\lambda| \|f\|$$

(d)

$$\begin{split} \|f+g\| &= \sup \left\{ |f(x)+g(x)| : x \in [a,b] \right\} \\ &\leq \sup \left\{ |f(x)| : x \in [a,b] \right\} + \sup \left\{ |g(x)| : x \in [a,b] \right\} \\ &= \|f\| + \|g\| \end{split}$$

Remark 1.3.3. A normed vector space $(X, \|.\|)$ is a metric space with the metric

$$d(x,y) = ||x - y||.$$

Homework 1. For $1 \le p < \infty$, define

$$\ell^p(\mathbb{N}) := \left\{ x = \{x_n\}_{n=1}^{\infty} : \sum_{n=1}^{\infty} |x_n|^p < \infty \right\}$$

with the p-norm

$$||x||_p = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p}$$

And for $p = \infty$ define

$$||x||_{\infty} = \sup\{|x_n| : n \ge 1\}$$

Prove that $\left(\ell^p(\mathbb{N}), \|x\|_p\right)$ is normed space for all $1 \leq p < \infty$ and $p = \infty$.

1.4 Inner Product spaces

Definition 1.4.1. Let \mathcal{X} be a vector space over a field \mathbb{F} , where \mathbb{F} is either \mathbb{R} or \mathbb{C} . An **inner product** is a map $\langle . \rangle : \mathcal{X} \times \mathcal{X} \longrightarrow \mathbb{F}$ satisfying, for x, y, and z in \mathcal{X} and scalars $\alpha \in \mathbb{F}$,

- 1. $\langle x, x \rangle \ge 0$ with $\langle x, x \rangle = 0$ (if and) only if x = 0,
- 2. $\langle x, y \rangle = \overline{\langle y, x \rangle}$ for all x, y in \mathcal{X} ,
- 3. $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$
- 4. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$

Remark 1.4.2. The inner product is tool to fined:

- 1. The length of a vector x; $\langle x, x \rangle = ||x||^2$.
- 2. The angle between two vectors x, y. Note that:
 - $\langle x, y \rangle = 0$, if and only if $x \perp y$.
 - If $\langle x, y \rangle > 0$, then $0 < \theta < \pi/2$.
 - If $\langle x, y \rangle < 0$, then $\pi/2 < \theta < \pi$.
- 3. The scalar projection of vector u in the direction of vector v which is $|\langle u, v \rangle|$.

Figure 1.1: The projective vector

Example 1.4.3.

- 1. The function $\langle .,. \rangle : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ defined by $\langle x,y \rangle = \sum_{i=1}^n x_i y_i$, is an inner product on \mathbb{R}^n . This inner product will be called **the standard inner product** on \mathbb{R}^n .
- 2. The function $\langle .,. \rangle : \mathbb{C}^n \times \mathbb{C}^n \longrightarrow \mathbb{C}$ defined by $\langle x,y \rangle = \sum_{i=1}^n x_i \overline{y_i}$, is an inner product on \mathbb{C}^n . This inner product will be called **the standard inner product** on \mathbb{C}^n .
- 3. If $a = \{a_i\}$, $b = \{b_i\} \in \ell^2$ then the sequence $\{a_i\overline{b_i}\} \in \ell^1$ and the function $\langle .,. \rangle : \mathbb{F}^n \times \mathbb{F}^n \longrightarrow \mathbb{F}$ defined by $\langle a,b \rangle = \sum_{i=1}^n a_i\overline{b_i}$ is an inner product on ℓ^2 . This inner product will be called **the standard inner product on** ℓ^2 .

Proposition 1.4.4 (Cauchy-Schwarz inequality). If $\langle ., . \rangle$ is an inner product on a vector space \mathcal{X} , then for all x and y in \mathcal{X} we have

$$\left|\left\langle x,y\right\rangle \right|^{2}\leq\left\langle x,x\right\rangle \left\langle y,y\right\rangle .$$

In particular, The equality in Cauchy - Schwarz inequality holds if and only if x and y are dependent

Proof. If one of the two vectors is zero then both sides are zero so we may assume that both x, y are non-zero. Let $t \in \mathbb{C}$. Then

$$0 \le ||x + ty||^2 = \langle x + ty, x + ty \rangle$$

$$= \langle x, x \rangle + \langle x, ty \rangle + \langle yt, x \rangle + \langle ty, ty \rangle$$

$$= \langle x, x \rangle + \overline{t} \langle x, y \rangle + t \overline{\langle x, y \rangle} + |t|^2 \langle y, y \rangle$$

$$= \langle x, x \rangle + 2Re(t \overline{\langle x, y \rangle}) + |t|^2 \langle y, y \rangle$$

Now choose $t := -\frac{\langle x,y \rangle}{\langle y,y \rangle}$. Then we get

$$0 \le \langle x, x \rangle + 2Re(-\frac{|\langle x, y \rangle|^2}{\langle y, y \rangle}) + \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle} = \langle x, x \rangle - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle}$$

And hence $|\langle x,y\rangle| \leq ||x|| ||y||$ Note that if $y = \lambda x$ for $\lambda \in \mathbb{C}$ then equality holds:

$$|\lambda|^2 |\langle x, x \rangle| = |\lambda|^2 ||x|| ||x||$$

Hence

$$|\langle x, x \rangle| = ||x||^2$$

Proposition 1.4.5. If $\langle .,. \rangle$ is an inner product on a vector space \mathcal{X} , then for all x and y in \mathcal{X} we have

$$||x|| = \langle x, x \rangle^{\frac{1}{2}}$$

is a norm on \mathcal{X} .

Remark 1.4.6. The norm $||x|| = \langle x, x \rangle^{\frac{1}{2}}$ defined in above proposition (1.4.5) on the inner product space \mathcal{X} is said to be **induced by the inner product** $\langle ., . \rangle$.

Theorem 1.4.7 (The Parallelogram Rule). Let \mathcal{X} be an inner product space with inner product $\langle .,. \rangle$ and induced norm $\|.\|$. Then for all $x, y \in \mathcal{X}$:

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

Its name comes from picturing the relationship for vectors in, say, \mathbb{R}^2 ; see Figure 3.2

Figure 1.2: The parallelogram equality

Remark 1.4.8. One way to show that a given norm on a vector space is not induced by an inner product is to show that it does not satisfy the parallelogram rule.

Example 1.4.9. The standard norm on the space C[0,1] is not induced by an inner product.

Solution. Consider the functions $f, g \in C[0, 1]$ defined by f(x) = 1, g(x) = x, $x \in [0, 1]$. From the definition of the standard norm on C[0, 1] we have

$$||f + g||^2 + ||f - g||^2 = 4 + 1 = 5$$

 $2(||f||^2 + ||g||^2) = 2(1 + 1) = 4$

Thus the parallelogram rule does not hold and so the norm cannot be induced by an inner product.

Chapter 2

Complete Metric Spaces

2.1 Convergence Sequences

Definition 2.1.1. A sequence $\{x_n\}$ in a metric space (\mathcal{X}, d) converges to $x \in \mathcal{X}$ (or the sequence $\{x_n\}$ is **convergent**) if, for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $d(x_n, x) < \varepsilon$, for all n > N.

