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Chapter 1

Basic Elements of Metric Spaces

1.1 Vector Spaces

Definition 1.1.1. A vector space V is a collection of objects with a (vector) addition
and scalar multiplication defined that closed under both operations and which in

addition satisfies the following axioms:
. (a+pB)r=ar+ prforallz €V and o, € F.
2. a(fzx) = (af)z.
3. x+y=y+axforal z,y € V.
4. x+(y+2)=(x+y)+zforall z,y,z € V.
5. alz+vy) = ar + ay.
6. There is 0 € V such that 0 4+ x = z; 0 is usually called the origin.
7. 0x = 0.

8. ex = x where e is the multiplicative unit in F.
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Examples 1.1.2.
1. R* ={(ay, a9, -+ ,a,)|as,as, -+ ,a, € R} n-dimensional space, for all n > 1.

2. C? and C" respectively to R? and R" where the underlying field is C, the

complex numbers.

3. B, = {Z;’L:o a;x?|ag, ay, -+, a, € R} is called the polynomial space of all
polynomials of degree ”n”. Note this includes not just the polynomials of

exactly degree "n” but also those of lesser degree.

4. L, = {(ai, -+ )|a; € R,> |a;]” < oo}. This space is comprised of vectors in the
form of infinite-tuples of numbers. Properly we would write
p(R) or £,(C)
to designate the field.

Definition 1.1.3. Let V be a vector space and U C V. We will call 4 a subspace
of V if U is closed under vector addition, scalar multiplication and satisfies all of the

vector space axioms.

Example 1.1.4. let V = R?® = {(a, b, ¢)|a,b,c € R}
U ={(a,b,0)|a,b € R}.

Clearly U C V and also U is a subspace of V.

Definition 1.1.5. let S C V, a vector space, have the form
S: {Ulav27”' ,Uk;}.

The span of S is the set
k
U= {ZCL]'UJ'|(I1,"' , Ak GR} .
j=1

2
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Remark 1.1.6. span of the set S is a subspace.

Definition 1.1.7. Let X be a vector space. A set of "n” vectors {1, -+ ,x,} C X

is called linear independent, if the following equation gives that

n
Zozjxj20$a1:---=an:0
j=1
is the only solution. If there is just one a; # 0 then the system {xi,--- ,z,} is

called linear dependent.

Definition 1.1.8. The set B = {x1,--- ,x,} is called a basis of X if:
1. the elements of B are linear independent.
2. and span{xy, - ,z,} = X.

Remark 1.1.9. If every x € X can be expressed as a unique linear combination of

the elements out of the set {xy,--- ,z,} then that set is called a basis of X.

Definition 1.1.10. The number of elements, needed to describe a vector space X,

is called the dimension of X, abbreviated by dim X.
Remark 1.1.11. Let X be a vector space.
1. If X = {0}, then dim X = 0.
2. if X has a basis {z1,--- ,x,}, then dim X = n.
3. If X # {0} has no finite basis, then dim X = oo.

Definition 1.1.12. Let V., W be two vector spaces. A function T : V' — W is called
a linear transformation from V' to W if the following hold for all vectors u,v in V'

and for all scalars k.
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1. T(u+v) =T(u) + T(v)
2. T(ku) = kT (u)
Definition 1.1.13. Let T : V — W is a linear transformation.

1. The set of all vectors v in V for which T'(v) = 0 is called the kernel of T'.
We denote the kernel of T' by ker (7).
ie., ker(T) :={veV:T(v)=0}.

2. The set of all images T'(v) of vectors in V' via the transformation 7" is called the
range of T'. We denote the range of T" by R(T).

e, R(T) :={T(v):v eV}
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1.2 Metric spaces
Definition 1.2.1. A metric space is a non-empty set X with a function
d(.,.): X xX =R
satisfying, for x, y, and z in X,
1. d(z,y) >0
2. d(z,y) = 0 if and only if z = y,

3. d(z,y) = d(y,z),

4. d(z,y) + d(y,z) > d(x, z) (the triangle inequality).
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Examples 1.2.2.
1. Let X = C, with d(z,w) = |z — w]|.
2. Suppose X is a non-empty set and that d : X x X — R. defined as

1 ifx#y
d(z,y) =

0 ifx=y

is a metric which is called the discrete metric on X.
3. For any integer n > 1, the function d; : R” x R® — R defined by
di(z,y) = |aj =yl
j=1
is a metric on the set R".
4. For any integer n > 1, the function dy : R™ x R” — R defined by
n 1/2
2
da(z,y) = (Z |z; — yjl )
j=1

is a metric on the set R™. This metric will be called the standard metric on
R™.
5. For any integer n > 1, the function d, : R" x R" — R defined by
n l/p
dp(z,y) = (Z ;= ?Jj’p>
j=1
is a metric on the set R™.
6. For any integer n > 1, the function d, : R” x R” — R defined by
deo(x,y) = max |z; — yj]

1<j<n

is a metric on the set R"™.
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1.3 Normed vector spaces

Definition 1.3.1. A normed linear space (V,||.||) is a (real or complex) linear

space V' together with a function
Il : V = R.

called a norm satisfying four conditions:

1. [[v|| > 0 for allv € V.

