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Chapter (1)

Real and rational numbers

The axiom of real numbers -:
Let (F, +,) be a triple consist of a non-empty set with the operation of

addition and multiplication. We say the triple (F, +,") is a field if it satisfies
the following properties:-

1) a+b=b+aanda-b = b-a(Commutative la)

2) (a+b)+c=a+(Mb+c)and(a-b)-c=a-(b-c) (Associative law)
3) a-(b+c)=a-b+ a-c(Distributive law)

4) There is distinct real n umberOandlsta+0=aanda-1=a Va
5) For each a there's a real number —a such that a + (—a) = 0 and if

a # 0 thereis a real number%such that a - % =1

Example-:
The real numbers from a field and the rational numbers (which are the real

number that can be written as = %, where a and b integersand b + 0)

The order relation-:
The real numbers ordered by the relation <, which has the following

properties:-

6) For each pair of real numbers a and b exactly one of the following is
truea=b ,a<b,a>hb
7) If, a<b andb < c ,then) a < c (transitive)
8) Ifa<b ,thena+c<b+c foranycandifc >0,thena-c<b-c .



A field with an order relation satisfying (8) ,(7) ,(6) is an order field. Thus

the real numbers form ordered field. The rational numbers also forms an
ordered field .

Supremum of a set :-

A set S of real numbers is bounded above if there is a real number b such
that x < b for each x € S. In this case, b is an upper bound of S. If b is an
upper bound of S, then so is any larger number, because of property (7)

If b is an upper bound of S, but no number less than b’, then b’ is a
supremum of S, and we write b’ = sup(S).

Example:-

If S is the set of negative numbers, then any non-negative number
is an upper bound of S, and sup(S) = 0.

If S; is the set of negative integers, then any number a such thata = —1
is an upper bound of S, and sup(S;) = —1

The example shows that a supremum of a set may or may not be in the
set since S; contains it's supremum but S dose not

Infimum of a set :-

A set S of real numbers is bounded below if there is a real number a such
that, x = a for each x € §. In this case a is a lower bound of S so is any
smaller number because of property (7). If a’ is a lower bound of S but no

number greater than a’, then a’ is an infimum of S, and we write
a’ = inf(S).




Remark :-

If S is a non-empty set of real numbers, we write sup(S) = oo to indicate
that S is unbounded above and inf(S) = —oo to indicate that S is unbound-
ed below.

Example:-

Let, S = {x:x < 2}, then sup(S) = 2 and . inf(§) = —
Example:-

Let, S = {x:x = 2}, then sup(S) = o and inf(S) = —2.

If S is the set of all integers, then sup(S) = o and inf(S) = —oo
H.W): Find sup(S) and inf(S), state whether they are in S.

1- S = {x:x% < 5}

2-S = {x:x% > 9}

3-S ={x:2x + 1| < 7}

The relation between the field of rational of numbers and real number:

Proposition (1-1):-

Every orderd field contains a subfield similar to field of rational numbers.

Proof:- Let (F, +,") be an orderd field 1 € F (1 is the identity element with
respect to (+) operation) (0 € F, is the identityof +) 1 +1+ 1+ -+ 1=
n-1l=ne€erF, neZzt

Claim(1)n-1=0 iff n=0



Proof (1)=) Suppose the result is not true i.e there exists a positive integer
k>1landk-1=0 It'sclearthatk >1=>k—1>0and(k—1)-1>0
0<(k-—-1)"1<k-1=0 C!(since 0<1)

~ The result is not true.

&)Trivial.

Caim(2)n-1=m-1 iff n=m
Proof ;&) if n=mclearlyn-1=m- 1.

=>)Ifn-1=m-1 =2 n-1+(-m-1)=0 = (n+(—m)-1)=0.
Thenby (1) n—m =0 = n=m.ThusN c F (F Contains a copy of Z).

VneF (~Fisagroup),3 —n € Fsuchthatn+ (—n) =0 ,henceZ c F
(F Contains a copy of Z)

Vn=+0n€F(Fisafield), -~ 3 L € F such that (l) n = 1.
n n
VmEF, (%) m = % € F (binary operation).

Q c F (F Contains a copy of Q).

Corollary (1-2):-
QSR

(R,+,,<) orderdfield,1+1+1+--+1=n-1=n€R,

Q/IsQ =R.

To answer this question, we beginning by this proposition:



Proposition (1-3):-

The equation x? = 2 has no solution in Q.

Proof: Suppose the result is not true i.e the equation x? = 2 hasa root in Q

2
say% , b#0, a,b €Zand the greatest common divisor (a,b) = 1, Z—z =

2 = a? =2b>
e Ifaandb are odd, then a?(odd) = 2b?(even) C! .

e Ifaisoddandbiseven, (i.eb =2m, m € Z), then a®(odd) =
2(2m)? = 8m? = 2(4m?)(even) C! .

e Ifaisevenandbisodd, (i.ea =2n, n € Z) (,then (2n)? = 2b? =
4n? = 2b? = 2n?(even) = b?(odd) C..

e |Ifaandbareeven, (i.,ea=2n n€Z, b=2m, meZ) (then
4n? = 8m? = n?(even) or (odd) = 2m?(even) C!..

So that there is no rational number satisfy this equation.

H.W:-
The equation x? = 3 has no solution in Q.

Proposition (1-4):-

The equation x? = 2 has only one real positive root.

Proof:LetS = {x € Q:x > 0, x? < 2} # 0. S is bounded above (2,3,
upper bound of S). S # @, since1 € S, (1 > 0and 1% < 2,

Since R is complete orderd field, then by (completeness property: Every non
empty subset of R has an upper bound, then it has [. u. b = sup), then S has
a least upper bound say y. y = L. u. b(S) = sup(S)



Claim:- y? = 2, (i.e the least upper bound of S is a root of equation x% = 2).
If not, then either y? > 2ory? <2 .

1. Ify?<2,take0<h<1,

(y+h)2=y2+2yh+h2<y?+2yh+h

(y+h)?<y?+hQy+1)

2—-y2>0
2y+1>0

Choose h satisfies: 0 < h < <1

= hQRy+1)<2-v2 = y?+hQRy+1)<?2

Hence (y + h)? < y?+ h(2y + 1) < 2.Thus (y + h)? < 2
2. Ify?>2,take0<k<1
(y—k)2=y2—2yk +k?>y2 —2yk +k

v —k)?>y*—k(@2y+1)

ye—2

2_
<1
2y+1

Choose k satisfies: 0 < k <

> kQy+1)<y? -2 = 2<y2—kQRy+1) <(y—k)?
Hence 2 < (y — k)?,sincey >y —k

Uniguness:

let 3z € Rsuchthatz? = 2andz # y. Theneitherz < yorz >y
2<2) C!

Thusz = y.



Corollary (1-5):-

Q < R. (The field of rational numbers Q is proper subfield of the
field of real numbers R).

Proof: V2 € R, from (1.4).

V2 ¢ Q, from (1.3).