Definition 2.1.2. A sequence $\{x_n\}$ in a metric space (\mathcal{X}, d) is called **bounded** if there exists $x \in X$ and $M \in \mathbb{N}$ such that $d(x_n, x) < M$ for all $n \in \mathbb{N}$.

Proposition 2.1.3. Every convergence sequence in a metric space is bounded.

Proof. Let $\{x_n\}$ be a convergent sequence in a metric space X to a point x.

 $\therefore \forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ such that } d(x_n, x) < \varepsilon \text{ for all } n > N$

In particular, this is true when $\varepsilon = 1$

 $\therefore \exists M \in \mathbb{N}$, such that $d(x_n, x) < 1 \ \forall n > M$

Put $K = \max\{d(x_1, x), d(x_2, x), \dots, d(x_M, x), 1\}$

 $\therefore \forall n \in \mathbb{N}, d(x_n, x) \le K$

: the sequence $\{x_n\}$ is bounded.

Remark 2.1.4. In normed space the definition of convergent and bounded sequence will be:

converge sequence: A sequence $\{x_n\}$ in a normed space \mathcal{X} converges to $x \in \mathcal{X}$ (or the sequence $\{x_n\}$ is convergent) if, for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $||x_n - x|| < \varepsilon$, for all n > N.

bounded sequence: A sequence $\{x_n\}$ in a normed space \mathcal{X} is called **bounded** if there exists $M \in \mathbb{N}$ such that $||x_n|| < M$ for all $n \in \mathbb{N}$.

So the proposition (2.1.3) is still true in normed space.

Proposition 2.1.5. Let \mathcal{X} be an inner product space and suppose that for any pair of a convergent sequences $\{x_n\}$ and $\{y_n\}$ in \mathcal{X} , with $x_n \longrightarrow x$ and $y_n \longrightarrow y$. Then

$$\langle x_n, y_n \rangle \longrightarrow \langle x, y \rangle \text{ for } n \longrightarrow \infty.$$

Proof.

$$\begin{aligned} |\langle x_n, y_n \rangle - \langle x, y \rangle| &= |\langle x_n, y_n \rangle - \langle x_n, y \rangle + \langle x_n, y \rangle - \langle x, y \rangle| \\ &\leq |\langle x_n, y_n \rangle - \langle x_n, y \rangle| + |\langle x_n, y \rangle - \langle x, y \rangle| \\ &= |\langle x_n, y_n - y \rangle| + |\langle x_n - x, y \rangle| \\ &\leq ||x_n|| ||y_n - y|| + ||x_n - x|| ||y|| \end{aligned}$$

Since the sequence $\{x_n\}$ is convergent, then by (2.1.3) the sequence $\{x_n\}$ is bounded, $\therefore ||x_n||$ is bounded.

So the right hand side of this inequality lends to zero as $n \to \infty$.

$$\therefore \langle x_n, y_n \rangle \longrightarrow \langle x, y \rangle \text{ for } n \longrightarrow \infty.$$

Definition 2.1.6. Let \mathcal{X} be a metric space. A sequence $\{x_n\}$ in \mathcal{X} is said to be a **Cauchy sequence** if it has the following property: Given any $\epsilon > 0$ there exists N such that if $n, m \geq N$, then $d(x_n, x_m) < \epsilon$.

Proposition 2.1.7. Every convergent sequence in a metric space (X, d) is a Cauchy sequence.

Proof. Let $\{x_n\}$ be a sequence in X that converges to the limit x. Let $\epsilon > 0$.

 $\therefore x_n \to x$

 $\therefore \exists N \text{ such that } \forall n > N, d\left(x_n, x\right) < \frac{\epsilon}{2}$

 \therefore if m > N and n > N

$$d(x_n, x_m) \le d(x_n, x) + d(x_m, x) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Example 2.1.8 (The Converse of the proportion (2.1.7) is not true.). If $X = \mathbb{R} - \{0\}$, and define $d : \mathbb{R} \times \mathbb{R}$ as

$$d(x,y) = |x - y|$$

Then the sequence $\left\{\frac{1}{n}\right\}$ is Cauchy sequence but it is not convergent.

Definition 2.1.9. A metric space is said to be **complete** if every Cauchy sequence in \mathcal{X} converges in \mathcal{X} .

Definition 2.1.10. The complete normed space is called **Banach space**.

Example 2.1.11. the space C[a, b] is a Banach space.

Definition 2.1.12. The complete inner product space is called **Hilbert space**.

Examples 2.1.13.

1. Every finite-dimensional inner product space is a Hilbert space.

2. ℓ^2 with the standard inner product is a Hilbert space.

Remark 2.1.14. Since every inner product space has an induced norm, then every Hilbert space is a Banach space.

the converse is not true unless that one satisfied parallelogram law (1.4.7).

Definition 2.1.15. A set X is **closed** if and only if for all sequence $\{x_n\}$ in X such that $x_n \to x$, then $x \in X$.

Proposition 2.1.16. If H is a Hilbert space and $Y \subset H$ is a linear subspace, then Y is a Hilbert space if and only if Y is closed in H.

Proof. \Rightarrow) Let Y be a Hilbert space

Claim: Y is closed in H:

Let $\{x_n\}$ be a sequence in Y such that $x_n \to x$.

Assume that x is not in Y

- $\therefore \{x_n\}$ is Cauchy sequence but not converge in Y.
- $\therefore Y$ is not complete, which is contraction with Y is Hilbert space
- $\therefore Y$ is closed.

 \Leftarrow): Let Y be a closed subspace in H.

Claim: Y is Hilbert space:

Let $\{x_n\}$ be a Cauchy sequence in Y.

- $\therefore \{x_n\}$ is Cauchy sequence in H
- $\therefore H$ is a Hilbert space
- $\therefore H$ is complete
- \therefore the Cauchy sequence $\{x_n\}$ is convergent in H, say x
- $\therefore Y$ is closed

- $\therefore x \in Y$
- ... the sequence $\{x_n\}$ is convergent in Y
- $\therefore Y$ is a Hilbert space.

2.2 ORTHOGONALITY

Definition 2.2.1. Let \mathcal{X} be an inner product space. The vectors $x, y \in \mathcal{X}$ are said to be **orthogonal** if $\langle x, y \rangle = 0$, this is symbolically written $x \perp y$.

Definition 2.2.2. For subsets M and N of an inner product space \mathcal{X} , one says that M, N are **orthogonal**, written $M \perp N$ if $\langle x, y \rangle = 0$ for every $x \in M$, $y \in N$. In addition **the orthogonal complement** of such M is defined as

$$M^{\perp} := \{ y \in \mathcal{X} | \langle x, y \rangle = 0 \text{ for all } x \in M \}.$$

Example 2.2.3. If $\mathcal{X} = \mathbb{R}^3$ and $A = \{(a_1, a_2, 0) : a_1, a_2 \in \mathbb{R}\}$, then $A^{\perp} = \{(0, 0, x_3) : x_3 \in \mathbb{R}\}$.