2. |jv]| = 0 if and only if v = 0.

3. ||\v]| = |A]||v]| for all v € V and A € R.

4. ||lv +wl|| < ||v|| + ||w]|| for all v,w € V (triangle inequality).
Examples 1.3.2.

1. V =R. with [|z|| = |z|.

2. V. =C. with ||z]| = |z|.

3. V =R" with

lall, = \fa3 + a3+ -+ a2;

for x = (21,29, ,2,). This is the usual, standard, or Euclidean norm

on R™. It is usually denoted by ||.||,.

Proof. For x ¢ R" and A € R

(a) |lzll = /a2 + a3+ -+ a2 >0.
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(b) [|z]? = 0 iff /22 + a3+ +a2 = 0iff 22 + a3 4 --- + 22 = 0 iff

ry=-=x, =0.
(c)
Ml = V1)? + (A2 + -+ + (Aza)?

= \/)\293%—1—)\296%—1-”-—1-)\%%
= \/)\2(35%+:v§+---+x%)
= [l

(d)

letyll = V(@490 + (@2 +92)* + o+ (@0 +90)?

< \/x§+x§+---+x3+\/y%+y§+---+yg

==l + Iyl
O

4. Let Cyla, b] be the vector space of continuous functions, where F is a field either

real or complex, on [a, b], under pointwise addition and scalar multiplication.
Crla,b] ={f : [a,b] — F : f is continuous function}
Define a norm on Cfa, b] as
If1l = sup{|f(2)| : = € [a, b]} .

Then (Cgla, b], ||.||) is a normed space.
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Proof. Let f,g € Cgla,b] and X\ €

(a) £l = sup{[f(2)]: # € [a,b]} > 0.

(b) [|f]] =0 iff sup{|f(x)|: 2z € [a,b]} =0 iff f(z) =0 for all z € [a,b].

()
A = sup{[Af(2)] : = € [a, 0]}
= [Alsup{[f(2)]: = € [a, 0]}
= AL
(d)
If +gll = sup{|f(z)+g(z)|: x € la,b]}

< sup{|f(2)]: = € [a,0]} + sup {|g(x)| : = € [a, b]}

= N1+ llgll

Remark 1.3.3. A normed vector space (X, |.||) is a metric space with the metric

d(z,y) = ||z =yl

Homework 1. For 1 < p < 00, define

with the p-norm
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And for p = oo define

2]l = sup {|aa| :n > 1}

Prove that (ép(N), ||x||p> is normed space for all 1 < p < 0o and p = oc.

10
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1.4 Inner Product spaces

Definition 1.4.1. Let X be a vector space over a field F, where F is either R or C.
An inner product is a map (.) : X x X — F satisfying, for z, y, and z in & and

scalars a € ¥,
1. (xz,x) > 0 with (z,z) = 0 (if and) only if x = 0,
2. (z,y) = (y,z) for all z, y in X,
3. {ax,y) = a(z,y)
4 {z+y2)=(2,2)+(y,2)

Remark 1.4.2. The inner product is tool to fined:
1. The length of a vector x; (z, z) = ||z|*.
2. The angle between two vectors z, y. Note that:

e (z,y) =0, if and only if z_Ly.
o If (z,y) >0, then 0 < 0 < /2.

o If (z,y) <0, then 7/2 < 0 < 7.

3. The scalar projection of vector u in the direction of vector v which is |(u,v)|.

11
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Figure 1.1: The projective vector

Example 1.4.3.

1. The function (.,.) : R" x R" — R defined by (z,y) = >, z;y;, is an inner
product on R”. This inner product will be called the standard inner product

on R™.

2. The function (.,.) : C* x C" — C defined by (z,y) = >, ;7;, is an inner
product on C". This inner product will be called the standard inner product

on C".

3. If a = {a;}, b = {b;} € (* then the sequence {a;b;} € ¢! and the function
(.,.) : F" x F* — F defined by (a,b) = Y"1 | a;b; is an inner product on (2,

This inner product will be called the standard inner product on /2.

Proposition 1.4.4 (Cauchy-Schwarz inequality). If (.,.) is an inner product on a

vector space X, then for all x and y in X we have

(2, 9)” < (z,2) (y,9) -

12
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In particular, The equality in Cauchy - Schwarz inequality holds if and only if x and

y are dependent

Proof. 1f one of the two vectors is zero then both sides are zero so we may assume

that both z, y are non-zero. Let t € C. Then

0 < |lz+tyl]> = (& + ty, z + ty)

= (z,2) + (z, ty) + (yt, ) + (ty, ty)

= (2, ) + t{z,y) + t{x, y) + [t/ (y, v)

= (z,x) + 2Re(t(z,y)) + [t[*(y.9)

Now choose t := —Ezi). Then we get
v.y)
[z )P\, [z ) (@, )|
0 <(z,z)+ 2Re(— + =(r,x) — —
2] ( (v, y) ) (v, y) @) (v, y)

And hence |(z,y)| < ||z||||y|| Note that if y = Az for A € C then equality holds:
AP, 2)| = APl (]

Hence
(2, 2)| = ||z

O

Proposition 1.4.5. If (.,.) is an inner product on a vector space X, then for all x

and y in X we have

(NI

2] = (z, x)
18 a norm on X.

