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Chapter 1

Basic Elements of Metric Spaces

1.1 Vector Spaces

Definition 1.1.1. A vector space V is a collection of objects with a (vector) addition

and scalar multiplication defined that closed under both operations and which in

addition satisfies the following axioms:

1. (α + β)x = αx+ βx for all x ∈ V and α, β ∈ F.

2. α(βx) = (αβ)x.

3. x+ y = y + x for all x, y ∈ V .

4. x+ (y + z) = (x+ y) + z for all x, y, z ∈ V .

5. α(x+ y) = αx+ αy.

6. There is 0 ∈ V such that 0 + x = x; 0 is usually called the origin.

7. 0x = 0.

8. ex = x where e is the multiplicative unit in F.

1



Lecture 1 Chapter 1

Examples 1.1.2.

1. Rn = {(a1, a2, · · · , an)|a1, a2, · · · , an ∈ R} n-dimensional space, for all n ≥ 1.

2. C2 and Cn respectively to R2 and Rn where the underlying field is C, the

complex numbers.

3. Pn =
{∑n

j=0 ajx
j|a0, a1, · · · , an ∈ R

}
is called the polynomial space of all

polynomials of degree ”n”. Note this includes not just the polynomials of

exactly degree ”n” but also those of lesser degree.

4. `p = {(ai, · · · )|ai ∈ R,
∑
|ai|p <∞}. This space is comprised of vectors in the

form of infinite-tuples of numbers. Properly we would write

`p(R) or `p(C)

to designate the field.

Definition 1.1.3. Let V be a vector space and U ⊂ V . We will call U a subspace

of V if U is closed under vector addition, scalar multiplication and satisfies all of the

vector space axioms.

Example 1.1.4. let V = R3 = {(a, b, c)|a, b, c ∈ R}

U = {(a, b, 0)|a, b ∈ R}.

Clearly U ⊂ V and also U is a subspace of V .

Definition 1.1.5. let S ⊂ V , a vector space, have the form

S = {v1, v2, · · · , vk} .

The span of S is the set

U =

{
k∑
j=1

ajvj|a1, · · · , ak ∈ R

}
.
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Lecture 1 Chapter 1

Remark 1.1.6. span of the set S is a subspace.

Definition 1.1.7. Let X be a vector space. A set of ”n” vectors {x1, · · · , xn} ⊂ X

is called linear independent, if the following equation gives that

n∑
j=1

αj xj = 0⇒ α1 = · · · = αn = 0

is the only solution. If there is just one αi 6= 0 then the system {x1, · · · , xn} is

called linear dependent.

Definition 1.1.8. The set B = {x1, · · · , xn} is called a basis of X if:

1. the elements of B are linear independent.

2. and span {x1, · · · , xn} = X.

Remark 1.1.9. If every x ∈ X can be expressed as a unique linear combination of

the elements out of the set {x1, · · · , xn} then that set is called a basis of X.

Definition 1.1.10. The number of elements, needed to describe a vector space X,

is called the dimension of X, abbreviated by dimX.

Remark 1.1.11. Let X be a vector space.

1. If X = {0}, then dimX = 0.

2. if X has a basis {x1, · · · , xn}, then dimX = n.

3. If X 6= {0} has no finite basis, then dimX =∞.

Definition 1.1.12. Let V , W be two vector spaces. A function T : V → W is called

a linear transformation from V to W if the following hold for all vectors u, v in V

and for all scalars k.

3



Lecture 1 Chapter 1

1. T (u+ v) = T (u) + T (v)

2. T (ku) = kT (u)

Definition 1.1.13. Let T : V → W is a linear transformation.

1. The set of all vectors v in V for which T (v) = ~0 is called the kernel of T .

We denote the kernel of T by ker(T ).

i.e., ker(T ) := {v ∈ V : T (v) = 0}.

2. The set of all images T (v) of vectors in V via the transformation T is called the

range of T . We denote the range of T by R(T ).

i.e., R(T ) := {T (v) : v ∈ V }.

4



Lecture 2 Chapter 1

1.2 Metric spaces

Definition 1.2.1. A metric space is a non-empty set X with a function

d(., .) : X ×X → R

satisfying, for x, y, and z in X,

1. d(x, y) ≥ 0

2. d(x, y) = 0 if and only if x = y,

3. d(x, y) = d(y, x),

4. d(x, y) + d(y, z) ≥ d(x, z) (the triangle inequality).

5



Lecture 2 Chapter 1

Examples 1.2.2.

1. Let X = C, with d(z, w) = |z − w|.

2. Suppose X is a non-empty set and that d : X ×X → R. defined as

d(x, y) =


1 if x 6= y

0 if x = y

is a metric which is called the discrete metric on X.

3. For any integer n ≥ 1, the function d1 : Rn × Rn → R defined by

d1(x, y) =
n∑
j=1

|xj − yj|

is a metric on the set Rn.

4. For any integer n ≥ 1, the function d2 : Rn × Rn → R defined by

d2(x, y) =

(
n∑
j=1

|xj − yj|2
)1/2

is a metric on the set Rn. This metric will be called the standard metric on

Rn.

5. For any integer n ≥ 1, the function dp : Rn × Rn → R defined by

dp(x, y) =

(
n∑
j=1

|xj − yj|p
)1/p

is a metric on the set Rn.

6. For any integer n ≥ 1, the function d∞ : Rn × Rn → R defined by

d∞(x, y) = max
1≤j≤n

|xj − yj|

is a metric on the set Rn.

6



Lecture 2 Chapter 1

1.3 Normed vector spaces

Definition 1.3.1. A normed linear space (V, ‖.‖) is a (real or complex) linear

space V together with a function

‖.‖ : V → R.

called a norm satisfying four conditions:

1. ‖v‖ ≥ 0 for all v ∈ V .

2. ‖v‖ = 0 if and only if v = 0.

3. ‖λv‖ = |λ| ‖v‖ for all v ∈ V and λ ∈ R.

4. ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V (triangle inequality).

Examples 1.3.2.

1. V = R. with ‖x‖ = |x|.

2. V = C. with ‖z‖ = |z|.

3. V = Rn with

‖x‖2 =
√
x21 + x22 + · · ·+ x2n;

for x = (x1, x2, · · · , xn). This is the usual, standard, or Euclidean norm

on Rn. It is usually denoted by ‖.‖2.

Proof. For x ∈ Rn and λ ∈ R

(a) ‖x‖ =
√
x21 + x22 + · · ·+ x2n ≥ 0.