Corollary (1-6):-

Q is not complete orderd field.
Proof: Let S = {x € Q:x > 0, x? <2} c Q.
Sup(S) = L.u.b(S) =vV2¢Q C..

Thus Q is not complete orderd field.

Remark (1-7):-

Let Q' = R — Q denote the set of irrational numbers, R = QUQ’. Q' is
complete orderd field (\/E € Q’) = (Q # Q).

Now, we study the set Q' and how we distribute the elements of Q and
the element of Q' in R. We start by the following theorem:

Theorem (1-8) : (Archimedean property):-
For each real numbers a and b, a > 0 there exists a positive integer n

such thatna > b

Proof: Suppose the result is not true vn € Z* na < b



Consider thesetS = {ka:k € Z*} # @, (1.a € S), then S is bounded
above by b. Since S € R, then by the completeness of real numbers S has a
least upper boundin Rsayy = L.u.b.(S) = Sup(S)

Since a > 0, theny —a <y, hence y — a is not upper bound of S, then
Ime€Ztsuchthatm.a=>y—a,(m.a€s),aim+1) =y C|,
m+1€Z*, (m+1).a€eS, y=Sup(S).

Thus the result is true.
. e 1
Corollary (1.9):- Ve > 0, there exists a positive integer n such that - < €.

Proof: Takeb =1, a = €.By (1.8) 3n € Z* such that (ne > 1) =+ n,

1
hence - < €.

Theorem (1.10)-: (The density of rational numbers)

For each real numbers a and b with a < b, there exists a rational number r
betweenaand b (a <r < b)

/O<b—a<1
Proof: 0<a<b
\\\\\&b—a21 (1)

(L)Ifb—a=1
DefineS={neN:n-1>a}#0,(1,a€R,An€ Z*s.tn-1> a Arch.).
Choose k be the smallest positive integer satisfiesk-1>a i.ek—1<k
> k—-—1<a --(2)

From(1l)and(2)b—a>=1 = b=>a+1



k—1<a 2 k<a+1 =2a< k<a+1<b - kistherational
number between a and b.

fb—a<1,thenan€ Z  suchthatn(b—a)>1 = nb—na>1,
hence by the previous result, 3n € Z* suchthatna <k <nb]+n

k k. .
=>a< - <b ,- —Is the rational number between a and b.

(2)a< 0<b

. 0 is the rational number between a and b.

B)a< b<0 ]xX(-1) > 0<—-b<—-a = -a>—-b>0
And by (1) there exists a rational number — b <r< -—a =
a< —r<b

=~ 1 is the rational number

Corollary (1-11)-:

For each real numbers a and b there exists an infinite countable set of
rational numbers between a and b

Proof: a<bby(1.10) 3, €Q s.t a<nr, <b.

a<r; by(1.10) 3, €Q s.t a<nr,<b

Anddr, €Q s.t 1 <1rp,<b

Generally 37, € Q between a and r,,_; and 1, between r,_; and b.

Thus we have infinite countable set between a and b
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Theorem(1.12):- The density of irrational number
For each real numbers a and b with a < b, there exists an irrational
number s between a and b.

Proof: Suppose the result is not true i.e betweenaand b there is only
rational number by (1.10 ) (a < r < b)

V22Q , V2€Q = a+V2 <b++2 =
a+vV2 <r++vV2<b++2

r++v2 €Q',If r€Q, s€Q’,thenr +s € Q"), hence a contradiction

Corollary (1.13)-:

For any real numbers a and b there exists an infinite countable set of
irrational numbers between a and b.

Proof:a < bby(1.12) 3s;, € Q' s.t a<s;<b.

a<s by(1.12) 3s, € Q' s.t a<s,<b

And3ds, €Q' s.t s <s,<b

Generally 3 s5,, € Q' between a and s,,_; and s;, between s,,_; and b.
we have infinite countable set {s; , 55,55, *-* } between a and b

Example:-.1.25 < 1.50
1.50 — 1.25 = 0.25, by Arch.,thenan € Z* s.t n(0.25) > 1

10(1.25) < k <10(1.50) (choosen=10)= 125<k<15 =

k = 13. The number isi—i

11



Chapter(2)

The sequences of real numbers

Definition(2.1) :-

Let f: N — R be a function, then f(n) =a, Vn€Z,iscalleda
sequence of real numbers which will be denoted by (a,) or {a,}.

(a,) = a,,a,,as,..,0,, ..

Examples:-

1 1 1 1 1
1'<_>= 1I_ ’_ )_l"'l_)'

n 2 °3 4 n

1 1 1 1 1
2<—n = P R I I T Ry L

2 2’4’8 2

3= = -1,1,-1, ..,(=1)", ...

4.(3") = 3,9,81,..,3", ..

1 1 1 1 1
5<E>= E;E;E; 151

<L>_13§ _n

n+1’ 27’37’47 n+1

Converging sequences:

Definition(2.2) :-

Let (a,,) be a sequence of real numbers ,we say that (a,,) is converging
sequence if there exists a real number a satisfies for all €> 0 (0 <€)
there exist a positive integer k = k(€) (depend on €) such that |a,, — a,l.i.e

if a, = ay, thenlim,_,, a, = a,.

12



Otherwise the sequence is divergence.

Proposition (2-3):-

If the sequence (a,,) is convergence sequence, then the limit point is
unique.

Proof: Suppose that a,, = ay and a,, = by such that ay # b,, then
0 <d =|a, —ayl.Since a,, = a,

: . d d d
V €> 0, in particular take €= > 3 k, (E) such that |a,, — ay| < S vn>
k.

Since a,, = b,

Vg >0, Elkz(g)suchthat Ian—b0|<% vn>k,.

0<d=|a0—b0|=|a0—an+an—b0|.

.<d =l|a, —ny| + |a, — byl.

<S+S=dC(d<d) , Yn>k=maxlk, k;} .

Examples:-

1) Is (%) converge to 0

) ) ) wun ) mun

(=1,

N =
W

1
n

e

Let €> 0, to find k(€) such that: E — 0| <E Vn>k

] 1.
Proof: |;| =—,sincen € Zt.

13



By ArchimedeanV € > 0, 3 k € Z* such that %<E ) %<%<E Vn>
k,

Thus |%—O| <E Vn>k

2) Is{a,) = (3) converge to 3,
fiN->R, f(n)=a, =3, (3)=3,3,3, ...

ve>0,3k=0, |3—-3|=0 vn>0.

3) Let(a,) be define by:

—2 n>107
n n<107’

(a,) =1,2,3,45,..,107 ,—=2,=2, ..

ap ={

This sequence convergence to (—2).

VE>O0,3k=10" , |a, —(=2)| <€ Vn>107.

4) Let {(a,) = ((—=1)™) be a divergence sequence.
(D" =-1,1,-1,1,..

If ay = —1, thenforalle > 0, (—1—€,—14€ ) contain all odd terms but
doesn't contain any even term and since the even terms are infinite, then
a, » —1.