Remark 1.4.6. The norm ||z| = (z, x>% defined in above proposition (1.4.5) on the

inner product space X is said to be induced by the inner product (.,.).

13
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Theorem 1.4.7 (The Parallelogram Rule). Let X be an inner product space with

inner product (.,.) and induced norm ||.||. Then for all z, y € X:
2 2 2 2
lz+ yllI” + llz = ylI” = 2 (ll=II” + [y

Its name comes from picturing the relationship for vectors in, say, R?; see Figure

3.2

X

Figure 1.2: The parallelogram equality

Remark 1.4.8. One way to show that a given norm on a vector space is not induced

by an inner product is to show that it does not satisfy the parallelogram rule.

Example 1.4.9. The standard norm on the space C|0, 1] is not induced by an inner

product.

Solution. Consider the functions f,g € C[0,1] defined by f(z) = 1, g(x) = z,

x € [0,1]. From the definition of the standard norm on C]0, 1] we have

If+al +1f—gll* = 4+1=5

2(IF1F +1gl*) = 2(1+1)=4

Thus the parallelogram rule does not hold and so the norm cannot be induced by

an inner product.

14
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Complete Metric Spaces

2.1 Convergence Sequences

Definition 2.1.1. A sequence {x,} in a metric space (X, d) converges to x € X
(or the sequence {z,} is convergent) if, for every ¢ > 0, there exists N € N such

that d(z,,z) < ¢, for all n > N.

Definition 2.1.2. A sequence {x,} in a metric space (X, d) is called bounded if

there exists € X and M € N such that d(z,,z) < M for all n € N.
Proposition 2.1.3. Every convergence sequence in a metric space is bounded.

Proof. Let {x,} be a convergent sequence in a metric space X to a point x.
.Ve > 0,3dN € N such that d(z,,z) <e foralln > N

In particular, this is true when ¢ =1

. 3dM € N, such that d(x,,x) <1Vn> M

Put K = max {d(z,z),d(xq,x),...,d(zpr,x),1}

S.¥n e Njd(x,,x) < K

.. the sequence {z,} is bounded. O

15
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Remark 2.1.4. In normed space the definition of convergent and bounded sequence

will be:

converge sequence: A sequence {z,} in a normed space X converges to r € X
(or the sequence {z,} is convergent) if, for every € > 0, there exists N € N

such that ||z, — z| < ¢, for all n > N.

bounded sequence: A sequence {z,} in a normed space X is called bounded if

there exists M € N such that ||z,| < M for all n € N.
So the proposition (2.1.3) is still true in normed space.

Proposition 2.1.5. Let X be an inner product space and suppose that for any pair

of a convergent sequences {x,} and {y,} in X, with x,, — x and y, — y. Then
(Tn, Yn) — (T, y) for n — oo.

Proof.

[(@n,yn) = (@) = (@ o) = (@0, y) + (@0, y) — (2,9)]
S |<mn7yn> - <mmy>| + |<xmy> - <$7y>|

= @0y = 9|+ ({20 — 2,9)]

IN

lzall lyn = yll + llen — [yl

Since the sequence {z,} is convergent, then by (2.1.3) the sequence {z,} is bounded,
||zl is bounded.
So the right hand side of this inequality lends to zero as n — oo.

C AT, Yn) — (x,y) for n — 0. O

16
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Definition 2.1.6. Let X’ be a metric space. A sequence {z,} in X is said to be a
Cauchy sequence if it has the following property: Given any e > 0 there exists N

such that if n,m > N, then d(z,, x,,) < €.

Proposition 2.1.7. Every convergent sequence in a metric space (X,d) is a Cauchy

sequence.

Proof. Let {z,} be a sequence in X that converges to the limit z. Let ¢ > 0.
. AN such that Vn > N,d (z,,x) < %
Sifm>Nandn >N

Example 2.1.8 ( The Converse of the proportion (2.1.7) is not true.). If X = R—{0},
and define d : R x R as

d(z,y) = |z —y|

1
Then the sequence {—} is Cauchy sequence but it is not convergent.
n

Definition 2.1.9. A metric space is said to be complete if every Cauchy sequence

in X' converges in X.

Definition 2.1.10. The complete normed space is called Banach space.
Example 2.1.11. the space C|a, b] is a Banach space.

Definition 2.1.12. The complete inner product space is called Hilbert space.
Examples 2.1.13.

1. Every finite-dimensional inner product space is a Hilbert space.

17
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2. (% with the standard inner product is a Hilbert space.

Remark 2.1.14. Since every inner product space has an induced norm, then every
Hilbert space is a Banach space.

the converse is not true unless that one satisfied parallelogram law (1.4.7).

Definition 2.1.15. A set X is closed if and only if for all sequence {z,} in X such

that x, — z, then z € X.

Proposition 2.1.16. If H is a Hilbert space and Y C H is a linear subspace, then

Y is a Hilbert space if and only if Y is closed in H.