Solution. Let $x = (x_1, x_2, x_3) \in A^{\perp}$

 $\therefore \forall a = (a_1, a_2, 0) \in A \text{ with } a_1, a_2 \in \mathbb{R},$

$$\langle x, a \rangle = \langle (x_1, x_2, x_3), (a_1, a_2, 0) \rangle = x_1 a_1 + x_2 a_2 = 0.$$

Putting $a_1 = x_1, a_2 = x_2,$

$$x_1^2 + x_2^2 = 0$$

$$x_1 = x_2 = 0.$$

$$\therefore x = (0, 0, x_3) \in A^{\perp}.$$

Proposition 2.2.4. If \mathcal{X} is an inner product space and $A \subset \mathcal{X}$, then $0 \in A^{\perp}$.

Proof.

$$\therefore 0 \in A^{\perp}$$
.

Proposition 2.2.5. If \mathcal{X} is an inner product space and $0 \in A \subset \mathcal{X}$, then $A \cap A^{\perp} = \{0\}$, otherwise $A \cap A^{\perp} = \emptyset$.

Proof.

If $0 \in A$, and let $x \in A \cap A^{\perp}$

 $\therefore x \in A \text{ and } x \in A^{\perp}$

$$\therefore \langle x, x \rangle = 0$$

$$\therefore x = 0$$

$$\therefore A \cap A^{\perp} = \{0\}$$

Now, if $0 \notin A$,

$$A \cap A^{\perp} = \emptyset.$$

Proposition 2.2.6. If \mathcal{X} is an inner product space and $A \subset \mathcal{X}$, then $\{0\}^{\perp} = X$; $X^{\perp} = \{0\}$.

Proof.

$$\therefore \{0\}^{\perp} = X.$$

Let $y \in X^{\perp}$

$$\therefore \langle y, z \rangle = 0 \quad \forall z \in X$$

$$\therefore \langle y, y \rangle = 0$$

$$\therefore y = 0.$$

$$\therefore X^{\perp} = \{0\}.$$

Proposition 2.2.7. If \mathcal{X} is an inner product space and $B \subseteq A \subset \mathcal{X}$, then $A^{\perp} \subseteq B^{\perp}$.

Proof.

Let $x \in A^{\perp}$

$$\therefore \langle x, y \rangle = 0 \quad \forall y \in A$$

$$\therefore B \subseteq A$$

$$\therefore \langle x, y \rangle = 0 \quad \forall y \in B$$

$$\therefore x \in B^{\perp}$$

$$A^{\perp} \subseteq B^{\perp}$$
.

Proposition 2.2.8. If \mathcal{X} is an inner product space and $A \subset \mathcal{X}$ then $A \subseteq (A^{\perp})^{\perp}$.

Proof.

Let $x \in A$

$$\therefore x \in \mathcal{X} \text{ and } \langle x, y \rangle = 0 \quad \forall y \in A^{\perp}$$

$$\because (A^\perp)^\perp = \left\{ x \in X : \langle x,y \rangle = 0 \quad \forall y \in A^\perp \right\}$$

$$\therefore x \in (A^\perp)^\perp$$

$$\therefore A \subseteq (A^{\perp})^{\perp}.$$

Proposition 2.2.9. If \mathcal{X} is an inner product space and $A \subset \mathcal{X}$ then A^{\perp} is a closed linear subspace of \mathcal{X} .

Proof.

Let $x, y \in A^{\perp}$ and $\alpha, \beta \in \mathbb{F}$, let $z \in A$

$$\langle \alpha x + \beta y, z \rangle = \langle \alpha x, z \rangle + \langle \beta y, z \rangle$$

= $\alpha \langle x, z \rangle + \beta \langle y, z \rangle = 0$

$$\therefore \alpha x + \beta y \in A^{\perp}$$

$$\because 0 \in A^\perp$$

 $\therefore A^{\perp}$ is linear space.

Now let $\{x_n\}$ be a sequence in A^{\perp} such that $x_n \to x$, and let $w \in A$

$$\therefore \langle x_n, w \rangle \to \langle x, w \rangle$$

$$\therefore 0 \to \langle x, w \rangle$$

$$\therefore \langle x, w \rangle = 0$$

$$\therefore x \in A^{\perp}$$
.

Proposition 2.2.10 (Pythagorean theorem). If $x_1, x_2, ..., x_n$ are pairwise orthogonal vectors in a Hilbert space, then

$$||x_1 + x_2 + \dots + x_n||^2 = ||x_1||^2 + ||x_2||^2 + \dots + ||x_n||^2.$$

Proposition 2.2.11. Let Y be a linear subspace of an inner product space X. Then

$$x \in Y^{\perp}$$
 if and only if $||x|| \le ||x - y||$, for all $y \in Y$.

2.2.1 Orthonormal Bases

We now wish to extend the idea of an orthonormal basis to infinite-dimensional spaces.

Definition 2.2.12. An **orthonormal set** in a Hilbert space \mathbb{H} is a set E with the properties:

- 1. For every $e \in E$, ||e|| = 1,
- 2. For distinct vectors e and x in E , $\langle e, x \rangle = 0$.

Definition 2.2.13. An **orthonormal sequence** in a Hilbert space \mathbb{H} is a sequence $\{e_i\}_{i=1}^{\infty}$ with the properties:

- 1. $||e_i|| = 1$, for every i
- 2. $\langle e_i, e_j \rangle = 0$, for every $i \neq j$.

Example 2.2.14. For an easy example of an orthonormal set (sequence) in the Hilbert space ℓ^2 , take the set E of vectors $\{e_j\}_{j=1}$ where e_j has a 1 in the j-th coordinate and zeros elsewhere. (Check?)

Definition 2.2.15. An **orthonormal basis** for a Hilbert space \mathbb{H} is a maximal orthonormal set;

that is, an orthonormal set that is not properly contained in any orthonormal set.

Example 2.2.16. In the ℓ^2 example above, the set $\{e_j\}_{j=1}$ is an orthonormal basis.

When is an orthonormal set in a Hilbert space an orthonormal basis?

Theorem 2.2.17 (Gram–Schmidt process). Let $\{v_i : i = 1.2, 3...\}$ be a sequence of vectors of \mathbb{H} . Then there exists an orthonormal sequence $\{e_i : i = 1, 2, 3, ...\}$ such

that, for each integer k

$$span \{e_1, e_2, e_3, \dots, e_k\} \supseteq span \{v_1, v_2, v_3, \dots, v_k\}.$$

If $\{v_i : i = 1.2, 3...\}$ is a linearly independent set, then the above inclusion is an equality for each k.

Figure 2.1: Gram-Schmidt algorithm, at stage k=2

Proof. Define recursively

$$e_1 = \frac{v_1}{\|v_1\|}, \ e_2 = \frac{v_2 - \langle v_2, e_1 \rangle e_1}{\|v_2 - \langle v_2, e_1 \rangle e_1\|}$$

and if we assume that e_1, e_2, \ldots, e_j are defined,

$$e_{j+1} = \frac{v_{j+1} - \sum_{k=1}^{j} \langle v_{j+1}, e_k \rangle x_k}{\left\| v_{j+1} - \sum_{k=1}^{j} \langle v_{j+1}, e_k \rangle x_k \right\|}$$

Then the set $\{e_k\}$ is orthonormal by construction and it satisfies the requirement about span.