7



Lecture 2 Chapter 1

(b) ‖x‖2 = 0 iff
√
x21 + x22 + · · ·+ x2n = 0 iff x21 + x22 + · · · + x2n = 0 iff

x1 = · · · = xn = 0.

(c)

‖λx‖ =
√

(λx1)2 + (λx2)2 + · · ·+ (λxn)2

=
√
λ2x21 + λ2x22 + · · ·+ λ2x2n

=
√
λ2(x21 + x22 + · · ·+ x2n)

= |λ| ‖x‖

(d)

‖x+ y‖ =
√

(x1 + y1)2 + (x2 + y2)2 + · · ·+ (xn + yn)2

≤
√
x21 + x22 + · · ·+ x2n +

√
y21 + y22 + · · ·+ y2n

= ‖x‖+ ‖y‖

4. Let CF[a, b] be the vector space of continuous functions, where F is a field either

real or complex, on [a, b], under pointwise addition and scalar multiplication.

CF[a, b] = {f : [a, b]→ F : f is continuous function}

Define a norm on C[a, b] as

‖f‖ = sup {|f(x)| : x ∈ [a, b]} .

Then (CF[a, b], ‖.‖) is a normed space.

8



Lecture 2 Chapter 1

Proof. Let f, g ∈ CF[a, b] and λ ∈F

(a) ‖f‖ = sup {|f(x)| : x ∈ [a, b]} ≥ 0.

(b) ‖f‖ = 0 iff sup {|f(x)| : x ∈ [a, b]} = 0 iff f(x) = 0 for all x ∈ [a, b].

(c)

‖λf‖ = sup {|λf(x)| : x ∈ [a, b]}

= |λ| sup {|f(x)| : x ∈ [a, b]}

= |λ| ‖f‖

(d)

‖f + g‖ = sup {|f(x) + g(x)| : x ∈ [a, b]}

≤ sup {|f(x)| : x ∈ [a, b]}+ sup {|g(x)| : x ∈ [a, b]}

= ‖f‖+ ‖g‖

Remark 1.3.3. A normed vector space (X, ‖.‖) is a metric space with the metric

d(x, y) = ‖x− y‖ .

Homework 1. For 1 ≤ p <∞, define

`p(N) :=

{
x = {xn}∞n=1 :

∞∑
n=1

|xn|p <∞

}

with the p-norm

‖x‖p =

(
∞∑
n=1

|xn|p
)1/p

9



Lecture 2 Chapter 1

And for p =∞ define

‖x‖∞ = sup {|xn| : n ≥ 1}

Prove that
(
`p(N), ‖x‖p

)
is normed space for all 1 ≤ p <∞ and p =∞.

10



Lecture 3 Chapter 1

1.4 Inner Product spaces

Definition 1.4.1. Let X be a vector space over a field F, where F is either R or C.

An inner product is a map 〈.〉 : X × X −→ F satisfying, for x, y, and z in X and

scalars α ∈ F,

1. 〈x, x〉 ≥ 0 with 〈x, x〉 = 0 (if and) only if x = 0,

2. 〈x, y〉 = 〈y, x〉 for all x, y in X ,

3. 〈αx, y〉 = α 〈x, y〉

4. 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

Remark 1.4.2. The inner product is tool to fined:

1. The length of a vector x; 〈x, x〉 = ‖x‖2.

2. The angle between two vectors x, y. Note that:

� 〈x, y〉 = 0, if and only if x⊥y.

� If 〈x, y〉 > 0, then 0 < θ < π/2.

� If 〈x, y〉 < 0, then π/2 < θ < π.

3. The scalar projection of vector u in the direction of vector v which is |〈u, v〉|.

11



Lecture 3 Chapter 1

Figure 1.1: The projective vector

Example 1.4.3.

1. The function 〈., .〉 : Rn × Rn −→ R defined by 〈x, y〉 =
∑n

i=1 xiyi, is an inner

product on Rn. This inner product will be called the standard inner product

on Rn.

2. The function 〈., .〉 : Cn × Cn −→ C defined by 〈x, y〉 =
∑n

i=1 xiyi, is an inner

product on Cn. This inner product will be called the standard inner product

on Cn.

3. If a = {ai}, b = {bi} ∈ `2 then the sequence
{
aibi
}
∈ `1 and the function

〈., .〉 : Fn × Fn −→ F defined by 〈a, b〉 =
∑n

i=1 aibi is an inner product on `2.

This inner product will be called the standard inner product on `2.

Proposition 1.4.4 (Cauchy-Schwarz inequality). If 〈., .〉 is an inner product on a

vector space X , then for all x and y in X we have

|〈x, y〉|2 ≤ 〈x, x〉 〈y, y〉 .

12
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In particular, The equality in Cauchy - Schwarz inequality holds if and only if x and

y are dependent

Proof. If one of the two vectors is zero then both sides are zero so we may assume

that both x, y are non-zero. Let t ∈ C. Then

0 ≤ ‖x+ ty‖2 = 〈x+ ty, x+ ty〉

= 〈x, x〉+ 〈x, ty〉+ 〈yt, x〉+ 〈ty, ty〉

= 〈x, x〉+ t̄〈x, y〉+ t〈x, y〉+ |t|2〈y, y〉

= 〈x, x〉+ 2Re(t〈x, y〉) + |t|2〈y, y〉

Now choose t := − 〈x,y〉〈y,y〉 . Then we get

0 ≤ 〈x, x〉+ 2Re(−|〈x, y〉|
2

〈y, y〉
) +
|〈x, y〉|2

〈y, y〉
= 〈x, x〉 − |〈x, y〉|

2

〈y, y〉

And hence |〈x, y〉| ≤ ‖x‖‖y‖ Note that if y = λx for λ ∈ C then equality holds:

|λ|2|〈x, x〉| = |λ|2‖x‖‖x‖

Hence

|〈x, x〉| = ‖x‖2

Proposition 1.4.5. If 〈., .〉 is an inner product on a vector space X , then for all x

and y in X we have

‖x‖ = 〈x, x〉
1
2

is a norm on X .

Remark 1.4.6. The norm ‖x‖ = 〈x, x〉
1
2 defined in above proposition (1.4.5) on the

inner product space X is said to be induced by the inner product 〈., .〉.

13



Lecture 3 Chapter 1

Theorem 1.4.7 (The Parallelogram Rule). Let X be an inner product space with

inner product 〈., .〉 and induced norm ‖.‖. Then for all x, y ∈ X :

‖x+ y‖2 + ‖x− y‖2 = 2
(
‖x‖2 + ‖y‖2

)
Its name comes from picturing the relationship for vectors in, say, R2; see Figure

3.2

Figure 1.2: The parallelogram equality

Remark 1.4.8. One way to show that a given norm on a vector space is not induced

by an inner product is to show that it does not satisfy the parallelogram rule.