Proof. =) Let Y be a Hilbert space
Claim: Y is closed in H:
Let {x,} be a sequence in Y such that x, — z.
Assume that z is not in Y
. {x,} is Cauchy sequence but not converge in Y.
.Y is not complete, which is contraction with Y is Hilbert space
.Y is closed.
<): Let Y be a closed subspace in H.
Claim: Y is Hilbert space:
Let {x,} be a Cauchy sequence in Y.
" {x,} is Cauchy sequence in H
. H is a Hilbert space
. H is complete
*. the Cauchy sequence {x,} is convergent in H, say x

Y is closed

18
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sLreyY
.. the sequence {z,} is convergent in Y

.Y is a Hilbert space. ]

19
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2.2 ORTHOGONALITY

Definition 2.2.1. Let X be an inner product space. The vectors z,y € X are said

to be orthogonal if (z,y) = 0, this is symbolically written x_Ly.

Definition 2.2.2. For subsets M and N of an inner product space X , one says that
M, N are orthogonal, written M LN if (x,y) = 0 for every x € M, y € N. In

addition the orthogonal complement of such M is defined as
M*:={ye X|(zx,y) =0forall z € M}.
Example 2.2.3. If ¥ = R3and A = {(a1,a9,0) : aj,as € R}, then A+ = {(0,0,z3) : 23 € R}.

Solution. Let z = (1,15, 73) € A+

. Va = (al,ag,O) € A with a1, 02 € R,
<ZL’,CL> = <(I’1,l‘2,$3), (a17a270)> = T1a1 + X202 = 0.

Putting a1 = 21, as = 29,
2 +a23=0
T, = Tg = 0.

sox=(0,0,23) € AL

20
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Proposition 2.2.4. If X is an inner product space and A C X, then 0 € A*.

Proof.
o (0,2) =0 VerelX
-0e AL O

Proposition 2.2.5. If X is an inner product space and 0 € A C X, then AN A+ =
{0}, otherwise AN A+ = .

Proof.

If0c A andlet z € AN At

sr€Aand z € AL

“A(z,z) =0

Sor=0

AN AL ={0}

Now, if 0 & A,

ANALt=0. O

Proposition 2.2.6. If X is an inner product space and A C X, then {0}" = X;
X+ ={0}.

Proof.

oz, 0)=0 VreX
s {0 =X,

Let y € X+

‘{y,2) =0 VzeX

cAy,y) =0

21
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Sy =0.
- X+ ={0}. O

Proposition 2.2.7. If X is an inner product space and B C A C X, then A+ C B*.

Proof.

Let x € A+

sAry) =0 VyeA

"BCA

sAzyy) =0 VyeB

.x € Bt

At C B O

Proposition 2.2.8. If X is an inner product space and A C X then A C (A1)*.

Proof.

Let x € A

sreXand (z,y) =0 Vye At

AN ={re X (z,y)=0 Vye A}

sz e (Ab)t

L AC(AY)E O
Proposition 2.2.9. If X is an inner product space and A C X then AL is a closed

linear subspace of X .

Proof.
Let z,y € At and o, BEF,let z€ A
(ax +By,z) = (ow,z2) +(By,2)
= afz,2)+8(y,2) =0

22
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cax+ By e At

0e At

.. At is linear space.

Now let {z,} be a sequence in A1 such that x, — z, and let w € A

oAz, w) = (2, w)

20— (z,w)
Ax,w) =0
sx e AL O
Proposition 2.2.10 (Pythagorean theorem). Ifzq, s, ..., x, are pairwise orthogonal

vectors in a Hilbert space, then
1+ @2 4 - | = [l |+ (ol + -+ [l
Proposition 2.2.11. Let Y be a linear subspace of an inner product space X. Then

z €Yt if and only if ||z|| < ||z —yl|, forally €Y.

23
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2.2.1 Orthonormal Bases

We now wish to extend the idea of an orthonormal basis to infinite-dimensional spaces.

Definition 2.2.12. An orthonormal set in a Hilbert space H is a set E' with the

properties:
1. Forevery e € E | |le|| =1,
2. For distinct vectors e and = in E |, (e, z) = 0.

Definition 2.2.13. An orthonormal sequence in a Hilbert space H is a sequence

{ei};2, with the properties:
1. |le;]| = 1, for every i
2. (e;,ej) =0, for every i # j.

Example 2.2.14. For an easy example of an orthonormal set (sequence) in the

Hilbert space (2, take the set E of vectors {ej};_, where e; has a 1 in the j-th

coordinate and zeros elsewhere. (Check?)

Definition 2.2.15. An orthonormal basis for a Hilbert space H is a maximal
orthonormal set;

that is, an orthonormal set that is not properly contained in any orthonormal set.

Example 2.2.16. In the ¢* example above, the set {e; }j:1 is an orthonormal basis.

When is an orthonormal set in a Hilbert space an orthonormal basis?