Proposition 2.2.18 (Bessels Inequality). Let \mathcal{X} be an inner product space and let $\{e_i\}$ be an orthonormal set in \mathcal{X} . For any $h \in \mathcal{X}$ the (real) series $\sum_{i=1}^{\infty} |\langle h, e_i \rangle|^2$ converges and

$$\sum_{i=1}^{\infty} \left| \langle h, e_i \rangle \right|^2 \le \left\| h \right\|^2.$$

Proof. Let $h \in \mathbb{H}$, Then

$$0 \leq \left\| h - \sum_{i=1}^{n} \left\langle h, e_{i} \right\rangle e_{i} \right\|^{2} = \left\langle h - \sum_{i=1}^{n} \left\langle h, e_{i} \right\rangle e_{i}, h - \sum_{i=1}^{n} \left\langle h, e_{i} \right\rangle e_{i} \right\rangle$$

$$= \left\| h \right\|^{2} - \left\langle h, \sum_{i=1}^{n} \left\langle h, e_{i} \right\rangle e_{i} \right\rangle - \left\langle \sum_{i=1}^{n} \left\langle h, e_{i} \right\rangle e_{i}, h \right\rangle$$

$$+ \sum_{i,j=1}^{n} \left\langle h, e_{i} \right\rangle \overline{\left\langle h, e_{j} \right\rangle} \left\langle e_{i}, e_{j} \right\rangle$$

$$= \left\| h \right\|^{2} - \left\langle h, \sum_{i=1}^{n} \left\langle h, e_{i} \right\rangle e_{i} \right\rangle - \left\langle \sum_{i=1}^{n} \left\langle h, e_{i} \right\rangle e_{i}, h \right\rangle + \sum_{i=1}^{n} \left| \left\langle h, e_{i} \right\rangle \right|^{2}$$

$$= \left\| h \right\|^{2} - \sum_{i=1}^{n} \left| \left\langle h, e_{i} \right\rangle \right|^{2} - \sum_{i=1}^{n} \left| \left\langle h, e_{i} \right\rangle \right|^{2}$$

$$= \left\| h \right\|^{2} - \sum_{i=1}^{n} \left| \left\langle h, e_{i} \right\rangle \right|^{2}$$

$$= \left\| h \right\|^{2} - \sum_{i=1}^{n} \left| \left\langle h, e_{i} \right\rangle \right|^{2}$$

Thus $||h||^2 \ge \sum_{i=1}^n |\langle h, e_i \rangle|^2$, and hence this sequence of partial sums is increasing and bounded above so the result follows.

Remarks 2.2.19.

- 1. In above theorem, the case n=1 is the Cauchy–Schwartz inequality
- 2. The geometric meaning of Bessel's inequality is that the orthogonal projection of an element h on the linear span of the elements, $\{e_i\}$, has a norm which does not exceed the norm of h (i.e. the hypothenuse in a right-angled triangle is not shorter than one of the other sides).

Lemma 2.2.20. If $\{e_i\}_1^{\infty}$ is an orthonormal sequence, then for any $h \in \mathbb{H}$,

$$\sum_{i=1}^{\infty} \langle h, e_i \rangle e_i$$

converges to a vector h_0 such that $\langle h - h_0, e_i \rangle = 0$ for all i.

Theorem 2.2.21. If $\{e_i\}_1^{\infty}$ is an orthonormal sequence in a Hilbert space \mathbb{H} , then the following conditions are equivalent:

- 1. $\{e_i\}_{1}^{\infty}$ is an orthonormal basis.
- 2. If $h \in \mathbb{H}$ and $h \perp e_i$ for all i, then h = 0.
- 3. (Fourier expansion) For every $h \in \mathbb{H}$, $h = \sum_{i=1}^{\infty} \langle h, e_i \rangle e_i$; equality here means the convergence in the norm of \mathbb{H} of the partial sums to h.
- 4. (Parsevals relation) For all h and g in \mathbb{H} , $\sum_{1}^{\infty} \langle h, e_i \rangle \langle e_i, g \rangle = \langle h, g \rangle$.
- 5. For every $h \in \mathbb{H}$, $\sum_{1}^{\infty} |\langle h, e_i \rangle|^2 = ||h||^2$.

Proof.

(1) \Longrightarrow (2): If (2) is false then adding $\frac{h}{\|h\|}$ to the set $\{e_n\}_1^{\infty}$ gives a larger orthonormal set, contradicting (1).

(2) \Longrightarrow (3): Let $h_0 = \sum_{j=1}^{\infty} \langle h, e_j \rangle e_j$ (this exists, by Lemma 2.2.20). Then for all i

$$\langle h - h_0, e_i \rangle = \left\langle h - \sum_{j=1}^{\infty} \langle h, e_j \rangle e_j, e_i \right\rangle = \langle h, e_i \rangle - \left\langle \sum_{j=1}^{\infty} \langle h, e_j \rangle e_j, e_i \right\rangle$$
$$= \left\langle h, e_i \right\rangle - \sum_{j=1}^{\infty} \langle h, e_j \rangle \langle e_j, e_i \rangle = \langle h, e_i \rangle - \langle h, e_i \rangle = 0$$

and so $h = h_0$ by (2)

(3) \Longrightarrow (4): Let $h_r = \sum_{i=1}^r \langle h, e_i \rangle e_i$ and $g_s = \sum_{i=1}^s \langle g, e_i \rangle e_i$. Then

$$\langle h_r, g_s \rangle = \sum_{i=1}^{\min[r,s]} \langle h, e_i \rangle \overline{\langle g, e_i \rangle}.$$

Let $r \longrightarrow \infty$ and $s \longrightarrow \infty$. Using the continuity of the inner product, it follows that

$$\langle h, g \rangle = \sum_{i=1}^{\infty} \langle h, e_i \rangle \overline{\langle g, e_i \rangle}.$$

- $(4) \Longrightarrow (5)$: Put g = h in (4).
- (5) \Longrightarrow (1): If $\{e_i\}_1^{\infty}$ is not maximal and can be enlarged by adding z, then $\langle z,e_i\rangle=0$ for all i but also

$$1 = ||z||^2 = \sum_{i=1}^{\infty} |\langle z, e_i \rangle|^2 = 0$$

which give a contradiction.

Remark 2.2.22. Let \mathbb{H} be a Hilbert space and let $\{e_n\}$ be an orthonormal sequence in \mathbb{H} . Then $\{e_n\}$ is called an **orthonormal basis for** \mathbb{H} if any of the conditions in Theorem (2.2.21) hold.

Definition 2.2.23. A Hilbert space is called **separable** if it contains a countable, dense subset

Examples 2.2.24.

- 1. the space $\mathbb R$ is separable since the set of rational numbers is countable and dense in $\mathbb R$
- 2. \mathbb{C} is separable since the set of complex numbers of the form p+iq, with p and q rational, is countable and dense in \mathbb{C} .
- 3. Finite dimensional normed vector spaces are separable.
- 4. The Hilbert space ℓ^2 is separable.

Theorem 2.2.25.

An infinite-dimensional Hilbert space \mathbb{H} is separable if and only if it has an orthonormal basis.