Example 1.4.9. The standard norm on the space C[0, 1] is not induced by an inner

product.

Solution. Consider the functions f, g ∈ C[0, 1] defined by f(x) = 1, g(x) = x,

x ∈ [0, 1]. From the definition of the standard norm on C[0, 1] we have

‖f + g‖2 + ‖f − g‖2 = 4 + 1 = 5

2
(
‖f‖2 + ‖g‖2

)
= 2(1 + 1) = 4

Thus the parallelogram rule does not hold and so the norm cannot be induced by

an inner product.

14



Chapter 2

Complete Metric Spaces

2.1 Convergence Sequences

Definition 2.1.1. A sequence {xn} in a metric space (X , d) converges to x ∈ X

(or the sequence {xn} is convergent) if, for every ε > 0, there exists N ∈ N such

that d(xn, x) < ε, for all n > N .

Definition 2.1.2. A sequence {xn} in a metric space (X , d) is called bounded if

there exists x ∈ X and M ∈ N such that d(xn, x) < M for all n ∈ N.

Proposition 2.1.3. Every convergence sequence in a metric space is bounded.

Proof. Let {xn} be a convergent sequence in a metric space X to a point x.

∴ ∀ε > 0,∃N ∈ N such that d(xn, x) < ε for all n > N

In particular, this is true when ε = 1

∴ ∃M ∈ N, such that d(xn, x) < 1 ∀n > M

Put K = max {d(x1, x), d(x2, x), . . . , d(xM , x), 1}

∴ ∀n ∈ N, d(xn, x) ≤ K

∴ the sequence {xn} is bounded.

15



Lecture 4 Chapter 2

Remark 2.1.4. In normed space the definition of convergent and bounded sequence

will be:

converge sequence: A sequence {xn} in a normed space X converges to x ∈ X

(or the sequence {xn} is convergent) if, for every ε > 0, there exists N ∈ N

such that ‖xn − x‖ < ε, for all n > N .

bounded sequence: A sequence {xn} in a normed space X is called bounded if

there exists M ∈ N such that ‖xn‖ < M for all n ∈ N.

So the proposition (2.1.3) is still true in normed space.

Proposition 2.1.5. Let X be an inner product space and suppose that for any pair

of a convergent sequences {xn} and {yn} in X , with xn −→ x and yn −→ y. Then

〈xn, yn〉 −→ 〈x, y〉 for n −→∞.

Proof.

|〈xn, yn〉 − 〈x, y〉| = |〈xn, yn〉 − 〈xn, y〉+ 〈xn, y〉 − 〈x, y〉|

≤ |〈xn, yn〉 − 〈xn, y〉|+ |〈xn, y〉 − 〈x, y〉|

= |〈xn, yn − y〉|+ |〈xn − x, y〉|

≤ ‖xn‖ ‖yn − y‖+ ‖xn − x‖ ‖y‖

Since the sequence {xn} is convergent, then by (2.1.3) the sequence {xn} is bounded,

∴ ‖xn‖ is bounded.

So the right hand side of this inequality lends to zero as n→∞.

∴ 〈xn, yn〉 −→ 〈x, y〉 for n −→∞.

16
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Definition 2.1.6. Let X be a metric space. A sequence {xn} in X is said to be a

Cauchy sequence if it has the following property: Given any ε > 0 there exists N

such that if n,m ≥ N , then d(xn, xm) < ε.

Proposition 2.1.7. Every convergent sequence in a metric space (X, d) is a Cauchy

sequence.

Proof. Let {xn} be a sequence in X that converges to the limit x. Let ε > 0.

∵ xn → x

∴ ∃N such that ∀n > N, d (xn, x) <
ε

2

∴ if m > N and n > N

d(xn, xm) ≤ d(xn, x) + d(xm, x) <
ε

2
+
ε

2
= ε

Example 2.1.8 ( The Converse of the proportion (2.1.7) is not true.). If X = R−{0},

and define d : R× R as

d(x, y) = |x− y|

Then the sequence

{
1

n

}
is Cauchy sequence but it is not convergent.

Definition 2.1.9. A metric space is said to be complete if every Cauchy sequence

in X converges in X .

Definition 2.1.10. The complete normed space is called Banach space.

Example 2.1.11. the space C[a, b] is a Banach space.

Definition 2.1.12. The complete inner product space is called Hilbert space.

Examples 2.1.13.

1. Every finite-dimensional inner product space is a Hilbert space.

17



Lecture 4 Chapter 2

2. `2 with the standard inner product is a Hilbert space.

Remark 2.1.14. Since every inner product space has an induced norm, then every

Hilbert space is a Banach space.

the converse is not true unless that one satisfied parallelogram law (1.4.7).

Definition 2.1.15. A set X is closed if and only if for all sequence {xn} in X such

that xn → x, then x ∈ X.

Proposition 2.1.16. If H is a Hilbert space and Y ⊂ H is a linear subspace, then

Y is a Hilbert space if and only if Y is closed in H.

Proof. ⇒) Let Y be a Hilbert space

Claim: Y is closed in H:

Let {xn} be a sequence in Y such that xn → x.

Assume that x is not in Y

∴ {xn} is Cauchy sequence but not converge in Y .

∴ Y is not complete, which is contraction with Y is Hilbert space

∴ Y is closed.

⇐): Let Y be a closed subspace in H.

Claim: Y is Hilbert space:

Let {xn} be a Cauchy sequence in Y .

∴ {xn} is Cauchy sequence in H

∵ H is a Hilbert space

∴ H is complete

∴ the Cauchy sequence {xn} is convergent in H, say x

∵ Y is closed

18
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∴ x ∈ Y

∴ the sequence {xn} is convergent in Y

∴ Y is a Hilbert space.

19



Lecture5 Chapter 2

2.2 ORTHOGONALITY

Definition 2.2.1. Let X be an inner product space. The vectors x, y ∈ X are said

to be orthogonal if 〈x, y〉 = 0, this is symbolically written x⊥y.

Definition 2.2.2. For subsets M and N of an inner product space X , one says that

M , N are orthogonal, written M⊥N if 〈x, y〉 = 0 for every x ∈ M , y ∈ N . In

addition the orthogonal complement of such M is defined as

M⊥ := {y ∈ X | 〈x, y〉 = 0 for all x ∈M} .

Example 2.2.3. If X = R3 andA = {(a1, a2, 0) : a1, a2 ∈ R}, thenA⊥ = {(0, 0, x3) : x3 ∈ R}.