Theorem 2.2.17 (Gram—Schmidt process). Let {v; : i =1.2,3...} be a sequence of

vectors of H. Then there exists an orthonormal sequence {e; :i=1,2,3,...} such

24
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that, for each integer k

span {617 €2,€3, ... 7€k} 2 span {Ub V2, U3, . .. 7Uk} :

If {v; :i=1.2,3...} is a linearly independent set, then the above inclusion is an

equality for each k.

b, v,

e v,

Figure 2.1: Gram—Schmidt algorithm, at stage k = 2

Proof. Define recursively

U1 Uy — <U2, €1> €1
€1 = 77— €2 =
o] vz = (va, €1) €]
and if we assume that ej, e, ..., e; are defined,

Vi1 — Zizl (Uj+1, k) T

Vj+1 — Zizl <Uj+17 €k> ka

€j+1 =

Then the set {ex} is orthonormal by construction and it satisfies the requirement

about span. O

Proposition 2.2.18 (Bessels Inequality). Let X' be an inner product space and
let {e;} be an orthonormal set in X. For any h € X the (real) series Y20, |(h, e;)|?

converges and
oo

D e < |nlf*.

i=1

25
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Proof. Let h € H, Then
n 2 n n
h_z<h7€1> €; = <h_z<h7el> eivh_z<haei> ei>
i=1 i=1 i=1
= |n)* - <h,z (h, €;) €i> - <Z (h€) 6i7h>
i=1

i=1

0<

+ D (hoei) (hyeg) {eaes)

1,7=1

= ||n|)* = <hz (h,e) ei> — <Z (h,e;) ei,h> + Z (R, e;)|?

=1

= AP = Khee* =Y Khed + ) [(h,e)l”
i=1 i=1 i=1

= [nl* = [{hoen)?
i=1

Thus ||h]|> > 27, |(h, e;)]?, and hence this sequence of partial sums is increasing and

bounded above so the result follows. O

Remarks 2.2.19.

1. In above theorem, the case n = 1 is the Cauchy-Schwartz inequality

2. The geometric meaning of Bessel’s inequality is that the orthogonal projection
of an element h on the linear span of the elements,{e;}, has a norm which does
not exceed the norm of h (i.e. the hypothenuse in a right-angled triangle is not

shorter than one of the other sides).

Lemma 2.2.20. If {e;}]" is an orthonormal sequence, then for any h € H,

o0

Z <h, €i> €;

i=1

converges to a vector hg such that (h — ho,e;) =0 for all i.

26
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Theorem 2.2.21. If {e;}]° is an orthonormal sequence in a Hilbert space H , then

the following conditions are equivalent:
1. {e;}]" is an orthonormal basis.
2. If h € H and hle; for all i, then h = 0.

3. (Fourier expansion) For every h € H , h = >"7" (h,e;) e;; equality here means

the convergence in the norm of H of the partial sums to h.
4. (Parsevals relation) For all h and g in H , > 77 (h, €;) (e;, g) = (h, g).
5. For every h € H , S5 [(h, e) [ = ||h))°.

Proof.

(1) = (2): If (2) is false then adding ﬁ to the set {e,}]" gives a larger

orthonormal set, contradicting (1).

2) = (3): Let hg = > 32, (h, e;) e; (this exists, by Lemma 2.2.20). Then for all s
j=1 il €j

(h— hg,e;) = < Z (h,e; ej,el> (h,e;) <Z (h,e; e],el>
J=1 =1
= (h,e;) Z (h,e;) (ej,ei) = (h,e;) — (h,e;) =0
7j=1

and so h = hg by (2)
(3) = (4): Let h, =37, (h,e;)e; and gs = >, (g, ¢€;) ;. Then

min|r,s]

<hr’gs>: Z <h’7€z>m

i=1
Let r — 0o and s — oo. Using the continuity of the inner product, it follows that

o0

<h7g> = Z <h7 ei> <g7€i>'

i=1
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(4) = (5): Put g = h in (4).
(5) = (1): If {e;};° is not maximal and can be enlarged by adding z, then

(z,¢e;) =0 for all 7 but also
L=zl =) Iz e* =0
i=1
which give a contradiction. O]

Remark 2.2.22. Let H be a Hilbert space and let {e, } be an orthonormal sequence
in H. Then {e,} is called an orthonormal basis for H if any of the conditions in

Theorem (2.2.21) hold.

Definition 2.2.23. A Hilbert space is called separable if it contains a countable,

dense subset

Examples 2.2.24.

1. the space R is separable since the set of rational numbers is countable and dense

in R

2. C is separable since the set of complex numbers of the form p+iq, with p and

q rational, is countable and dense in C.
3. Finite dimensional normed vector spaces are separable.

4. The Hilbert space ¢? is separable.

Theorem 2.2.25.
An infinite-dimensional Hilbert space H is separable if and only if it has an

orthonormal basis.
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Hilbert Space Geometry

3.1 Nearest Point Property

Definition 3.1.1. A subset A of a vector space X is convex if, for all z,y € A and
all t € [0,1], tx + (1 —t)y € A.
In other words, A is convex if, for any two points z,y in A, the line segment

joining = and y also lies in A,

O D O

these shapes are Convex sets

O mm Y

these shapes are not convex sets

Figure 3.1: Convex and non-convex planar regions
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Examples 3.1.2.
1. Every subspace is convex.
2. Every ball in a normed linear space is convex
3. Any translate x + S := {z + s: s € S} of a convex set S is convex. (Check?)