Chapter 3

Hilbert Space Geometry

3.1 Nearest Point Property

Definition 3.1.1. A subset A of a vector space \mathcal{X} is **convex** if, for all $x, y \in A$ and all $t \in [0, 1]$, $tx + (1 - t)y \in A$.

In other words, A is convex if, for any two points x, y in A, the line segment joining x and y also lies in A,

Figure 3.1: Convex and non-convex planar regions

Examples 3.1.2.

- 1. Every subspace is convex.
- 2. Every ball in a normed linear space is convex
- 3. Any translate $x+S:=\{x+s:s\in S\}$ of a convex set S is convex. (Check?)

Proposition 3.1.3 (Nearest Point Property). Every nonempty, closed convex set \mathbb{K} in a Hilbert space \mathbb{H} contains a unique element of smallest norm.

Moreover, given any $h\in\mathbb{H}$, there is a unique k_0 in \mathbb{K} such that

$$||h - k_0|| = dist(h, \mathbb{K}) = \inf \{||h - k|| : k \in \mathbb{K}\}.$$

Figure 3.2: Convex and non-convex planar regions

Proof. Let \mathbb{K} be a nonempty, closed convex set in a Hilbert space \mathbb{H} Claim: \mathbb{K} contains a unique element of smallest norm: Let $d = \inf \{ ||y|| : y \in \mathbb{K} \}$.

- \therefore K is closed,
- \therefore there is a sequence of vectors $\{x_n\}$ in \mathbb{K} with $||x_n|| \to d$.

Thus, by The parallelogram equality, for any n, m we have

$$||x_n - x_m||^2 + ||x_n + x_m||^2 = 2(||x_n||^2 + ||x_m||^2),$$

$$||x_n - x_m||^2 = 2(||x_n||^2 + ||x_m||^2) - 4||\frac{x_n + x_m}{2}||^2$$

 $:: \mathbb{K} \text{ is convex,}$

$$\frac{1}{2}x_n + \frac{1}{2}x_m \in \mathbb{K},$$

$$\therefore \left\| \frac{x_n + x_m}{2} \right\|^2 \ge d^2.$$

$$\therefore -4 \left\| \frac{x_n + x_m}{2} \right\|^2 \le -4d^2$$

$$\therefore 0 \le ||x_n - x_m||^2 \le 2(||x_n||^2 + ||x_m||^2) - 4d^2.$$

as
$$n, m \to \infty$$
, $||x_n - x_m||^2 \to 2d^2 + 2d^2 - 4d^2 = 0$

- $\therefore \{x_n\}$ is a Cauchy sequence,
- $:: \mathbb{H}$ is complete
- $\{x_n\}$ converge to some $x \in \mathbb{H}$.
- \therefore K is closed,
- $\therefore x \in \mathbb{K}.$
- : the norm is continuous map
- $\therefore \|x_n\| \longrightarrow \|x\|,$
- $\therefore \|x\| = d.$

This gives us the existence part of the first statement.

For uniqueness: suppose ||z|| = ||x|| = d for some z in \mathbb{K} .

- $\therefore \frac{1}{2}x + \frac{1}{2}z \in \mathbb{K}.$
- $\therefore \left\| \frac{x+z}{2} \right\| \ge d$

By the parallelogram equality,

$$||x - z||^2 = 2(||x||^2 + ||z||^2) - 4\left\|\frac{x + z}{2}\right\|^2 \le 4d^2 - 4d^2 = 0,$$

which forces x = z.

This completes the proof of the first statement.

The second statement is obtained by translation: $h - \mathbb{K}$ is closed and convex, then by the first part, there is a unique element in $h - \mathbb{K} := \{h - k : k \in \mathbb{K}\}$, namely x, with smallest norm, i.e. $x \in h - \mathbb{K}$ with $||x|| = \inf\{||y|| : y \in h - \mathbb{K}\}$.

 \therefore there is a unique $k_0 \in \mathbb{K}$ such that $||h - k_0|| = dist(h, \mathbb{K}) = \inf\{||h - k|| : k \in \mathbb{K}\}.$

Remarks 3.1.4.

- The Nearest Point Property fails to be true if we omit either the requirement that

 K be closed or convex, or change Hilbert space to Banach space in the statement.
- The last theorem say: $\forall x, \in \mathbb{H} \ \exists y \in \mathbb{K} \ \text{such that} \ \|x-y\| = \inf_{a \in \mathbb{K}} \|x-a\|$

Corollary 3.1.5. If \mathbb{K} is a closed linear subspace of \mathbb{H} , $h \in \mathbb{H}$, and k_0 is a unique element of \mathbb{K} such that $||h - k_0|| = dist(h, \mathbb{K})$, then $h - k_0 \perp \mathbb{K}$.

Conversely, if $k_0 \in \mathbb{K}$ such that $h - k_0 \perp \mathbb{K}$, then $||h - k_0|| = dist(h, \mathbb{K})$.

3.2 Projection Theorems

Definition 3.2.1. For orthogonal subspaces M and N,

i.e. $M \perp N$, the orthogonal sum is defined as $M \oplus N$ where

$$M \oplus N := \{x + y : x \in M, y \in N\}.$$

Hence any vector $z \in M \oplus N$ has a decomposition z = x + y with $x \in M$ and $y \in N$.

$$\langle x_1 + y_1, x_2 + y_2 \rangle = \langle x_1 + x_2 \rangle + \langle y_1 + y_2 \rangle$$

Remarks 3.2.2.

1. $||z||^2 = ||x+y||^2 = \langle x+y, x+y \rangle = \langle x, x \rangle + \langle y, y \rangle = ||x||^2 + ||y||^2$

2. The decomposition z = x + y with $x \in M$ and $y \in N$ is unique.

Proof. Let $z \in M \oplus N$, such that $z = x_1 + y_1 = x_2 + y_2$ where $x_1, x_2 \in M$ and $y_1, y_2 \in N$

$$\therefore x_1 + y_1 = x_2 + y_2$$

$$\therefore x_1 - x_2 = y_2 - y_1 \in M \cap N = \{0\}$$

$$x_1 = x_2 \text{ and } y_1 = y_2$$

3. If M and N are subspaces in \mathbb{H} , then $M \oplus N$ is a subspace too.

Proof. Let $z_1, z_2 \in M \oplus N$ and $\alpha, \beta \in \mathbb{C}$

 $\therefore z_1 = x_1 + y_1 \text{ and } z_2 = x_2 + y_2 \text{ where } x_1, x_2 \in M \text{ and } y_1, y_2 \in N.$

$$\alpha z_1 + \beta z_2 = \alpha x_1 + \alpha y_1 + \beta x_2 + \beta y_2$$
$$= (\alpha x_1 + \beta x_2) + (\alpha y_1 + \beta y_2)$$
$$\in M \oplus N$$

 $0 \in M \text{ and } 0 \in N,$

 $\therefore 0 \in M \oplus N$

 $\therefore M \oplus N$ is a subspace.

4. If M and N are closed in \mathbb{H} , then $M \oplus N$ is a closed subspace too.

Proof. Let $z_n \in M \oplus N$ such that $z_n \to z$.