Solution. Let x = (x1, x2, x3) ∈ A⊥

∴ ∀a = (a1, a2, 0) ∈ A with a1, a2 ∈ R,

〈x, a〉 = 〈(x1, x2, x3), (a1, a2, 0)〉 = x1a1 + x2a2 = 0.

Putting a1 = x1, a2 = x2,

x21 + x22 = 0

x1 = x2 = 0.

∴ x = (0, 0, x3) ∈ A⊥.

20



Lecture5 Chapter 2

Proposition 2.2.4. If X is an inner product space and A ⊂ X , then 0 ∈ A⊥.

Proof.

∵ 〈0, x〉 = 0 ∀x ∈ X

∴ 0 ∈ A⊥.

Proposition 2.2.5. If X is an inner product space and 0 ∈ A ⊂ X , then A ∩ A⊥ =

{0}, otherwise A ∩ A⊥ = ∅.

Proof.

If 0 ∈ A, and let x ∈ A ∩ A⊥

∴ x ∈ A and x ∈ A⊥

∴ 〈x, x〉 = 0

∴ x = 0

∴ A ∩ A⊥ = {0}

Now, if 0 6∈ A,

A ∩ A⊥ = ∅.

Proposition 2.2.6. If X is an inner product space and A ⊂ X , then {0}⊥ = X;

X⊥ = {0}.

Proof.

∵ 〈x, 0〉 = 0 ∀x ∈ X

∴ {0}⊥ = X.

Let y ∈ X⊥

∴ 〈y, z〉 = 0 ∀z ∈ X

∴ 〈y, y〉 = 0

21
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∴ y = 0.

∴ X⊥ = {0}.

Proposition 2.2.7. If X is an inner product space and B ⊆ A ⊂ X , then A⊥ ⊆ B⊥.

Proof.

Let x ∈ A⊥

∴ 〈x, y〉 = 0 ∀y ∈ A

∵ B ⊆ A

∴ 〈x, y〉 = 0 ∀y ∈ B

∴ x ∈ B⊥

A⊥ ⊆ B⊥.

Proposition 2.2.8. If X is an inner product space and A ⊂ X then A ⊆ (A⊥)⊥.

Proof.

Let x ∈ A

∴ x ∈ X and 〈x, y〉 = 0 ∀y ∈ A⊥

∵ (A⊥)⊥ =
{
x ∈ X : 〈x, y〉 = 0 ∀y ∈ A⊥

}
∴ x ∈ (A⊥)⊥

∴ A ⊆ (A⊥)⊥.

Proposition 2.2.9. If X is an inner product space and A ⊂ X then A⊥ is a closed

linear subspace of X .

Proof.

Let x, y ∈ A⊥ and α, β ∈ F, let z ∈ A

〈αx+ βy, z〉 = 〈αx, z〉+ 〈βy, z〉

= α 〈x, z〉+ β 〈y, z〉 = 0
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∴ αx+ βy ∈ A⊥

∵ 0 ∈ A⊥

∴ A⊥ is linear space.

Now let {xn} be a sequence in A⊥ such that xn → x, and let w ∈ A

∴ 〈xn, w〉 → 〈x,w〉

∴ 0→ 〈x,w〉

∴ 〈x,w〉 = 0

∴ x ∈ A⊥.

Proposition 2.2.10 (Pythagorean theorem). If x1, x2, . . . , xn are pairwise orthogonal

vectors in a Hilbert space, then

‖x1 + x2 + · · ·+ xn‖2 = ‖x1‖2 + ‖x2‖2 + · · ·+ ‖xn‖2 .

Proposition 2.2.11. Let Y be a linear subspace of an inner product space X . Then

x ∈ Y ⊥ if and only if ‖x‖ ≤ ‖x− y‖ , for all y ∈ Y.
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2.2.1 Orthonormal Bases

We now wish to extend the idea of an orthonormal basis to infinite-dimensional spaces.

Definition 2.2.12. An orthonormal set in a Hilbert space H is a set E with the

properties:

1. For every e ∈ E , ‖e‖ = 1,

2. For distinct vectors e and x in E , 〈e, x〉 = 0.

Definition 2.2.13. An orthonormal sequence in a Hilbert space H is a sequence

{ei}∞i=1 with the properties:

1. ‖ei‖ = 1, for every i

2. 〈ei, ej〉 = 0, for every i 6= j.

Example 2.2.14. For an easy example of an orthonormal set (sequence) in the

Hilbert space `2, take the set E of vectors {ej}j=1 where ej has a 1 in the j–th

coordinate and zeros elsewhere. (Check?)

Definition 2.2.15. An orthonormal basis for a Hilbert space H is a maximal

orthonormal set;

that is, an orthonormal set that is not properly contained in any orthonormal set.

Example 2.2.16. In the `2 example above, the set {ej}j=1 is an orthonormal basis.

When is an orthonormal set in a Hilbert space an orthonormal basis?

Theorem 2.2.17 (Gram–Schmidt process). Let {vi : i = 1.2, 3 . . . } be a sequence of

vectors of H. Then there exists an orthonormal sequence {ei : i = 1, 2, 3, . . . } such
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that, for each integer k

span {e1, e2, e3, . . . , ek} ⊇ span {v1, v2, v3, . . . , vk} .

If {vi : i = 1.2, 3 . . . } is a linearly independent set, then the above inclusion is an

equality for each k.

Figure 2.1: Gram–Schmidt algorithm, at stage k = 2

Proof. Define recursively

e1 =
v1
‖v1‖

, e2 =
v2 − 〈v2, e1〉 e1
‖v2 − 〈v2, e1〉 e1‖

and if we assume that e1, e2, . . . , ej are defined,

ej+1 =
vj+1 −

∑j
k=1 〈vj+1, ek〉xk∥∥∥vj+1 −

∑j
k=1 〈vj+1, ek〉xk

∥∥∥
Then the set {ek} is orthonormal by construction and it satisfies the requirement

about span.