Proposition 3.1.3 (Nearest Point Property). Every nonempty, closed convex set K
in a Hilbert space H contains a unique element of smallest norm.

Moreover, given any h € H |, there is a unique ko in K such that

1h — kol = dist(h,K) = inf {||h — k|| : k € K} .

H

Yo

XXO

—

Figure 3.2: Convex and non-convex planar regions

Proof. Let K be a nonempty, closed convex set in a Hilbert space H
Claim: K contains a unique element of smallest norm:

Let d = inf {||y|| : v € K}.
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- K is closed,
.. there is a sequence of vectors {x,} in K with ||z, || — d.

Thus, by The parallelogram equality, for any n, m we have

2 2 2 2
170 = 2”4 ll2n + 2ll” = 2 (lzal” + Izl |

2
Ty + Ty,

2 2 2

Y

. K is convex,
1 1

) avm Ka
23: +2x €

gz @

—4 Ha:n—;xm 2 S —4d2

50 < [ — 2nl? < 2 (2l + llzm]?) — 42,

as n,m —s 00, ||, — T |” — 2d2 + 242 — 4d* = 0

. {x,} is a Cauchy sequence,

.+ H is complete

{z,} converge to some z € H.

.+ K is closed,

srx ek

*. the norm is continuous map

Nl —

]l = d.

This gives us the existence part of the first statement.
For uniqueness: suppose ||z|| = ||z|| = d for some z in K.

car+izekK

e = d
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By the parallelogram equality,

2

THE 44—,

2 2 2
Iz = =[] = 2(ll=[]” + [|2[|") — 4

which forces z = z.
This completes the proof of the first statement.

The second statement is obtained by translation: ‘.- A — K is closed and convex,
then by the first part, there is a unique element in h — K := {h — k : k € K}, namely
x, with smallest norm, i.e. x € h — K with ||z|| = inf {||y]| : y € h — K}.

.. there is a unique ko € K such that |h — ko|| = dist(h,K) = inf {||h — k|| : k € K}.
O

Remarks 3.1.4.

e The Nearest Point Property fails to be true if we omit either the requirement
that K be closed or convex, or change Hilbert space to Banach space in the

statement.

e The last theorem say: Vz, € H 3y € K such that ||z — y|| = infeex ||z — al|

Corollary 3.1.5. If K is a closed linear subspace of H, h € H, and ko is a unique
element of K such that ||h — ko|| = dist (h,K), then h — ko LK.
Conversely, if kg € K such that h — ko LK, then ||h — ko|| = dist (h,K).
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3.2 Projection Theorems

Definition 3.2.1. For orthogonal subspaces M and N,

i,e. M 1N, the orthogonal sum is defined as M & N where
MoN:={zr+y:z€MyeN}.

Hence any vector z € M & N has a decomposition z = x +y with x € M and y € N.
and

(x1 + Y1, T2 + Y2) = (1 + x2) + (Y1 + Ya2)
Remarks 3.2.2.
2 2 2 2
Loz]" = llz+yll” =z +y,z +y) = (x,2) + (y,y) = [|=||" + [|y]

2. The decomposition z = x +y with z € M and y € N is unique.

Proof. Let z € M & N, such that z = 21 + y; = 22 + yo wWhere x1, 25 € M and
Y1, 92 € N

ST Y= T2+ Yo

Sr =Ty =yo—y1 € MNON = {0}

S.xp =g and Y1 = Yo

3. If M and N are subspaces in H, then M & N is a subspace too.

Proof. Let z1,20 € M @& N and o, € C
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. z1 =x1+ vy and 29 = x5 + Yo Where 1,29 € M and y1,y, € N.

azi + Bzy = axy + oy + Bra + fys
= (axy + Bxg) + (ayr + Bys)

€ M®N

c0eMand0e N,
0eMeN

.M @ N is a subspace. ]
4. If M and N are closed in H, then M @ N is a closed subspace too.

Proof. Let z, € M & N such that z, — z.
Claim: z € M & N;

Let € >0

.~ {z,} is converge,

. {z,} is Cauchy sequence,

SVn,m €Nz, — 2] <€

e = zall® = o = znl® + e — yll® < €
N — x|l < e and ||z, — x| <€

" {z,} is Cauchy sequence in M and {y,} is Cauchy sequence in N which are
subspace in H.

“Axn}, {yn} are convergent sequence in H.
coxp, —xand y, =y

. M, N are closed

sreM,yeNand z, =2, +y, > +y
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But the limit point is unique,

c.z=x+y which isin M & N.

]

Theorem 3.2.3 (the Projection Theorem I). Let M be a closed subspace of a Hilbert

space H. Then there is an orthogonal sum
H=M&M".

Proof. Let x € H there is a y € M such that ||z —y| < ||z — || for all v € M, by
Proposition (3.1.3). Let z =2 —y

Claim: z € M*:

For A € F and v € M with ||v|| =1,

y,v € M and M is subspace,

Syt weM

therefore
21 = llz = ol < o= (y+20)|?

= ||z = Av||?
= (z— v,z — \v)
< Az, 2) — (2, W) — (v, 2) + (M, \v)
= {z,2) = ((z,20) + {z,20)) + A" (v,0)
= [l21* = 2ReX (z,0) + [A]* [l
= ||z]|* = 2ReX (z,v) + |A]?