14



If a, = 1, then forall € > 0 (1—€, 1+€ ) contain all even terms but
doesn't contain any odd term and since the odd terms are infinite, then
a, » 1

Ifag # Loray # —1
O<d1=|a0_1| ,O<d2=|a0—(—1)|

If we choose € < min{d,, d,}, then any open interval (ay—€, ay+€)
doesn't contain any term of the sequence and hence a,, » a,.

Thus ((—=1)") is a divergence sequence.

H.W: Which of the following sequence convergence or divergence.

1. (—).

n+1

2. <Zin>.

3. (3™).
Bounded sequences:

Definition(2.4) :-

A sequence (a,) of real numbers is said to be a bounded sequence ,if
there exists a real number M such that |a,| <M Vn , M<a,<M

. Examples-:

1. (a,) = (%) is bounded sequence since —1 < 0 < % <1.

2. {(ap) = (3)isbounded sequencesince —3 <3< 3.

2 n>107
3. -
) =17 L <107
(@) = 1,2,345,..,107,-2,-2, ..

15



This sequence is bounded since —107 < a, < 107.

4. {a,)= ((—D")= —-1,1,-1,1,... isbounded sequence since
—-1<aa, <1.

4. (a,) = (2")= 2,4,8,16,...,2",... is not bounded sequence
since 0 < 2™ < 7. (bounded below but not bounded above).

Proposition (2-5):-

Every convergence sequence is a bounded sequence.

Proof: Let (a,) be a convergence sequence, that convergence to a,
l.ea, — a

VeE>O0, 3k =k(€) ,suchthat, |a, —ayl <eE<1 Vn>k.
|a,| —lag] < |a, —agl <1 Vn>k.

Then|a,|—lagl <1 vVn>k

Hence | a,| < |lag|+1 Vn>k.

lail, [ azl, ...l akl, laksal, | akszl, o Slagl+1 Vn>k
Take M = {| a4, ax|, ..., | akl, laxs1l, | akszl, i lagl +1 3
la,| < M Vn.

Example:-

(2™ = 2,4,8,16,...,2™, ...is not bounded sequence and by this
theorem is divergence.

Remark(2.6):-

16



The converse of proposition (2.5) is not true in general, as the following
example shows.

Example:-

((—1)™) is bounded sequence which is a divergence sequence.

Monotonic sequences:

Definition(2.7) :-

Le (a,) be a sequence, we say that (a,,) is a non- decreasing sequence ,if
a, <apy; Vn.

(a,) is anincreasing sequence, if a,, < a,4; Vn.
(a,) is a non- increasing sequence, if a, = a,4; Vn.
And (a,) is a decreasing sequence ,if a,, > a,41 Vn.

And we say that (a,,) is a monotonic sequence ,if (a,,) satisfies one of the
above conditions .

Examples-:
1 1 1 1 1 . .
1) (;) =1 S R RT S = decreasing sequence.
2) () = R = is an increasing sequence
n+1’ 2’37 4 " 41’ § 5€Q '
3) (3)=3,3,3,...,3,...is a non- increasing sequence and a non-
decreasing sequence.
4) (-D")=-1,1,-1,1,... is not monotonic sequence.

Proposition (2-8):-

17



Every bounded monotonic sequence is convergence sequence.

Proof: Let (a,) be a sequence in , since (a,) is bounded sequence. 3 M,
such that |a,| <M Vvn.
S ={a,:n € N} bounded ( above and below ).

1) Suppose (a,) is a non- decreasing sequence,

Since S is bounded above, then by completeness of real number S has a least
upper bound say y.

y =sup(S) =Lu.b(S) a,<y VneN.
Claim: a, » y
y — g <y theny —S is not an upper bound.

3 k € Z* such that ay >y—§

y—§ <ap <a,< y+§

y —§ < a, < y+§ vn>k
Ian—y|<§ vn>k.
(2) Suppose (a,) is a non-increasing sequence,
i.ed M,suchthat |a,| <M Vvn.

Since S is bounded below, where S = {a,: n € N}, then by
completeness of real number S has greatest lower bound, say a,.

Claim: a, > a, (VE>O0, 3k € Z* suchthat|a, — ay| <€ Vn >
k).

18



ap = inf(§) = g.l.b(S) a,<a, VneN..(1).
ay+E€ is not a lower bound (since ag < ay+€).

3k € Z" suchthat a5 < ag+€ ...(2)

Since (a,) is a non- increasing sequence, then a, < ay ...(3).
From (1), (2),(3) ap—€ < a, < a; < ag+E€ vn>k.
ay—€< a, < ay+€ vn>k.

Then |a, — a0|<§ vn>k.

Thus (a,,) is converges.

Examples:-

This sequence is decreasing and bounded (below, above).
a, - g.1.b(S) = {0}.
2. Converges # monotonic.

(a,) n> 102}
-1 n <102

(a,) =1,2,3,45,..,10%2,-1,-1,—1, ..

5. Let(a,) = {

It is converges but not monotonic sequence.

Cauchy sequences:

19



Definition(2-10) :-

A sequence (a,,) is called a Cauchy sequence if YE> 0 there exist a
positive integer k = k(€) suchthat |a, —agl <€ Vn,m>k.

Proposition (2-11)
Every convergence sequence in R or Q is a Cauchy sequence.

Proof: Let {(a, ) be a convergence sequence, that convergence to a,
l.ea, - ay
¥e>0, 3k = k(€) suchthat |a, —aol < = Vn >k.
|an - aml = |an — Qo +ag— aml-
< |an - aOl + |am o ao|-
€ €
<E+E=€ vn>k,Vm >k.
Thus |la, —a,| <€ Vnm >k
Remark(2-12) :

The converse of Proposition (2-11) is not true in general in the field of
rational number.

We need the following lemma:

Lemma (2-13):-
For any real number r, there exists a sequence of rational number
converge tor.

Proof: Let r € R r—1<r+1

20



By the density of rational numbers 31, € Q such that
1 1
r—1<r, <r+1,then r—5<r+5
And by the density of rational numbers 3 1, € Q such that
r—i<r <r+-.
2 2
Continue in this way we get a sequence of rational numbers (1;,)
1 1
r——<rn <r+- VneN .. (%
n n
Claim: n, » r from (*) |, — 7| < %
(Arch.) VE> 0, 3 k = k(€) such that % <E
1 1 1 1
I, —r|< =< -<€ VvVvn>k (Vn>k = -< -
n k n k
Thus |, — 7| <€

e r, or

Remark (2.12) :-

The converge of proposition (2.11) in general is not true in Q.

Proof: Let r =2 € Q

then by lemma (2.13) 3 a sequence of rational numbers (r;,) such
that r,, = V2, since 1, = V2, then by proposition (2.11) (r;,) is a
Cauchy sequence, but (r;;) is not convergesin Q

(1)) R—{0}

21



(2) For any real number there exists a sequence of irrational numbers
convergetor.

Theorem (2.14):- (The nested intervals theorem)

Let (I,,) be a sequence of closed intervals such that I,,,; € I, V n.Then
N, I, 0.