Proposition 2.2.18 (Bessels Inequality). Let X be an inner product space and

let {ei} be an orthonormal set in X . For any h ∈ X the (real) series
∑∞

i=1 |〈h, ei〉|
2

converges and
∞∑
i=1

|〈h, ei〉|2 ≤ ‖h‖2 .
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Proof. Let h ∈ H, Then

0 ≤

∥∥∥∥∥h−
n∑
i=1

〈h, ei〉 ei

∥∥∥∥∥
2

=

〈
h−

n∑
i=1

〈h, ei〉 ei, h−
n∑
i=1

〈h, ei〉 ei

〉

= ‖h‖2 −

〈
h,

n∑
i=1

〈h, ei〉 ei

〉
−

〈
n∑
i=1

〈h, ei〉 ei, h

〉

+
n∑

i,j=1

〈h, ei〉 〈h, ej〉 〈ei, ej〉

= ‖h‖2 −

〈
h,

n∑
i=1

〈h, ei〉 ei

〉
−

〈
n∑
i=1

〈h, ei〉 ei, h

〉
+

n∑
i=1

|〈h, ei〉|2

= ‖h‖2 −
n∑
i=1

|〈h, ei〉|2 −
n∑
i=1

|〈h, ei〉|2 +
n∑
i=1

|〈h, ei〉|2

= ‖h‖2 −
n∑
i=1

|〈h, ei〉|2

Thus ‖h‖2 ≥
∑n

i=1 |〈h, ei〉|
2, and hence this sequence of partial sums is increasing and

bounded above so the result follows.

Remarks 2.2.19.

1. In above theorem, the case n = 1 is the Cauchy–Schwartz inequality

2. The geometric meaning of Bessel’s inequality is that the orthogonal projection

of an element h on the linear span of the elements,{ei}, has a norm which does

not exceed the norm of h (i.e. the hypothenuse in a right-angled triangle is not

shorter than one of the other sides).

Lemma 2.2.20. If {ei}∞1 is an orthonormal sequence, then for any h ∈ H,

∞∑
i=1

〈h, ei〉 ei

converges to a vector h0 such that 〈h− h0, ei〉 = 0 for all i.
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Theorem 2.2.21. If {ei}∞1 is an orthonormal sequence in a Hilbert space H , then

the following conditions are equivalent:

1. {ei}∞1 is an orthonormal basis.

2. If h ∈ H and h⊥ei for all i, then h = 0.

3. (Fourier expansion) For every h ∈ H , h =
∑∞

1 〈h, ei〉 ei; equality here means

the convergence in the norm of H of the partial sums to h.

4. (Parsevals relation) For all h and g in H ,
∑∞

1 〈h, ei〉 〈ei, g〉 = 〈h, g〉.

5. For every h ∈ H ,
∑∞

1 |〈h, ei〉|
2 = ‖h‖2.

Proof.

(1) =⇒ (2): If (2) is false then adding h
‖h‖ to the set {en}∞1 gives a larger

orthonormal set, contradicting (1).

(2) =⇒ (3): Let h0 =
∑∞

j=1 〈h, ej〉 ej (this exists, by Lemma 2.2.20). Then for all i

〈h− h0, ei〉 =

〈
h−

∞∑
j=1

〈h, ej〉 ej, ei

〉
= 〈h, ei〉 −

〈
∞∑
j=1

〈h, ej〉 ej, ei

〉

= 〈h, ei〉 −
∞∑
j=1

〈h, ej〉 〈ej, ei〉 = 〈h, ei〉 − 〈h, ei〉 = 0

and so h = h0 by (2)

(3) =⇒ (4): Let hr =
∑r

i=1 〈h, ei〉 ei and gs =
∑s

i=1 〈g, ei〉 ei. Then

〈hr, gs〉 =

min[r,s]∑
i=1

〈h, ei〉 〈g, ei〉.

Let r −→∞ and s −→∞. Using the continuity of the inner product, it follows that

〈h, g〉 =
∞∑
i=1

〈h, ei〉 〈g, ei〉.
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(4) =⇒ (5): Put g = h in (4).

(5) =⇒ (1): If {ei}∞1 is not maximal and can be enlarged by adding z, then

〈z, ei〉 = 0 for all i but also

1 = ‖z‖2 =
∞∑
i=1

|〈z, ei〉|2 = 0

which give a contradiction.

Remark 2.2.22. Let H be a Hilbert space and let {en} be an orthonormal sequence

in H. Then {en} is called an orthonormal basis for H if any of the conditions in

Theorem (2.2.21) hold.

Definition 2.2.23. A Hilbert space is called separable if it contains a countable,

dense subset

Examples 2.2.24.

1. the space R is separable since the set of rational numbers is countable and dense

in R

2. C is separable since the set of complex numbers of the form p+iq, with p and

q rational, is countable and dense in C.

3. Finite dimensional normed vector spaces are separable.

4. The Hilbert space `2 is separable.

Theorem 2.2.25.

An infinite-dimensional Hilbert space H is separable if and only if it has an

orthonormal basis.
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Hilbert Space Geometry

3.1 Nearest Point Property

Definition 3.1.1. A subset A of a vector space X is convex if, for all x, y ∈ A and

all t ∈ [0, 1], tx+ (1− t)y ∈ A.

In other words, A is convex if, for any two points x, y in A, the line segment

joining x and y also lies in A,

h hthese shapes are Convex sets

these shapes are not convex sets

Figure 3.1: Convex and non-convex planar regions
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Examples 3.1.2.

1. Every subspace is convex.

2. Every ball in a normed linear space is convex

3. Any translate x+ S := {x+ s : s ∈ S} of a convex set S is convex. (Check?)

Proposition 3.1.3 (Nearest Point Property). Every nonempty, closed convex set K

in a Hilbert space H contains a unique element of smallest norm.

Moreover, given any h ∈ H , there is a unique k0 in K such that

‖h− k0‖ = dist(h,K) = inf {‖h− k‖ : k ∈ K} .

Figure 3.2: Convex and non-convex planar regions

Proof. Let K be a nonempty, closed convex set in a Hilbert space H

Claim: K contains a unique element of smallest norm:

Let d = inf {‖y‖ : y ∈ K}.
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∵ K is closed,

∴ there is a sequence of vectors {xn} in K with ‖xn‖ → d.

Thus, by The parallelogram equality, for any n,m we have

‖xn − xm‖2 + ‖xn + xm‖2 = 2
(
‖xn‖2 + ‖xm‖2

)
,

‖xn − xm‖2 = 2
(
‖xn‖2 + ‖xm‖2

)
− 4

∥∥∥∥xn + xm
2

∥∥∥∥2 ,
∵ K is convex,

1

2
xn +

1

2
xm ∈ K,

∴
∥∥xn+xm

2

∥∥2 ≥ d2.

∴ −4
∥∥xn+xm

2

∥∥2 ≤ −4d2

∴ 0 ≤ ‖xn − xm‖2 ≤ 2
(
‖xn‖2 + ‖xm‖2

)
− 4d2.

as n,m −→∞, ‖xn − xm‖2 −→ 2d2 + 2d2 − 4d2 = 0

∴ {xn} is a Cauchy sequence,

∵ H is complete

{xn} converge to some x ∈ H.