S2Red (z,0) < AP VA ET

So take A = (z,v)
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2 2)A = 2Red < [N

AP <0

LAl =05

. (z,v) =0 for any v € M.

zeMb

r=y+zEMM*

S MeM-=H. O

Corollary 3.2.4. For every closed subspace M C H, M = M=+,

Proof. By theorem (2.2.8) M C M++.
Now let z € M+t

SreH

By theorem (3.2.3), H= M & M*
srx=y+zforye M and z € M+,
+ M C M+t and M+ is subspace
SyeMHandz=2—-ye M+t
But z € M+

Sz €Mt M = {0}

sz=0

Lrx=y€eM.

ML C M

ML —

Definition 3.2.5. Let K be a closed linear subspace of H, A function
P:H—K
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can be defined by
Ph = kg

where h — kg L K

is called the orthogonal projector mapping.

Remark 3.2.6. Since for every h € H, then there is a unique element ky € K such

that h — ky € K+, the orthogonal projector mapping is well defined.

Proposition 3.2.7 (Projection Theorem II). Let K be a closed subspace of a Hilbert
space H. There is a unique pair of mappings P : H — K and Q : H — K* such
that x = Px 4+ Qx for all x € H.

Furthermore, P and () have the following additional properties:

1. x € K then Pr =2 and Qx = 0.

S

x € K+, then Pxr =0 and Qr = .
3. Px is the closest vector in K to x.

. Qx is the closest vector in K+ to x.
Q

B

v

NPl +|Qx|* = ||| for all x.

6. P and QQ are linear maps.
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Figure 3.3: The projections P and )
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Chapter 4

Linear Operators

4.1 Bounded Linear Operators

Definition 4.1.1. If X and ) are normed linear spaces, amap T : X — ) is linear

if T(awy + Prg) = a(Txy) + ST (xs) for all 21, x5 in X and scalars o and S.

Definition 4.1.2. f is continuous at some point z, € X if and only if for any
neighborhood V of f(zg), there is a neighborhood U of xq such that f(U) C V
i.e. Ve > 0,35 > 0 such that, if |z — xo| < ¢ then |f(z) — f(z0)| < €

Definition 4.1.3. A function is continuous if it is continuous everywhere.

Remarks 4.1.4.

1. A function f: X — ) between two topological spaces X and ) is continuous

if for every open set V' C ), the inverse image
V) ={zeX|f(z) eV}
is an open subset of X.

2. f is continuous if and only if x,, — x¢ then f(x,) — f(x¢).
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Definition 4.1.5. We say the linear map 7' is a bounded linear operator from X

to ) if there is a finite constant k such that ||Tz|), <k ||z|, for all z in X'

Proposition 4.1.6. Let X and Y be normed linear spaces and let T : X — Y be a

linear operator. The following are equivalent:
1. T 1s continuous;
2. T 1s continuous at 0;

3. there exists a positive real number k such that ||T(x)|| < k whenever x € X and

]l < 1;
4. T s bounded.

Proof. (1)= (2):
“.» T is continuous
.. T'" is continuous everywhere
.. T" is continuous at 0.

(2) = (3):
taking e = 1
".»T" is continuous at 0,
.30 > 0 such that ||T(z)|| <1 when z € X and ||z|| < 9.
Let w € X with ||w]| < 1.
sl = £l < £ <
()] <1
.+ T"is a linear operator

AT (82 = 3T (w).
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S g IT(w)] <1
ST @)l < 3
Therefore condition (2) holds with k = 2.
(3) = (4):
"~ T is linear operator,
2. T(0)=0
S IT(0)|| < K10]]. Then the proof have done.
Let x € X with = # 0.

z_
llzl

By condition (3), 3k > 0 such that [|T'(z)|| <k .

() <+

T is a linear operator

s = () 7o) = () <
AT @) < k|-

=1

(4)= (1):
Let € > 0 and let 0 = 1.
Then when z,y € X such that ||z —y|| <

T is a linear operator,
S NT(@) =T = 1T -yl <kllz -yl <k(5) =«

. T is continuous. O

Example 4.1.7. The linear operator T : Cy[0,1] — F defined by T'(f) = f(0) is

continuous.

Solution. Let f € C¢l0,1]. Then

TN = 1£0)] < sup {|f(z)| -z € [0,1]} = [If]].
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.. T is bounded with k£ = 1.

. T is continuous (by Proposition (4.1.6)).

Example 4.1.8. Let P be the linear subspace of C¢|0, 1] consisting of all polynomial

functions. If T': P — P is the linear operator defined by

where p’ is the derivative of p, then 7" is not continuous.

Solution. Let p, € P be defined by p,(t) = t".

2 [all = sup {|pa(t)] ¢ € [0, 1]} = sup {[¢"] : £ € [0, 1]} = 1,

while

1T ()l = llphll = sup {|pf, ()] - t € [0,1]} = sup {|nt" | : £ € [0,1]} = n.

. Pk > 0 such that | T(p)|| < k||p|| for all p € P,
.. T is not bounded.