Moreover if (|I,,|) converges to zero, then N, I, consists of only one
point.

Proof: Let (I,) = [aq, bq],[ay, by], ... ,[ay, byl , -

Let S; ={aq,a,,...,a,, ...}, S, ={by,b,, ..., by, ... }

vn I, €I, @>ifn<m = aq,<a, , bpy <b, .
ifn>m = a,<a, < b,<b,.Then a, <b,.

So that each element in S, is an upper bound of S;. Thus §; is
bounded above.

By completeness of real numbers S; has a least upper bound say y.
y = sup(Sy)
Zn<y VneN and y <b, VneN (y=1Lub(S))

a, <y < b, Vn .Hence ye€en,I,.Thus n, I, + Q.

-If(|L,]) = 0
Suppose, there exists another point z, suchthat z €N, [, and y # z

0<d=|y—z

22



Since (|I,]) = 0 then 3k € Z* suchthat |I,| <d
0<d=|y—z < |I| <d C!
Thusy =z

Remark (2.15):

In general theorem (2.14) is not true if the interval is not closed. As
the following example show:

Example: [, = (0, %) vVn
N, I, =0 ?
itn, I, = {)’}

vy >0,3k€Z* suchthat 0<- <y C!?

e y & I =(O, %) thus N, I, =0

Completeness of real numbers
Every Cauchy sequence in R is converging in R.

Proposition (2.17):
Every Cauchy sequence is a bounded sequence.

Proof: let {a,) be a Cauchy sequence, i.,e VE >0, 3k = k(€) such
that |a,_a,| <€ Vn,m > k

In particulartakem =k + 1

|an|_ |ak+1| = |an—ak+1| <e<l vVn >k

23



la,| < |lags1] +1 Vn >k
Take M = max{ |axs1| +1,la4l,lazl, ..., lakl }
Thus |a,| <M Vn.

Proposition (2.18):

Let (a,) and (b,,) be two convergence sequences such that a,, = a,
and b,, = by, then:

1. an$bn_)a0¢b0.
2. an'bn_)a()'bo.
3. ¢cra, > cay Vc ER

4, 0 p o0 Vn, by % 0.

by by

Proof: (4)

Since a,, » a, then ve> 0,3k, = k1(§) such that |a,_a,| <
€|by|

vn > kg

Since b, > by then VE€>0,3k, = kz(g) such that |a,_ay| <

EM;|by |

vn > k,
My

Since (a,,) is converge, then A M; s.t |a,| < M; Vn.

Since (b,,) is converge, thena M, s.t |b,| <M, Vn.

bn bo bnby
lan| |bn—Dbo| |bnllan—aol

+
|brlbol |bnllbol

24



M €M, |by| €|by]|
< 2=+ " Vn >k
M, My |by| 2|by|
€ €
= - 4 -
2 2

=€ Vn >k=max{ky, k,}.

Countable sets
Q is countable set.

Proposition (2.19):
R is not countable set.
Proof: Let S ={a;,a,,...,a,,..} S R be acountableset (S #R)

Let I; be a closed interval in R such that |[;|] < 1land a, € I; .

Let I, be a closed interval in R such that || < % and a, € b and [ 2 I, .

Let I,, be a closed interval in R such that || < % and a, € I, and

it 251y, I 0y o e 1yl = 0 and |5 | 5 0, by nested

theorem N, I, ={y} , yER
ye€l, Vnandy+a, Vn.Theny &S .ThusS # R
Corollary (2.20):

The set of irrational number is uncountable set. (The union of two
countable set is countable)

Proof: If not, then R = Q U Q’, then countable C!
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Thus Q' is not countable.

Chapter (4)

The metric spaces:

Definition(4.1):

An order pair (X, d) is called a metric space if X is a non-empty set and d

is a function
d: XXX >R
Satisfies:
1) d(x,y)=0 Vx,yeX
2) dx,y)=0 iff x=y Vx,yeX
3) d(x,y) =d(y,x) Vx,y €X
4) d(x,y) <d(x,z)+d(zvy) Vx,y,z €X

d is called the distance function, and the elements of X are called the
element of the space.
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Examples(4.2):
1) (R, d); R the set of real numbersand d:R XR - R

is defined by d(x,y) = |x — y| Vx,y €ER
1. dx,y)=|x—y|=0 Vx,y€ER
2. dx,y) =lx—yl=0iff x—y=0 iff x=y Vxy€eR

3. dx,y) =lx—yl=1-(-0 =D -0 =ly—x| =
d(y, x) Vx,y ER

4. dx,y)=lx—yl=lx—z+z—-y|<|x—z[+ ]z -yl
<d(x,z)+d(zvy) Vx,y,Z €R

~ (R, d) is a metric space.

2) If X =R" suchthat

R™ = {x = (xq,%9,"*,%x,): X; € R}.

If x = (x1,%2,, %) ER™ , ¥y =(1,Y2 ", ¥n) ER™

Defined: d:R™ X R™ - R by:

d(x,y) =0 —y1)2 + (k2 = y2)2 + 4 (tn —y)? =

VI (g —y)? = lx =yl Vx,y € R"
1. \/Z?:l(xi —y)? =20
2.d(x,y) =X (xi —y)? =0 iff (i —y)? =0

iff (i—y)*=0 iff x;=y; Vi=12,-,n iff x=y
3.d(x,y) =X (i —y)? =X (v —x)? = d(y,x)
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To prove (4) we need the following:
Lemma (4.3): The Cauchy - Schwarz inequality
For each real numbers a4, a,, -+, a,, by, by, -+, by, we have:

|a1b1 + azbz + i + anbnl S

Jaz+aZ+--+a% - \b?+bZ+ -+ b?

Lemma (4.4):

For each real numbers a4, a,, -, a,, by, by, -, b,, we have:

|(ay + b1)? + (ay + by)* + -+ (a, + bp)?| <

\/a% FaZ4otad 4 \/bf £ b2 4k b2
Proof:

(ay +b))?>+ (ay + b)%2+ -+ (a, + b)?> = (a? + a5 + -+ a3) +
2(a by + azby + -+ + apby) + (b7 + b3 + -+ + b2)

By lemma (4.3)

< (a%+a%+..-+a%)+2\/a%+a§+...+a121 . \/bf+b§+"'+b,21

+(bf + b7 + -+ b3)

aoyf(ay + b))%+ (ag + by)2 + -+ (ay + by)?

< Ja§+a§+---+a% +\/bf+b§+---+b,%
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4.d(x,y) = 2, (x; — v)?

Let z = (24,25, , Zy)

= X (g —zi 2 —y)? S X —2)? + X (2 - y)?
[By lemma (4.4)]

~d(x,y) <d(x,z)+d(z,y).