∵ K is closed,

∴ x ∈ K.

∵ the norm is continuous map

∴ ‖xn‖ −→ ‖x‖,

∴ ‖x‖ = d.

This gives us the existence part of the first statement.

For uniqueness: suppose ‖z‖ = ‖x‖ = d for some z in K.

∴ 1
2
x+ 1

2
z ∈ K.

∵
∥∥x+z

2

∥∥ ≥ d
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By the parallelogram equality,

‖x− z‖2 = 2(‖x‖2 + ‖z‖2)− 4

∥∥∥∥x+ z

2

∥∥∥∥2 ≤ 4d2 − 4d2 = 0,

which forces x = z.

This completes the proof of the first statement.

The second statement is obtained by translation: ∵ h−K is closed and convex,

then by the first part, there is a unique element in h−K := {h− k : k ∈ K}, namely

x, with smallest norm, i.e. x ∈ h−K with ‖x‖ = inf {‖y‖ : y ∈ h−K}.

∴ there is a unique k0 ∈ K such that ‖h− k0‖ = dist(h,K) = inf {‖h− k‖ : k ∈ K}.

Remarks 3.1.4.

� The Nearest Point Property fails to be true if we omit either the requirement

that K be closed or convex, or change Hilbert space to Banach space in the

statement.

� The last theorem say: ∀x,∈ H ∃ y ∈ K such that ‖x− y‖ = infa∈K ‖x− a‖

Corollary 3.1.5. If K is a closed linear subspace of H, h ∈ H, and k0 is a unique

element of K such that ‖h− k0‖ = dist (h,K), then h− k0⊥K.

Conversely, if k0 ∈ K such that h− k0⊥K, then ‖h− k0‖ = dist (h,K).
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3.2 Projection Theorems

Definition 3.2.1. For orthogonal subspaces M and N ,

i.e. M⊥N , the orthogonal sum is defined as M ⊕N where

M ⊕N := {x+ y : x ∈M, y ∈ N} .

Hence any vector z ∈M ⊕N has a decomposition z = x+ y with x ∈M and y ∈ N .

and

〈x1 + y1, x2 + y2〉 = 〈x1 + x2〉+ 〈y1 + y2〉

Remarks 3.2.2.

1. ‖z‖2 = ‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 〈y, y〉 = ‖x‖2 + ‖y‖2

2. The decomposition z = x+ y with x ∈M and y ∈ N is unique.

Proof. Let z ∈ M ⊕N , such that z = x1 + y1 = x2 + y2 where x1, x2 ∈ M and

y1, y2 ∈ N

∴ x1 + y1 = x2 + y2

∴ x1 − x2 = y2 − y1 ∈M ∩N = {0}

∴ x1 = x2 and y1 = y2

3. If M and N are subspaces in H, then M ⊕N is a subspace too.

Proof. Let z1, z2 ∈M ⊕N and α, β ∈ C
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∴ z1 = x1 + y1 and z2 = x2 + y2 where x1, x2 ∈M and y1, y2 ∈ N .

αz1 + βz2 = αx1 + αy1 + βx2 + βy2

= (αx1 + βx2) + (αy1 + βy2)

∈ M ⊕N

∵ 0 ∈M and 0 ∈ N ,

∴ 0 ∈M ⊕N

∴M ⊕N is a subspace.

4. If M and N are closed in H, then M ⊕N is a closed subspace too.

Proof. Let zn ∈M ⊕N such that zn → z.

Claim: z ∈M ⊕N ;

Let ε > 0

∵ {zn} is converge,

∴ {zn} is Cauchy sequence,

∴ ∀n,m ∈ N, ‖zn − zm‖ ≤ ε

∵ ‖zn − zm‖2 = ‖xn − xm‖2 + ‖yn − ym‖2 ≤ ε2

∴ ‖xn − xm‖ ≤ ε and ‖xn − xm‖ ≤ ε

∴ {xn} is Cauchy sequence in M and {yn} is Cauchy sequence in N which are

subspace in H.

∴ {xn} , {yn} are convergent sequence in H.

∴ xn → x and yn → y

∵M,N are closed

∴ x ∈M , y ∈ N and zn = xn + yn → x+ y
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But the limit point is unique,

∴ z = x+ y which is in M ⊕N .

Theorem 3.2.3 (the Projection Theorem I). Let M be a closed subspace of a Hilbert

space H. Then there is an orthogonal sum

H = M ⊕M⊥.

Proof. Let x ∈ H there is a y ∈ M such that ‖x− y‖ ≤ ‖x− v‖ for all v ∈ M , by

Proposition (3.1.3). Let z = x− y

Claim: z ∈M⊥:

For λ ∈ F and v ∈M with ‖v‖ = 1,

∵ y, v ∈M and M is subspace,

∴ y + λv ∈M

therefore

‖z‖2 = ‖x− y‖2 ≤ ‖x− (y + λv)‖2

= ‖z − λv‖2

= 〈z − λv, z − λv〉

≤ 〈z, z〉 − 〈z, λv〉 − 〈λv, z〉+ 〈λv, λv〉

= 〈z, z〉 − (〈z, λv〉+ 〈z, λv〉) + |λ|2 〈v, v〉

= ‖z‖2 − 2Reλ 〈z, v〉+ |λ|2 ‖v‖2

= ‖z‖2 − 2Reλ 〈z, v〉+ |λ|2

∴ 2Reλ 〈z, v〉 ≤ |λ|2 ∀λ ∈ F

So take λ = 〈z, v〉
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∴ 2 |λ|2 = 2Reλλ ≤ |λ|2

∴ |λ|2 ≤ 0

∴ |λ| = 0;

∴ 〈z, v〉 = 0 for any v ∈M .

∴ z ∈M⊥

∴ x = y + z ∈M ⊕M⊥

∴M ⊕M⊥ = H.

Corollary 3.2.4. For every closed subspace M ⊂ H, M = M⊥⊥.

Proof. By theorem (2.2.8) M ⊆M⊥⊥.

Now let x ∈M⊥⊥

∴ x ∈ H

By theorem (3.2.3), H = M ⊕M⊥

∴ x = y + z for y ∈M and z ∈M⊥,

∵M ⊆M⊥⊥ and M⊥⊥ is subspace

∴ y ∈M⊥⊥ and z = x− y ∈M⊥⊥

But z ∈M⊥

∴ z ∈M⊥ ∩M⊥⊥ = {0}

∴ z = 0

∴ x = y ∈M .