Claim: $z \in M \oplus N$;

Let $\epsilon > 0$

- $\therefore \{z_n\}$ is converge,
- $\therefore \{z_n\}$ is Cauchy sequence,
- $\therefore \forall n, m \in \mathbb{N}, ||z_n z_m|| \le \epsilon$
- $\therefore ||x_n x_m|| \le \epsilon \text{ and } ||x_n x_m|| \le \epsilon$
- $\therefore \{x_n\}$ is Cauchy sequence in M and $\{y_n\}$ is Cauchy sequence in N which are subspace in \mathbb{H} .
- $\therefore \{x_n\}, \{y_n\}$ are convergent sequence in \mathbb{H} .
- $\therefore x_n \to x \text{ and } y_n \to y$
- :: M, N are closed
- $\therefore x \in M, y \in N \text{ and } z_n = x_n + y_n \to x + y$

But the limit point is unique,

 $\therefore z = x + y$ which is in $M \oplus N$.

Theorem 3.2.3 (the Projection Theorem I). Let M be a closed subspace of a Hilbert space \mathbb{H} . Then there is an orthogonal sum

$$H = M \oplus M^{\perp}$$
.

Proof. Let $x \in \mathbb{H}$ there is a $y \in M$ such that $||x - y|| \le ||x - v||$ for all $v \in M$, by Proposition (3.1.3). Let z = x - y

Claim: $z \in M^{\perp}$:

For $\lambda \in \mathbb{F}$ and $v \in M$ with ||v|| = 1,

 $y, v \in M$ and M is subspace,

 $\therefore y + \lambda v \in M$

therefore

$$||z||^{2} = ||x - y||^{2} \leq ||x - (y + \lambda v)||^{2}$$

$$= ||z - \lambda v||^{2}$$

$$= \langle z - \lambda v, z - \lambda v \rangle$$

$$\leq \langle z, z \rangle - \langle z, \lambda v \rangle - \langle \lambda v, z \rangle + \langle \lambda v, \lambda v \rangle$$

$$= \langle z, z \rangle - (\langle z, \lambda v \rangle + \overline{\langle z, \lambda v \rangle}) + |\lambda|^{2} \langle v, v \rangle$$

$$= ||z||^{2} - 2Re\overline{\lambda} \langle z, v \rangle + |\lambda|^{2} ||v||^{2}$$

$$= ||z||^{2} - 2Re\overline{\lambda} \langle z, v \rangle + |\lambda|^{2}$$

 $\therefore 2Re\overline{\lambda} \langle z, v \rangle \le |\lambda|^2 \quad \forall \lambda \in \mathbb{F}$

So take $\lambda = \langle z, v \rangle$

$$\therefore 2|\lambda|^2 = 2Re\overline{\lambda}\lambda \le |\lambda|^2$$

$$|\lambda|^2 \le 0$$

$$|\lambda| = 0;$$

 $\therefore \langle z, v \rangle = 0 \text{ for any } v \in M.$

$$z \in \mathcal{M}^{\perp}$$

$$\therefore x = y + z \in M \oplus M^{\perp}$$

$$\therefore M \oplus M^{\perp} = H.$$

Corollary 3.2.4. For every closed subspace $M \subset \mathbb{H}$, $M = M^{\perp \perp}$.

Proof. By theorem (2.2.8) $M \subseteq M^{\perp \perp}$.

Now let $x \in M^{\perp \perp}$

 $\therefore x \in \mathbb{H}$

By theorem (3.2.3), $\mathbb{H} = M \oplus M^{\perp}$

$$\therefore x = y + z \text{ for } y \in M \text{ and } z \in M^{\perp},$$

$$\therefore M \subseteq M^{\perp \perp}$$
 and $M^{\perp \perp}$ is subspace

$$\therefore y \in M^{\perp \perp} \text{ and } z = x - y \in M^{\perp \perp}$$

But $z \in M^{\perp}$

$$\therefore z \in M^{\perp} \cap M^{\perp \perp} = \{0\}$$

$$\therefore z = 0$$

$$\therefore x = y \in M.$$

$$\therefore M^{\perp \perp} \subseteq M$$

$$\therefore M^{\perp \perp} = M$$

Definition 3.2.5. Let \mathbb{K} be a closed linear subspace of \mathbb{H} , A function

$$P:\mathbb{H}\longrightarrow\mathbb{K}$$

can be defined by

$$Ph = k_0$$

where $h - k_0 \perp \mathbb{K}$

is called the orthogonal projector mapping.

Remark 3.2.6. Since for every $h \in \mathbb{H}$, then there is a unique element $k_0 \in \mathbb{K}$ such that $h - k_0 \in \mathbb{K}^{\perp}$, the orthogonal projector mapping is well defined.

Proposition 3.2.7 (Projection Theorem II). Let \mathbb{K} be a closed subspace of a Hilbert space \mathbb{H} . There is a unique pair of mappings $P: \mathbb{H} \longrightarrow \mathbb{K}$ and $Q: \mathbb{H} \longrightarrow \mathbb{K}^{\perp}$ such that x = Px + Qx for all $x \in \mathbb{H}$.

Furthermore, P and Q have the following additional properties:

- 1. $x \in \mathbb{K}$ then Px = x and Qx = 0.
- 2. $x \in \mathbb{K}^{\perp}$, then Px = 0 and Qx = x.
- 3. Px is the closest vector in \mathbb{K} to x.
- 4. Qx is the closest vector in \mathbb{K}^{\perp} to x.
- 5. $||Px||^2 + ||Qx||^2 = ||x||^2$ for all x.
- 6. P and Q are linear maps.

Figure 3.3: The projections P and Q

Chapter 4

Linear Operators

4.1 Bounded Linear Operators

Definition 4.1.1. If \mathcal{X} and \mathcal{Y} are normed linear spaces, a map $T: \mathcal{X} \longrightarrow \mathcal{Y}$ is **linear** if $T(\alpha x_1 + \beta x_2) = \alpha(Tx_1) + \beta T(x_2)$ for all x_1, x_2 in \mathcal{X} and scalars α and β .

Definition 4.1.2. f is **continuous at some point** $x_0 \in \mathcal{X}$ if and only if for any neighborhood \mathcal{V} of $f(x_0)$, there is a neighborhood \mathcal{U} of x_0 such that $f(\mathcal{U}) \subset \mathcal{V}$ i.e. $\forall \varepsilon > 0, \exists \delta > 0$ such that, if $|x - x_0| < \delta$ then $|f(x) - f(x_0)| < \varepsilon$

Definition 4.1.3. A function is **continuous** if it is continuous everywhere.

Remarks 4.1.4.

1. A function $f: \mathcal{X} \longrightarrow \mathcal{Y}$ between two topological spaces \mathcal{X} and \mathcal{Y} is continuous if for every open set $V \subset \mathcal{Y}$, the inverse image

$$f^{-1}(V) = \{ x \in \mathcal{X} \mid f(x) \in V \}$$

is an open subset of \mathcal{X} .

2. f is continuous if and only if $x_n \longrightarrow x_0$ then $f(x_n) \longrightarrow f(x_0)$.