3) Let X is a non-empty set define:

d: XXX —>R
By:
0 if x=y
d(x,y) =11
(xy) {g lf xiy}

1) d(x,y)=0 Vx,yeX

2) dx,y)=0 iff x=y Vx,yeX

3) d(x,y)=d(y,x) V x,y€EX
1

=1 or 0=0
3 3

4) d(x,y) <d(x,z)+d(zvy) Vx,y,z €X

4) If X = R? such that
R? = {x = (x1,x3): X{,X, € R}

Defined d:R? X R?> - R by:
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d(x,y) = |x; — y1] + |22 — ¥,
x = (xq1,%5), y = 1,¥2)

1) d(x,y) =|x1 =yl +1xz =y, =0
2)  d0,y) =lx1 =yl +lx =y, =0 iff
X =y1l =0 and |x;—y,[=0 iff
X1 =Y1 and x; =Y,
3) d(x,y) =lx1 —y1l + |x2 — y2]
= |y —x1| + ly2 = x2| = d(y, x)
4) d(x,y) = [x1 —y1| + |x2 — y2|

Let z = (24, 2,)
=|x; —z1 + 71 — 1|+ Ixz — 23 + 2, — ¥
< |xg — 21| + 21 = )l + |x2 — 22| + |22 — ¥l
<d(x,z)+d(zvy)
H.W: If X = R?.Defined d:R? X R? - R by:
d(x,y) =[x, = y1l + |xz — y2|
x = (xq1,%3), y = 1Y)

Is (X, d) a metric space?

Remarks(4.5):

Let (X, d) be a metric space, then

1) Foranyx,y,z € X, we have.
|d(x,2) + d(z,y)| < d(x,y)
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2) Foranyxq,Xx,, -+, x, € X, we have

d(xlixn) < d(x1»xz) + d(xz»xs) + et d(xn—lrxn)

Proof(1):
d(x,z) <d(x,y)+d(y, z) (1)
d(z,y) <d(z,x) +d(x,y) - (2)

From (1) we get: d(x,z) — d(y,z) < d(x,y)
From (2) we get: —d(x,y) < d(z,x) —d(z,y)

o d(x,z) —d(z,y)| < d(x,y)

Proof(2):

By induction on the element of X.

n=3

X1,X,X3 € X, then

d(xy,x3) < d(xq,%2) + d(x2,%3) =+ (3)

Suppose the resultistrueforanyk =n—1<n

i.e

d(xy, xp—1) < d(xq,x3) + d(xz,x3) + -+ + d (X2, Xn—1)

To prove is true forany n

d(xy,xn) < d(xy,%p-1) + d(Xp-1,%,) by (3)
< d(xq,x3) +d(xg,x3) + -+ d(xXp—2, xp—1) + d(xp_1, Xy)
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Basic principles of topology:

Definition(4.6):

Let (X,d) be a metric space, and x, € X,r € R,r > 0, then:

B.(xg) ={x€X:d(x,xy) <r}

Is called a ball of radius r and center x,.

D,.(xg) ={x€X:d(x,xy) <1}

Is called a disk of radius 7 and center x,.

Examples:
1) (R,d) isa metric space.

By(xo) ={x €ER: |x—xo| <7}

={x€ER:xg—1r<x<x9+7}

=(xg—71, Xg+7)

Dy(xg) ={x €R:|x—xo| <1}

=[xg—1, Xg+ 7]

2) (R? d) is a metric space

B,.(x,) = {x €ER?:J(x —x0)2+ (y — y9)? < r}; d is a usual

distance

xo = (0,0)




={x€ER?: (x —x0)* + (y — y0)? <1?%}

(R™, d) is a metric space; d is a usual distance

B, (xq) = {X = (Xq,Xp,"**,Xp) € R?

V1 = %002 + (% = %0)2 + -+ (g — %0)? <1}

3) (R?d) is a metric space
Where d: R? X R? - R defined by d(x,y) = |x; — y1| + |x2 — 5|
x = (x1,%2), y=0wuY2)

Bi(0) ={(x,y) €R*: |x =0 + |y — 0] < 1}
B1(0,0) = {(x,y) €R*: |x| + |y] < 1}

We have the following cases:

//\/ 2
x,y >0 x+y=1 O g3
S N
x<0,y>0 —x+y=1
x>0,y<0 x—y=1 N
\% A)//
AN
x<0,y<0 —x—y=1 . Ar/
7

Definition(4.7):
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Let (X, d) be a metric space and, S € X, S is called an open set if for
each x, € S thereexists r > 0, (r € R),, such that:

B.(xy) €S
Examples:
1) Every ball in any metric space is an open set. r—d,

B.(xy) ={x€eX:d(x,xy) <r}
Proof: let y € B,.(x,) )
0<d(y,xy)=d,<r
Take € =r —d; > 0 ,to proof B.(y) € B,(xy)

?

Let z€ B.(y) = z€ B.(xp)
d(z,y) < e given,toprove d(z,xq,) <71 ?
d(z,x0) < d(z,y) +d(y,xo)

<e+d;

=r—d;+d;

=r
In particular every open interval in R is an open set, (a, ), (—o,a)

are open sets.

b |[b—al >0
Vb#a,3d=|b—al «—F—F> >

(b—€, b+e¢€) € (a, o)
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[a, D) is not an open set.
d(a—€,a+¢€) & [ab)
2) H ={(x,y)ER*:x€R, y=>0}

is not open subset in RZ.

Since the ball with center (x, 0) is not contain in H;.

H,={(x,y) ER*:x€R, y> 0}
is open subset in R?

i,

Since the ball with center (x, y) is contain in H,.

3) The set of rational (irrational) number is not open set.

Since any interval in Q with center % € @, doesn’t contain rational only

(by density of irrational).

Also any interval in Q’, doesn’t contain irrational only because of the

density of rational number) not open.

Proposition(4.8):

Let (X, d) be a metric space, and T be a collection of all open subset of X,

then T satisfies the following:

1) X,0 €T.

2) The union of any number of open sets is open. (i.e The union of any

element of T is againin T.
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3) The intersection of a finite number of element of T is again in T.
Proof:2) Let {T},} be any number of open sets in T.

To prove U, T, €T (i.eisopeninT).

Let xevu,T,, ~3k€EN s.t x € Tk.

v Ty, isopen , » Ar >0, s.t B.(x) STy

s Bo(x) €U, T,

~ U, T, 1s open

3) Let Ty, T,,-, T,, be a finite number of open sets in.
To prove N}, T; is openinT.
Let xen, T; , ~ x€T; Vi=12,n.
v T; isopen , Vi=12,n
i, €R, s.t Bij(x) €Ty, A €R, s.t B,(x)ST,,
Take r = {ry, 1y, -+, 1}
s~ B(x) € N4, T;

n "
N;—; T; is open

Remark(4.9):

The intersection of infinite number of open sets needn’t be open. As
the following example shows:
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Example:

vneN,let A, =(=, ) SR, NyA,={(0}

n
P L 4 1N A AY S
o~ \ \ o J J J [
-1 0 1 1 1 1
[f3x=0 , x >0 = 3JIkEN s.t E<x, -'-x$(7,;).