∴M⊥⊥ ⊆M

∴M⊥⊥ = M

Definition 3.2.5. Let K be a closed linear subspace of H, A function

P : H −→ K
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can be defined by

Ph = k0

where h− k0 ⊥ K

is called the orthogonal projector mapping.

Remark 3.2.6. Since for every h ∈ H, then there is a unique element k0 ∈ K such

that h− k0 ∈ K⊥, the orthogonal projector mapping is well defined.

Proposition 3.2.7 (Projection Theorem II). Let K be a closed subspace of a Hilbert

space H. There is a unique pair of mappings P : H −→ K and Q : H −→ K⊥ such

that x = Px+Qx for all x ∈ H.

Furthermore, P and Q have the following additional properties:

1. x ∈ K then Px = x and Qx = 0.

2. x ∈ K⊥, then Px = 0 and Qx = x.

3. Px is the closest vector in K to x.

4. Qx is the closest vector in K⊥ to x.

5. ‖Px‖2 + ‖Qx‖2 = ‖x‖2 for all x.

6. P and Q are linear maps.
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Figure 3.3: The projections P and Q
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Linear Operators

4.1 Bounded Linear Operators

Definition 4.1.1. If X and Y are normed linear spaces, a map T : X −→ Y is linear

if T (αx1 + βx2) = α(Tx1) + βT (x2) for all x1, x2 in X and scalars α and β.

Definition 4.1.2. f is continuous at some point x0 ∈ X if and only if for any

neighborhood V of f(x0), there is a neighborhood U of x0 such that f(U) ⊂ V

i.e. ∀ε > 0,∃δ > 0 such that, if |x− x0| < δ then |f(x)− f(x0)| < ε

Definition 4.1.3. A function is continuous if it is continuous everywhere.

Remarks 4.1.4.

1. A function f : X −→ Y between two topological spaces X and Y is continuous

if for every open set V ⊂ Y , the inverse image

f−1(V ) = {x ∈ X | f(x) ∈ V }

is an open subset of X .

2. f is continuous if and only if xn −→ x0 then f(xn) −→ f(x0).
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Definition 4.1.5. We say the linear map T is a bounded linear operator from X

to Y if there is a finite constant k such that ‖Tx‖Y ≤ k ‖x‖X for all x in X .

Proposition 4.1.6. Let X and Y be normed linear spaces and let T : X −→ Y be a

linear operator. The following are equivalent:

1. T is continuous;

2. T is continuous at 0;

3. there exists a positive real number k such that ‖T (x)‖ ≤ k whenever x ∈ X and

‖x‖ ≤ 1;

4. T is bounded.

Proof. (1)=⇒ (2):

∵ T is continuous

∴ T is continuous everywhere

∴ T is continuous at 0.

(2) =⇒ (3):

taking ε = 1

∵ T is continuous at 0,

∴ ∃δ > 0 such that ‖T (x)‖ < 1 when x ∈ X and ‖x‖ < δ.

Let w ∈ X with ‖w‖ ≤ 1.

∵
∥∥ δw

2

∥∥ = δ
2
‖w‖ ≤ δ

2
< δ,

∴
∥∥T ( δw

2

)∥∥ < 1

∵ T is a linear operator

∴ T
(
δw
2

)
= δ

2
T (w).
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∴ δ
2
‖T (w)‖ < 1

∴ ‖T (w)‖ < 2
δ
.

Therefore condition (2) holds with k = 2
δ
.

(3) =⇒ (4):

∵ T is linear operator,

∴ T (0) = 0

∴ ‖T (0)‖ ≤ k ‖0‖. Then the proof have done.

Let x ∈ X with x 6= 0.

∴
∥∥∥ x
‖x‖

∥∥∥ = 1

By condition (3), ∃k > 0 such that ‖T (x)‖ ≤ k .

∴
∥∥∥T ( x

‖x‖

)∥∥∥ ≤ k.

∵ T is a linear operator

1
‖x‖ ‖T (x)‖ =

∥∥∥( 1
‖x‖

)
T (x)

∥∥∥ =
∥∥∥T ( x

‖x‖

)∥∥∥ ≤ k,

∴ ‖T (x)‖ ≤ k ‖x‖.

(4)=⇒ (1):

Let ε > 0 and let δ = ε
k
.

Then when x, y ∈ X such that ‖x− y‖ < δ

∵ T is a linear operator,

∴ ‖T (x)− T (y)‖ = ‖T (x− y)‖ ≤ k ‖x− y‖ < k
(
ε
k

)
= ε.

∴ T is continuous.

Example 4.1.7. The linear operator T : CF[0, 1] −→ F defined by T (f) = f(0) is

continuous.

Solution. Let f ∈ CC[0, 1]. Then

|T (f)| = |f(0)| ≤ sup {|f(x)| : x ∈ [0, 1]} = ‖f‖ .
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∴ T is bounded with k = 1.

∴ T is continuous (by Proposition (4.1.6)).

Example 4.1.8. Let P be the linear subspace of CC[0, 1] consisting of all polynomial

functions. If T : P −→ P is the linear operator defined by

T (p) = p′,

where p′ is the derivative of p, then T is not continuous.

Solution. Let pn ∈ P be defined by pn(t) = tn.

∴ ‖pn‖ = sup {|pn(t)| : t ∈ [0, 1]} = sup {|tn| : t ∈ [0, 1]} = 1,

while

‖T (pn)‖ = ‖p′n‖ = sup {|p′n(t)| : t ∈ [0, 1]} = sup
{∣∣ntn−1∣∣ : t ∈ [0, 1]

}
= n.

∴ @k ≥ 0 such that ‖T (p)‖ ≤ k ‖p‖ for all p ∈ P ,

∴ T is not bounded.

∴ T is not continuous (by Proposition (4.1.6)).
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4.2 The Norm of a Bounded Linear Operators

Definition 4.2.1. Let X ,Y be normed spaces, an operator norm of a linear oper-

ator T : X −→ Y is

‖T‖ := inf
{
k ∈ R+ : ‖Tx‖ ≤ k ‖x‖ for all x ∈ X

}
Proposition 4.2.2. Let X ,Y be normed spaces, then

‖T‖ := inf
{
k ∈ R+ : ‖Tx‖ ≤ x ‖x‖ for all x ∈ X

}
= sup {‖Tx‖ : x ∈ X , ‖x‖ ≤ 1}

= sup {‖Tx‖ : x ∈ X , ‖x‖ = 1} .

Example 4.2.3. If T : CC[0, 1] −→ F is the bounded linear operator defined by

T (f) = f(0), then ‖T‖ = 1.