Definition 4.1.5. We say the linear map T is a bounded linear operator from \mathcal{X} to \mathcal{Y} if there is a finite constant k such that $||Tx||_{\mathcal{Y}} \leq k ||x||_{\mathcal{X}}$ for all x in \mathcal{X} .

Proposition 4.1.6. Let \mathcal{X} and \mathcal{Y} be normed linear spaces and let $T: \mathcal{X} \longrightarrow \mathcal{Y}$ be a linear operator. The following are equivalent:

- 1. T is continuous;
- 2. T is continuous at 0;
- 3. there exists a positive real number k such that $||T(x)|| \le k$ whenever $x \in \mathcal{X}$ and $||x|| \le 1$;
- 4. T is bounded.

Proof. $(1) \Longrightarrow (2)$:

- T is continuous
- T is continuous everywhere
- T is continuous at 0.

$$(2) \Longrightarrow (3)$$
:

taking $\epsilon = 1$

- T is continuous at 0,
- $\therefore \exists \delta > 0 \text{ such that } ||T(x)|| < 1 \text{ when } x \in \mathcal{X} \text{ and } ||x|| < \delta.$

Let $w \in \mathcal{X}$ with $||w|| \le 1$.

$$\therefore \left\| \frac{\delta w}{2} \right\| = \frac{\delta}{2} \left\| w \right\| \le \frac{\delta}{2} < \delta,$$

$$\therefore \left\| T\left(\frac{\delta w}{2}\right) \right\| < 1$$

T is a linear operator

$$\therefore T\left(\frac{\delta w}{2}\right) = \frac{\delta}{2}T(w).$$

$$\therefore \frac{\delta}{2} \|T(w)\| < 1$$

$$\therefore \|T(w)\| < \frac{2}{\delta}.$$

Therefore condition (2) holds with $k = \frac{2}{\delta}$.

$$(3) \Longrightarrow (4)$$
:

T is linear operator,

$$T(0) = 0$$

 $\therefore ||T(0)|| \le k ||0||$. Then the proof have done.

Let $x \in \mathcal{X}$ with $x \neq 0$.

$$\therefore \left\| \frac{x}{\|x\|} \right\| = 1$$

By condition (3), $\exists k > 0$ such that $||T(x)|| \leq k$.

$$\therefore \left\| T\left(\frac{x}{\|x\|}\right) \right\| \le k.$$

T is a linear operator

$$\frac{1}{\|x\|} \|T(x)\| = \left\| \left(\frac{1}{\|x\|} \right) T(x) \right\| = \left\| T \left(\frac{x}{\|x\|} \right) \right\| \le k,$$

$$\therefore \|T(x)\| \le k \|x\|.$$

$$(4)\Longrightarrow (1)$$
:

Let $\epsilon > 0$ and let $\delta = \frac{\epsilon}{k}$.

Then when $x, y \in \mathcal{X}$ such that $||x - y|| < \delta$

T is a linear operator,

$$\therefore ||T(x) - T(y)|| = ||T(x - y)|| \le k ||x - y|| < k \left(\frac{\epsilon}{k}\right) = \epsilon.$$

T is continuous.

Example 4.1.7. The linear operator $T: C_{\mathbb{F}}[0,1] \longrightarrow \mathbb{F}$ defined by T(f) = f(0) is continuous.

Solution. Let $f \in C_{\mathbb{C}}[0,1]$. Then

$$|T(f)| = |f(0)| \le \sup \left\{ |f(x)| : x \in [0,1] \right\} = \|f\| \,.$$

- T is bounded with k = 1.
- T is continuous (by Proposition (4.1.6)).

Example 4.1.8. Let P be the linear subspace of $C_{\mathbb{C}}[0,1]$ consisting of all polynomial functions. If $T: P \longrightarrow P$ is the linear operator defined by

$$T(p) = p',$$

where p' is the derivative of p, then T is not continuous.

Solution. Let $p_n \in P$ be defined by $p_n(t) = t^n$.

 $\therefore ||p_n|| = \sup \{|p_n(t)| : t \in [0,1]\} = \sup \{|t^n| : t \in [0,1]\} = 1,$ while

$$||T(p_n)|| = ||p'_n|| = \sup\{|p'_n(t)| : t \in [0,1]\} = \sup\{|nt^{n-1}| : t \in [0,1]\} = n.$$

- $\therefore \nexists k \ge 0$ such that $||T(p)|| \le k ||p||$ for all $p \in P$,
- T is not bounded.
- T is not continuous (by Proposition (4.1.6)).

4.2 The Norm of a Bounded Linear Operators

Definition 4.2.1. Let \mathcal{X}, \mathcal{Y} be normed spaces, an **operator norm** of a linear operator $T: \mathcal{X} \longrightarrow \mathcal{Y}$ is

$$||T|| := \inf \left\{ k \in \mathbb{R}^+ : ||Tx|| \le k \, ||x|| \text{ for all } x \in \mathcal{X} \right\}$$

Proposition 4.2.2. Let \mathcal{X}, \mathcal{Y} be normed spaces, then

$$||T|| := \inf \left\{ k \in \mathbb{R}^+ : ||Tx|| \le x \, ||x|| \text{ for all } x \in \mathcal{X} \right\}$$

$$= \sup \left\{ ||Tx|| : x \in \mathcal{X}, ||x|| \le 1 \right\}$$

$$= \sup \left\{ ||Tx|| : x \in \mathcal{X}, ||x|| = 1 \right\}.$$

Example 4.2.3. If $T: C_{\mathbb{C}}[0,1] \longrightarrow \mathbb{F}$ is the bounded linear operator defined by T(f) = f(0), then ||T|| = 1.

Solution. It was shown in Example (4.1.7) that $|T(f)| \leq ||f||$ for all $f \in C_{\mathbb{C}}[0,1]$.

$$|T| = \inf \{ k : ||T(f)|| \le k ||f|| \text{ for all } f \in C_{\mathbb{C}}[0,1] \} \le 1.$$

On the other hand,

if $g:[0,1]\longrightarrow \mathbb{C}$ is defined by g(x)=1 for all $x\in\mathcal{X}$

$$\therefore g \in C_{\mathbb{C}}[0,1] \text{ with } ||g|| = \sup\{|g(x)| : x \in [0,1]\} = 1 \text{ and } |T(g)| = |g(0)| = 1.$$

$$\therefore 1 = |T(g)| \le ||T|| \, ||g|| = ||T||.$$

$$\therefore ||T|| = 1.$$

4.3 The Space $B(\mathcal{X}, \mathcal{Y})$

Definition 4.3.1. Let \mathcal{X} and \mathcal{Y} be normed linear spaces. The set of all bounded linear operators from \mathcal{X} to \mathcal{Y} is denoted by $B(\mathcal{X}, \mathcal{Y})$. Elements of $B(\mathcal{X}, \mathcal{Y})$ are also called **bounded linear operators**.

Proposition 4.3.2. Let \mathcal{X} and \mathcal{Y} be normed linear spaces. Then $B(\mathcal{X}, \mathcal{Y})$ is a vector space.

Proof. Let $\alpha, \beta \in \mathbb{F}$ and $T, S \in B(\mathcal{X}, \mathcal{Y})$

 $\therefore T, S$ are linear bounded operators.