[f3x+#0 , x <0, 0<—x = 3IteN s.t %<—x =

-1 -1 1
T>x, X&(T,E) = x%ﬂnAn

~ N, A, is only zero.
Note:

{0} is not open, since. Ve >0, B.(0) = (—¢,¢€) € {0}

Z [ | AY N
o~ \ | J
—€ 0 €

Remark:

If (X, d) is a metric space, then we can define a topological space from
this metric space by taking T = the set of all open subsets of X and by
proposition (4.8) we easily seen that (X, T) is a topological space

But if (X, T) is a topological space, then in general we couldn't get a
metric space from this topological space as the following example
shows:-

Example:
LetX ={a,b,c,d,e,f,..,z} and T ={X,0}.
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(X, T) is a topological space

But we cannot define a distance between the elements of X.

Proposition(4,12):-

Let (X, d) be a metric space and S € X, then S is open iff S is a union of
balls

Proof:- =)let S be an open set

Then Vx €S, 31, > Osuchthat B, (x) €S
o UXES B-rx(x) - S .
&) S =Uje, B; areballs

» every ball is an open set = § = U,¢,, B;is open (by proposition (4.8)).

Definition (4.13):-

Let (X, d) be a metric space (topological space) and E € X, then E is
closed in X if X — E is openin X.

Examples:-

1-[a,b] € R, [a,b] is closed

Since R — [a,b] = (—,a) U (b, ) is open. «—+

A\ 4

. . . . a
The union of open set in a metric space is open. X = D..(xo)

. )/




In general any disk is a closed set.

D,(x9) = {x € X:d(x,xy) <1}
X —D,(xy) = {x € X:d(x,xy) > r} isan open set
2- Every finite subset E of a metric space (X, d) is a closed set.

Proof:-let E = {x; ,x,,+, x,} €X

X2

T.P X — E is open.

Leta€eX—-E, ~a+x;, Vi=12-,n

X3

230<d; , Vi=12,n

X1

Take r = min{d, ,d,,-, d,} = B,(a) L E

X4
X5

= B.(a)NE =0 = B (a)SX—-FE = X-—E isopen
= FE is closed.

3-H={(x,y) ER?*: x€R, y > 0}

is closed not open subset in R?.

N closed not open

WANA VTN
67777/ 7 ) l ]

Since the ball with center (x, 0) is not contain in H;.

N Hy

H,={(x,y) ER*:x€R, y> 0}

is open not closed subset in R? H,
N opennot closed 4

7

X — H,
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not open

\ /
e LU

Since the ball with center (x, y) is contain in H,.

4- Q c R isnotclosed R — Q = Q' is not open
~ @ is not closed

5- Z (Integers number) is closed
R—-Z=-U(-1,00uU(0,1)u(1,2)U:--

-2 -1 0
Balls = open < H——H

~ Z isclosed
6- X ,D are closed sets

X —X = Q.isopen .. X isclosed, X — @ = X isopen, -~ @ is closed.

Proposition (4.14):-

Let (X, d) be a metric space (topological space) and let T be the
collection of all closed subsets of X. Then T satisfies the followings:

1) X,0 €T (i.e,Xand @ are closed)

2) The union of finite numbers of elements in T is an elementis T (i.e,
the union of finite numbers of closed set is again a closed set)
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3) The intersection of finite or infinite numbers of elements of T is an
elementin T

(i.e, the intersection of finite or infinite numbers of closed set is
closed)

Proof: (H.w)

Remark:
Let X #@® and y, X Va€A then
X —Ugep Ya =Ng (X — Vo)
X —Ngepn Ya =Vag (X —Ya) .
Definition (4.15):

Let (X,d) be a metric spaceand @ # S € X and p € X, we say.

that p is a cluster point for S, if every open set contain p contains
another element g in S and p # q

i.eforanyopenset U;pelU (U —-{pHh)NS+0

Note:-

We will denote the set of all cluster points of S by [(S).
(S =S Ul(S) is called the closer of S)
[(S) = {p : pis a cluster points of S}

Example:-
1) S=(a,b) , X=R ,find I(S)
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< ——t>——> (1)
b
P=a
< € Y E—— (2)
a b
p
<3< ) > 3)

~ I(S)=[ab] = S = [a,b]

If p € S, then any open interval U, 3p € U we have:-U — {p} n

S # Q.

If p = a, then any open interval U contain a = p satisfies :-
UNnS=+0

Forany p€R —[a,b] , p#a,then 3U=(p—4d,p+d) ,
UNS=0 and d = |a — p|

v

.

: 1 _ (X _1 —
1fp>;,EIU— (n,n_l)and UnS=09

If p<0,3U=(—x,0) , p €(—»,0)and UNS =0
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d) If p = {0}, then any open set (interval) contain 0, 0 € (—e, %)

and UNS # Q.

Since Ve, >0, 3k € Zt s.t O<1<ez ) 16(—6,5)
k K

~ 1(S) = {0} only zero

S=50lS)=5u{0}={01,7,5,7. =]

1(S)={0} £S

~ S not closed.

3) Let(X,d) be ametric space and S be any finite subset of X, then
[(S) = 0.

Sol:let S ={x;,x,,",x,} €SX,let peX,if pe S,then3t €
N , 1<t<n s.t p=x.

Then d(x;,x;) =d; Vi=12,--,n , i+t
e=min{d; : i =1,2,---,n , i+#t}

Be(xe) —{x;}nS=0

Now, p &S , peX—-S§

p*x; Vi=12,--,n

~dp,x)=7r Vi=12,-,n

Let € < min{ry,r,,---,1,} ~ B.(p)NS=0 ,
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~ p is not a cluster point

~1S)=0 and S=Sup=S.

4) Let Q be the set of rational numbers in R with the usual distance.
a) Ifp € Q,thenany open set (open interval) U, s.t p € U we
have:- (U — {p}) N Q # @. (By the density rational number)

b) Ifp&Q — pe€Q',thenanyopen set(open interval) U such that

p € U,we have U N Q # @. (By the density irrational number)

~1(Q)=R and Q=0uU L(Q)
—QUR.

r€Q seqQ’

N
v
N
v
=

(H.W)
Find 1(Q"), I(Z) ; ZSR.

Proposition (4.16):

Let (X, d) be a metric space and @ # S € X, then S is closed iff S
contains all its cluster points (.e S =5)

Proof: =)suppose the result is not true i.e 3 a cluster point p for S such
that p &S ,(peX-S5) .

 Sisclosed, then X — Sisopen,hence (X —=S)NS=0 C!(pisa
cluster point for ).
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&) let I(S) € S,T.PSisclosedi.e X — S is open.

let xeX—-S , x¢&S iexé&lI(S) ,x isnota cluster point.
Jopenset U, ; x€Uy,andU,NS=0, ~ U,<SX-S.

In particular 3aball B(x) X —-S - X —S isopen

=~ S is closed.