Solution. It was shown in Example (4.1.7) that |T (f)| ≤ ‖f‖ for all f ∈ CC[0, 1].

∴ ‖T‖ = inf {k : ‖T (f)‖ ≤ k ‖f‖ for all f ∈ CC[0, 1]} ≤ 1.

On the other hand,

if g : [0, 1] −→ C is defined by g(x) = 1 for all x ∈ X

∴ g ∈ CC[0, 1] with ‖g‖ = sup {|g(x)| : x ∈ [0, 1]} = 1 and |T (g)| = |g(0)| = 1.

∴ 1 = |T (g)| ≤ ‖T‖ ‖g‖ = ‖T‖.

∴ ‖T‖ = 1.

4.3 The Space B(X ,Y)

Definition 4.3.1. Let X and Y be normed linear spaces. The set of all bounded

linear operators from X to Y is denoted by B(X ,Y). Elements of B(X ,Y) are also

called bounded linear operators.
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Proposition 4.3.2. Let X and Y be normed linear spaces. Then B(X ,Y) is a vector

space.

Proof. Let α, β ∈ F and T, S ∈ B(X ,Y)

∴ T, S are linear bounded operators.

∴ ∃k1, k2 ≥ 0 such that ‖Tx‖ ≤ k1 ‖x‖ and ‖Sx‖ ≤ k2 ‖x‖

Now,

‖(αT + βS)x‖ = ‖αTx+ βSx‖

≤ ‖αTx‖+ ‖βSx‖ ( By the property of norm)

= |α| ‖Tx‖+ |β| ‖Sx‖ ( Since T is linear)

≤ |α| k1 ‖x‖+ |β| k2 ‖x‖

= (|α| k1 + |β| k2) ‖x‖

∴ αT + βS ∈ B(X ,Y).

Proposition 4.3.3. Let X and Y be normed linear spaces. Then B(X ,Y) is a normed

space, where the norm on B(X ,Y) is the operator norm.

Proof. Let S, T ∈ B(X ,Y) and let λ ∈ F.

1. ∵ ‖Tx‖ ≥ 0 for all x ∈ X

∴ ‖T‖ = sup {‖Tx‖ : ‖x‖ = 1} ≥ 0

2. Let x ∈ X

‖Tx‖ = 0 ⇐⇒ Tx = 0 ⇐⇒ T = 0

∴ ‖T‖ = sup {‖Tx‖ : ‖x‖ = 1} = 0 ⇐⇒ T = 0.
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3. As ‖T (x)‖ ≤ ‖T‖ ‖x‖ we have ‖(λT )(x)‖ ≤ |λ| ‖T‖ ‖x‖ for all x ∈ X .

∴ ‖λT‖ ≤ |λ| ‖T‖.

If λ = 0

∴ ‖λT‖ = |λ| ‖T‖ = 0

while if λ 6= 0

∴ ‖T‖ =
∥∥λ
λ
T
∥∥ ≤ 1

|λ| ‖λT‖ ≤
1
|λ| |λ| ‖T‖ = ‖T‖.

∴ ‖T‖ = 1
|λ| ‖λT‖

∴ ‖λT‖ = |λ| ‖T‖.
4.

‖(S + T )(x)‖ ≤ ‖S(x)‖+ ‖T (x)‖

≤ ‖S‖ ‖x‖+ ‖T‖ ‖x‖

= (‖S‖+ ‖T‖) ‖x‖

∴ ‖S + T‖ ≤ ‖S‖+ ‖T‖.

Proposition 4.3.4. If X is normed space and Y is a Banach space, then B(X ,Y)

is a Banach space.

Proof. By remark (4.3.3) B(X ,Y) is a normed space.

We have to show that B(X ,Y) is a complete normed space. let {Tn}n∈N be a Cauchy

sequence in B(X ,Y).

Claim: {Tnx} is Cauchy sequence in Y : Let x ∈ X and ε > 0

∵ {Tn}n∈N is a Cauchy sequence.

∴ ‖Tn − Tm‖ ≤ ε

∵ ‖Tn(x)− Tm(x)‖ = ‖(Tn − Tm)(x)‖ ≤ ‖Tn − Tm‖ ‖x‖ ≤ ε ‖x‖.
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∴ {Tn(x)}n∈N is a Cauchy sequence in Y ,

∵ Y is Banach space,

∴ Y is complete,

∴ {Tn(x)}n∈N converges

so we may define T : X −→ Y by

T (x) = lim
n→∞

Tn(x)

We now need to show that T ∈ B(X ,Y) and that T is the required limit in

B(X ,Y), so that B(X ,Y) is a Banach space.

The first step is to show that T is linear: Let α, β ∈ F

T (αx+ βy) = lim
n→∞

Tn(αx+ βy)

= lim
n→∞

(Tn(αx) + Tn(βy))

= α lim
n→∞

Tnx+ β lim
n→∞

Tny

= αTx+ βTy

The second step is to show that T ∈ B(X ,Y):

∵ {Tn}n∈N is a bounded set (Since every Cauchy sequence is bounded).

∴ ∃M > 0 such that ‖Tn‖ ≤M for all n ∈ N

∵ ‖Tx‖ = limn→∞ ‖Tnx‖ ≤ limn→∞ ‖Tn‖ ‖x‖ ≤M ‖x‖

∴ T is bounded.

∴ T ∈ B(X ,Y).

Finally, we have to show that T = limn→∞ Tn:

let ε > 0 and choose N ∈ N such that for n,m ≥ N

‖Tn − Tm‖ ≤
ε

2
.
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∴ for any x ∈ X such that ‖x‖ ≤ 1 and for any n,m ≥ N ,

‖Tn(x)− Tm(x)‖ = ‖(Tn − Tm)(x)‖

≤ ‖Tn − Tm‖ ‖x‖

≤ ε

2
‖x‖

≤ ε

2

∵ T (x) = limn→∞ Tn(x),

∴ ∃N1 ∈ N such that when m ≥ N1,

‖Tx− Tmx‖ ≤
ε

2
.

Then when n ≥ N and m ≥ N1,

‖T (x)− Tn(x)‖ = ‖T (x)− Tm(x) + Tm(x)− Tn(x)‖

≤ ‖T (x)− Tm(x)‖+ ‖Tm(x)− Tn(x)‖

≤ ε

2
+
ε

2
‖x‖

≤ ε ∀x ∈ X

∴ ‖Tn − T‖ ≤ ε when n ≥ N

∴ limn−→∞ Tn = T

∴ {Tn} converges to T in B(X ,Y).

∴ B(X ,Y) is complete, hence it is a Banach space.
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