 $\therefore \exists k_1, k_2 \geq 0 \text{ such that } ||Tx|| \leq k_1 ||x|| \text{ and } ||Sx|| \leq k_2 ||x||$ Now,

$$\|(\alpha T + \beta S)x\| = \|\alpha Tx + \beta Sx\|$$

$$\leq \|\alpha Tx\| + \|\beta Sx\| \text{ (By the property of norm)}$$

$$= |\alpha| \|Tx\| + |\beta| \|Sx\| \text{ (Since } T \text{ is linear)}$$

$$\leq |\alpha| k_1 \|x\| + |\beta| k_2 \|x\|$$

$$= (|\alpha| k_1 + |\beta| k_2) \|x\|$$

$$\therefore \alpha T + \beta S \in B(\mathcal{X}, \mathcal{Y}).$$

Proposition 4.3.3. Let \mathcal{X} and \mathcal{Y} be normed linear spaces. Then $B(\mathcal{X}, \mathcal{Y})$ is a normed space, where the norm on $B(\mathcal{X}, \mathcal{Y})$ is the operator norm.

Proof. Let $S, T \in B(\mathcal{X}, \mathcal{Y})$ and let $\lambda \in \mathbb{F}$.

- 1. : $||Tx|| \ge 0$ for all $x \in \mathcal{X}$: $||T|| = \sup \{||Tx|| : ||x|| = 1\} \ge 0$
- 2. Let $x \in \mathcal{X}$ $||Tx|| = 0 \iff Tx = 0 \iff T = 0$ $\therefore ||T|| = \sup\{||Tx|| : ||x|| = 1\} = 0 \iff T = 0.$

3. As $||T(x)|| \le ||T|| \, ||x||$ we have $||(\lambda T)(x)|| \le |\lambda| \, ||T|| \, ||x||$ for all $x \in \mathcal{X}$.

$$\therefore \|\lambda T\| \le |\lambda| \|T\|.$$

If
$$\lambda = 0$$

$$\therefore \|\lambda T\| = |\lambda| \|T\| = 0$$

while if $\lambda \neq 0$

$$\therefore \|T\| = \left\| \frac{\lambda}{\lambda} T \right\| \le \frac{1}{|\lambda|} \|\lambda T\| \le \frac{1}{|\lambda|} |\lambda| \|T\| = \|T\|.$$

$$\therefore \|T\| = \frac{1}{|\lambda|} \|\lambda T\|$$

$$\therefore \|\lambda T\| = |\lambda| \|T\|.$$

4.

$$||(S+T)(x)|| \leq ||S(x)|| + ||T(x)||$$

$$\leq ||S|| ||x|| + ||T|| ||x||$$

$$= (||S|| + ||T||) ||x||$$

$$||S + T|| \le ||S|| + ||T||.$$

Proposition 4.3.4. If \mathcal{X} is normed space and \mathcal{Y} is a Banach space, then $B(\mathcal{X}, \mathcal{Y})$ is a Banach space.

Proof. By remark (4.3.3) $B(\mathcal{X}, \mathcal{Y})$ is a normed space.

We have to show that $B(\mathcal{X}, \mathcal{Y})$ is a complete normed space. let $\{T_n\}_{n\in\mathbb{N}}$ be a Cauchy sequence in $B(\mathcal{X}, \mathcal{Y})$.

Claim: $\{T_n x\}$ is Cauchy sequence in \mathcal{Y} : Let $x \in \mathcal{X}$ and $\epsilon > 0$

 $:: \{T_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence.

$$||T_n - T_m|| \le \epsilon$$

$$:: ||T_n(x) - T_m(x)|| = ||(T_n - T_m)(x)|| \le ||T_n - T_m|| \, ||x|| \le \epsilon \, ||x||.$$

 $\therefore \{T_n(x)\}_{n\in\mathbb{N}}$ is a Cauchy sequence in \mathcal{Y} ,

 $:: \mathcal{Y}$ is Banach space,

 $\therefore \mathcal{Y}$ is complete,

 $\therefore \{T_n(x)\}_{n\in\mathbb{N}}$ converges

so we may define $T: \mathcal{X} \longrightarrow \mathcal{Y}$ by

$$T(x) = \lim_{n \to \infty} T_n(x)$$

We now need to show that $T \in B(\mathcal{X}, \mathcal{Y})$ and that T is the required limit in $B(\mathcal{X}, \mathcal{Y})$, so that $B(\mathcal{X}, \mathcal{Y})$ is a Banach space.

The first step is to show that T is linear: Let $\alpha, \beta \in \mathbb{F}$

$$T(\alpha x + \beta y) = \lim_{n \to \infty} T_n(\alpha x + \beta y)$$

$$= \lim_{n \to \infty} (T_n(\alpha x) + T_n(\beta y))$$

$$= \alpha \lim_{n \to \infty} T_n x + \beta \lim_{n \to \infty} T_n y$$

$$= \alpha Tx + \beta Ty$$

The second step is to show that $T \in B(\mathcal{X}, \mathcal{Y})$:

 T_n is a bounded set (Since every Cauchy sequence is bounded).

 $\therefore \exists M > 0 \text{ such that } ||T_n|| \leq M \text{ for all } n \in \mathbb{N}$

 $\therefore \|Tx\| = \lim_{n \to \infty} \|T_n x\| \le \lim_{n \to \infty} \|T_n\| \|x\| \le M \|x\|$

T is bounded.

 $T \in B(\mathcal{X}, \mathcal{Y}).$

Finally, we have to show that $T = \lim_{n \to \infty} T_n$:

let $\epsilon > 0$ and choose $N \in \mathbb{N}$ such that for $n, m \geq N$

$$||T_n - T_m|| \le \frac{\epsilon}{2}.$$

 \therefore for any $x \in \mathcal{X}$ such that $||x|| \leq 1$ and for any $n, m \geq N$,

$$||T_n(x) - T_m(x)|| = ||(T_n - T_m)(x)||$$

$$\leq ||T_n - T_m|| ||x||$$

$$\leq \frac{\epsilon}{2} ||x||$$

$$\leq \frac{\epsilon}{2}$$

$$T(x) = \lim_{n \to \infty} T_n(x),$$

 $\therefore \exists N_1 \in \mathbb{N} \text{ such that when } m \geq N_1,$

$$||Tx - T_m x|| \le \frac{\epsilon}{2}.$$

Then when $n \geq N$ and $m \geq N_1$,

$$||T(x) - T_n(x)|| = ||T(x) - T_m(x) + T_m(x) - T_n(x)||$$

$$\leq ||T(x) - T_m(x)|| + ||T_m(x) - T_n(x)||$$

$$\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} ||x||$$

$$\leq \epsilon \quad \forall x \in \mathcal{X}$$

$$\therefore ||T_n - T|| \le \epsilon \text{ when } n \ge N$$

- $\therefore \lim_{n \to \infty} T_n = T$
- $\therefore \{T_n\}$ converges to T in $B(\mathcal{X}, \mathcal{Y})$.
- $\therefore B(\mathcal{X}, \mathcal{Y})$ is complete, hence it is a Banach space.