Example:

111 1 .
S = {1,—,—,—,---,—,~--} is not closed.
2’3’4 n

v

| =
N[ = ==

X—S isnotopen, 3 0#x€X—-S, JanyballB(x) € X —-S
0gX—-S

Definition (4.17):

Let (X,d) be ametricspaceand @ # S € X and p € X, define.
d(p,S) = inf{d(p, s): s € S}

is called the distant between the point p and the set S

Remark (4.18):

IfS<S X, (X,d) beametricspaceand p € S,thend(p,S) =0
d(p,S) = inf {d(p,s):s € S}
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If p € S, theninf {d(p,p): } = inf{0: positive number} = o .

The converse of remark (4.18) is not true in general as the following
example show:

Example:

let S=(a,b) , X=R.
p=a
[

v

d(a,S) =inf {d(a,s):a < s < b}
=inf{p—p+ep—p+2 -}
=inf {¢, -} =0

Proposition (4.19):

Let (X,d) be ametricspaceand @ # S € X,p € X, then d(S,p) = 0 iff
p € S or p is a cluster point of S.

Proof: =) d(S,p) = 0 supposethatp € S T.P pis a cluster point for S.
If p is not a cluster point for S.

J aball B.(p) suchthatB,(p) NS =0

~d(s,p)>r , seS (! (sinced(S,p) =0)

= pis a cluster point for S.

<) If p € S by remark (4.18) d(S,p) = 0.

If p is a cluster point for §, then for any openset U, p € U
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(U—{p}n)S+0
In particular 3aball B.(p) ; B.(p) NS+ 0
ds#p €S , s€B.(p), d(s,p) <e€
d(S,p) =inf {d(s,p) <€, +,+,-}

=0

Corollary (4.20):

Let (X, d) be ametric spaceand @ +# S € X, then
S={xeX:d(S,x)=0}d(S,p) = 0.

Proof: S = S U I(S) by proposition (4.19) (d(S,x) = 0iffx € Xorxisa
cluster point for S).

Definition (4.21):

Let (X, d) be a metric space and (x,) be a sequence in X , we say that
(x,) is a convergence sequence if there exists x, € X such that
Ve > 0,3 k = k(e) satisfise:

d(x,,x0) < € Vn>k

i.e any ball with center x, and radius € contain most of the terms of the
sequence.
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Proposition (4.22):

If (x,,) is a convergence sequence in X that converges to x,, then x, is
unique.

Proof: Suppose there exists another limit point y, for (x,,)
iLe x, = yoand xy * Y.
0 <d=d(xy7y,) take € = %d

» 3 Bi,(xo) and B1,(y) such that B1,(xo) N B1,(y,) = @
2 2 2 2

¥ Xp = X and x, — Yo, then each of balls B1,(x,) and Bz, (y,)
2 2

contain most of the term of the sequence but B%d (xg) N B%d (yo) =0a

contradiction.

“Xn 7 Yo

Definition (4.23):

Let (X, d) be a metric space and (x,,) be a sequence in X, we say that
(x,,) is a Cauchy sequence if Ve > 0,3 k = k(¢€) such that:

d(x,, xy,) <€ vnm>k

Proposition (4.24):

Every convergence sequence in a metric space X is a Cauchy sequence.
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Proof: Let (x,,) be a convergence sequence that converge to x, i.e
Xn = X

Lete >0 , v x, = xo,then3k = k(g) such that d(x,, xq)
d(xp, Xm) < d(xy, %) + d(xXm, o)
< 4 Va>kVm>k

<€ Vvnm>k

Remark (4.25):

The converse of proposition (4.24) in general is not true.

Proof:let X =R — {0}, d(x,y) =|x—y| Vx,y€ R—{0}

L

() in R = {0}
%—>o ¢ R — {0}

1, .
(;) is not a convergence sequence

By proposition (4.24) is a Cauchy sequence but not converges in
R — {0}.

Definition (4.26):

A metric space (X, d) is called a complete metric space if every Cauchy
sequence in X is a convergence sequence in X.

49



Theorem (4.27):

R¥ is called a complete metric space V k > 1.

Proof: k = 2 let {(x,,, y,,)) be a Cauchy sequence in R?.

Ve>0 , 3 k; =ky(3) suchthat

d((xnr yn): (xm' ym)) = \/(xn - xm)z + (yn - ym)z < s vn,m >k,

2
= (n = Xm)? + O —¥m)? <= VY am>k

2
v (0 — Xm)? <E: vV nm>k, = (1)
2
And (y,, — V)2 <EZ vV nm> kg = (2)
|, — x| <§ VvV nm> kg - (3)
And |V, — Yl <§ Vv nm>k; e (4)

~ (x,,) is a Cauchy sequence in R and (y;,,) is a Cauchy sequence in R.
» R is complete

" Xp > X9 ERandy, -y, ER

1 k, =k2(§) such that |x, — x| <§ YV nm>k,

= k3=k3(§) such that |y, — y,| <§ vV n,m > ks.

Clal—m (xn: Yn) = (XOI yO) € RZ;

(4(Gon ), G0.30)))” = Gon = ) + G = y0)?
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+— == vn>k=max{k,k;}

H.W: In R3

Definition (4.28):

Let (X, d) be a metric space and @ # S € X, then (S, ds).is a subspace
of a metric space X, where dg = d|

d: XXX - R

dS:SXS - R

Proposition (4.29):

Let (X,d) be a metric spaceand @ # S € X if (x,,) is a sequence in S

such that (x,,) converge to x,, iff either x, € S or x is a cluster point for
S.

Proof: =) ifthatx, € S T.P X, is a cluster point for S.

“ X, — X, thenany ball B(x,) contain most of the terms of the
sequence, hence B(xg) NS # @

. Xg is a cluster point for S.
&) If xy € S, then (xg) = x¢, X, X, *** = Xp.

If x, is a cluster point for S, then for any ball Bi(x,) , n € N , we have:

(B%(xo) — {x0}> NS+0
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Then VnREN , an(Bi(xO)—{x0}>nS,

=~ { x,)isasequenceinS.

Claim: { x,,) converge to x,.

VvneN d(xn,x0)<%.
Ve>0 ,3dk=k(e) s.t %<E

d(xn,x0)<%<%<6 Vn>k

Proposition (4.30):

Let (X, d) be a complete metric spaceand @ # S € X if S is a closed
set, then (S, ds) is a complete metric space

Proof: let (x,,) be a Cauchy sequencein S. T.P (x,,) converge to x, € S.
(x,) isa Cauchysequencein X.

X iscomplete

"X, 2 Xo EX , (xp)ES .

By proposition (4.29) either x, € S or x; is a cluster point for S.

If xo € S, then we are done.