.. T is not continuous (by Proposition (4.1.6)).
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4.2 The Norm of a Bounded Linear Operators

Definition 4.2.1. Let X', ) be normed spaces, an operator norm of a linear oper-

ator T : X — )V is
|T| :=inf {k € R" : |Tz| < k|z| for all z € X}
Proposition 4.2.2. Let X', ) be normed spaces, then
IT|| = inf{keR":||Tz| <z|x| foralzeX}

= sup{[|Tz|:z e &, [lz| <1}

= sup{[|Tz|[:z € &, [|lz] =1} .
Example 4.2.3. If T : C¢[0,1] — F is the bounded linear operator defined by
T(f) = f(0), then [|T]| = 1.
Solution. It was shown in Example (4.1.7) that |T'(f)| < || f|| for all f € C¢[0,1].
S AT = mf {kANTHI < K] for all f e Cel0,1]} < 1.
On the other hand,
if g : [0,1] — C is defined by g(z) =1 for all z € X
.9 € Ce[0,1] with [lg[| = sup {lg()] : z € [0, 1]} = 1 and |T(g)| = |g(0)] = 1.
“1=1T(g)l < [T llgl = 1IT[|
T =1

4.3 The Space B(X,))

Definition 4.3.1. Let X and )Y be normed linear spaces. The set of all bounded
linear operators from X to ) is denoted by B(X',)). Elements of B(X,)) are also

called bounded linear operators.
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Proposition 4.3.2. Let X and Y be normed linear spaces. Then B(X,)) is a vector

space.

Proof. Let a,f € Fand T,S € B(X,))
.. T, .S are linear bounded operators.

. 3ky, ke > 0 such that | Tz|| < &y ||z|| and ||Sz|| < ks ||z

Now,
(T + BS)z| = loTx + 55z
< |laTz| + ||3Sz|| ( By the property of norm)
= |a|||Tz| + |B|||Sz| ( Since T is linear)
< lafky[lz] + 5] k2 ||=
= (lal kL + [Bl k) [l]
~.aT + BS € B(X,)). 0

Proposition 4.3.3. Let X and ) be normed linear spaces. Then B(X,)) is a normed

space, where the norm on B(X,)) is the operator norm.
Proof. Let S,T € B(X,)) and let A € F.

1. ||Tz|]| >0 for all z € X
ST = sup{|[ T - [le]] = 1} = 0

2. Let z € X
ITz|| =0 <= Tz =0 < T=0

ST =sup{||Tx| : |z|| =1} =0 <= T =0.
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3. As [|T(x)]] < T [|z]| we have [[(XT)(@)[| < AT [Jz]| for all z € X.
AT < AT
IfA=0
AT = AT =0
while if X # 0

AT =13T] < & I < 5 AT =117
ST = 5 1T
S AT = AT

IS+ D)) < [1S@)I + 1T ()]
< ISl + 17l

= (ST +1T1) (=]
S +TI< 1S+
O

Proposition 4.3.4. If X' is normed space and Y is a Banach space, then B(X,))

1s a Banach space.

Proof. By remark (4.3.3) B(X,)) is a normed space.

We have to show that B(X,)) is a complete normed space. let {T},}, _y be a Cauchy

neN

sequence in B(X,)).

Claim: {T,x} is Cauchy sequence in Y: Let x € X and € > 0
AT}y 18 @ Cauchy sequence.

ST =Tl <€

(@) = T ()| = (T = Tn) (@) < [T = Tl 2]} < € fl]].
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" A{Tn(7)}, ey is a Cauchy sequence in Y,
*.» Y is Banach space,

.. Y is complete,

AT (x)},,en converges

so we may define T': X — ) by

T(x) = lim T,(x)

n—oo

We now need to show that T € B(X,)) and that T is the required limit in

B(X,)), so that B(X,)) is a Banach space.
The first step is to show that T is linear: Let o, 5 € F

T(ax+py) = lim T,(ax + By)

= lim (T (az) + T,(By))

n—oo

= « lim T,z + f lim T,y
n—oo

n—oo

= oTx+ BTy

The second step is to show that 7" € B(X,)):
" {T,},en is @ bounded set (Since every Cauchy sequence is bounded).
..M > 0 such that ||T,]| < M for all n € N
Tl = limg g | Toael| < T e [ Toll 2] < M 2]
.. T is bounded.
=T e B(X,)Y).

Finally, we have to show that T = lim,,_, 7T,:
let € > 0 and choose N € N such that for n,m > N

NN e
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. for any z € X such that ||z| <1 and for any n,m > N,

I7(2) = Tu(@)] = (T~ T)@)]
< 5l
€
<
- 2

T (x) = limy, e T (),

.. dN; € N such that when m > Ny,

T2 = T <

[Nl e

Then when n > N and m > Ny,

1T () = Tu()l| = [IT(x) = Ton(x) + Ton(z) — Tu(2)|

IN

1T (2) = T ()| + 1T () = Tu(@)|

IN
|
_l’_
|
Bl

IN

€ Vee X

ST, =T < e whenn > N
L. hmni)oo Tn - T
. {T,} converges to T in B(X,)).

.. B(X,)) is complete, hence it is a Banach space. H
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