If xy is a cluster point for S

Since S is closed, then by proposition (4.16) x, € S.
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Definition (4.31):

Let (X, d) be a metric spaceand @ # S € X and let
S={dxy): x,y €S}
S is bounded below since d(x,y) = 0

If S is bounded above, then we say that S is a bounded set and in this
case (R is complete) we write

Sup(S) = Diam(S) = D(S)

Examples:

1. S=1(ab) SR
S={d(x,y):a<x<b , a<y<b}
Sup(S) =b —a =D(S)

~. Sis a bounded set. <« —>
a b
2. S=|ab] SR
S={d(x,y):a<x<b , a<y<b}
Sup(S‘) =b —a =D(S)
~. Sis abounded set. <« +—>
a b

3. Q CcR.

Q ={dx,y): x,y€Q}
Is not bounded above, hence Q is not bounded set.
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Proposition (4.32):

Let (X, d) be a metric space and @ # S € X, S is bounded if and only if
VY xo € S, there exists n € N such that

d(x,xg) <n VxE€ES
Proof: =) let S be a bounded.
Then S = {d(x,y) : x,y € S}
S is bounded set (above) 3n € N suchthat d(x,y) <n Vx,y€S.
In particular x, €S, d(x,xy) <n VxE€S
&) let xy € S,then 3n € N suchthat d(x,xy) <n VxE€S.
d(x,y) <d(x,xy) +d(xg,y) <n+n=2n=M Vx,y€S
s d(x,y) <M (upper bound).

Cantor nested sets theorem(4.33):

Let (X, d) be a metric space and (E,,) be a sequence of bounded sets
such that:

1) E,2E,22E, 2 v n.

2) VvneN, E, isanon-empty closed sets.

3) The sequence (diam(E,)) converges to zero.

If (X,d) is a complete metric space, then N,, E,, consist of only one
point.

Proof: vne N ,let x,, € E,;since E, #0® Vn.

Since diam(E,) = 0,thenV e > 0,3 k € N such that diam(E}) < €.
vnm>k , x,Xxn,€E:.
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x, €E,CE, and x, €E, S E;, from(1)
W d(xy, xq) < diam(Ep) < e Vn,m>k,then (x,) isa Cauchy
sequence.
Since (X, d) is a complete metric space, hence (x,,) is converge to
Xo € X.

Claim: N, E;, = {x0}.
Xn =Xy VE>O0,IKkEN s.t d(x, x9)<e Vn >k.
vn >k , x,€E, CE, Xy € Ep
X, € E, ¥V n mostofthe term of the sequencein E,, Vn..
-~ most of the term of the sequencein N, E,, .
=~ by proposition (4.29) either x, € N, E,, or X, is a cluster point for
N, E, (intersection of closed sets is closed).
~ N, E, is closed, hence x, € N, E,,.(proposition4.16)

Uniqueness: Suppose 3y, EN, E, and xo # Yy, -
0<d=d(xq yo) , diam(E,) -0

Ve >0, 3l € N such that diam(E;) < €.

In particular when € = d

X0, Yo € E
d =d(xq, yy) <diam(E;) <d. C!
© Xo = Yo

Contracting mapping principle theorem(4.34):

Let (X, d) be a metric space and T:X — X be a mapping satisfies
there exists 0 < 8 < 1 such that:

d(Tx,Ty) < 0d(x,y) Vx,y€eEX

55



(in this case T is called a contracting mapping), if X is complete, then
there exists only one point such that T, = x (x is called a fixed point.
Proof: Since X # @ T:X - X
let x4 € X.

Let x1 = Ty,.
Xp =Ty, =TTy, = szo

X3 =Ty, =TTy, =TTTy, = T3x0

x, =T

—_ 7Tn
Xn—-1 T Xo

Claim: (x,,) is a Cauchy sequence.
vn,mifm>n
d(xn, xm) = (T, T™ )
= d(T", T™ "T",,)
= d(T", T"T™ ") = d(T™,, T™x. )
< 0™d(xg, Xp—n)-

Hnd(xO, xm_n) < Hn{d(XOJ xl) + d(xll x2) +
S d( Xm-n—1, xm—n)}

= 0™{d(xo, x1),d(Ty,, Ty,) + d(T?,,, T2y, ) + -
4 d(Tm—n—le, Tm—n—1x1)}

< 0™{d(xg, x1) + 0d(xo, x1) + 0%d(xg, x1)
+ o+ 0™ (xg, x1)}
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d(xn, Xpm) < 0™d(x9, Xm—n)

< 0™d(xg, x){1+6+6%+--+m "1}

end( X0, xl)

By using mathematical induction = o

~Ve>0 0<60<1 3FkE€EN

okd( x,,
Such that % <e Vn>k
n
§7d(xo. 1) difz'xl) < € vn>k

Claim: T, = x.

d(T,,x) < d(Ty, x,,) + d(x,, x)
= d(Tx,Txn_l) + d(x,, x)
<0d(x, x,_1) +d(x,,x) Vn>k
< fe+e vn+1>k
<e(@+1) Ve>k
T, =x
Claim: unigueness
Suppose 3y s.t T, =y y+x
0<d(x,y) = d(Tx, Ty) < 6d(x,y) C!
~d(x,y)=0

X =Y
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Example:

Let f:[a, b] — [a, b] be a mapping satisfies 36 , 0 <60 <1 such that

If(x) = fOI<Blx—y|l VYx,y €la,b]

[a, b] is closed subset of a complete metric space R, then by propostion
(4.30) [a, b] is complete.

By theorem (4.34) f has only one fixed point.

Remark(4.35):

If f:R — R is a differentiable mapping satisfies |[f'(x)| <6 Vx €R
suchthat 0 < 8 < 1, then f is a contracting mapping.

f)—fx)
y—x

fO) —f@I<Oly—x] Vxy €la,b]

And hence f has exactly only one fixed point.

<46

Example:
Let f:[—1,1] - [—1,1] defined by:

fx) = g x? +% sin2x , Vx€[—1,1] such that
f'x) = % x+% cos 2x

|cosx| <1 , |Isinx| <1
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If'(x)| = §x+% COS 2X

2 1
< = |x|+-=|cos2x]|
5 2

1 <2

<
10 10

A+

vl N
N

~ the mapping f(x) = § x? +i sin2x has only one fixed point.

i.e the equation f(x) = x has only one root.

Compact space:

Defnition(4.36):

Let (X, d) be a metric space and S € X and let {I/,},e, be a family of
open sets in X, we say that {V,},c, is an open covering for S if

Note:

Every set has at least one open covering X, since S € X =U,¢x B,.

Defnition(4.37):

S is called a compact subset of X, if for any open covering for S, there
exists a finite open subcovering for S.
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i.e

if any open covering {V, },exfor S, S € Ugen Vy, there exists
@, 0y, -+, &y such that S € UL, Ve,

In this case if S = X, then X is compact.

Defnition(4.38):

If {V,},en is an open covering for S, we say that {G,}4ecx, is an open sub
covering from {V,},en » V@ €A, If G, € {V,}gen.

Examples:

1) Every finite set in any metric space is compact.
Let S = {xq, %y, , X, } € X
Let {I/,}4cA is an open covering for S.
i.e
S € Uger Va,
X1 €S S Ugep Vo, then @y €A suchthatx; €V, .

Xy, €5 S Ugep Vg then a, €A such that x;, € 1,

Xn €S S Ugep Vo then a,, €A such that x, € 1,

L SCUL, Vy,
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" {Val,Vaz, T Van} is an open subcovering for {V,} ,en -

2) LetS = {O,l,%,;,---,%,---} C R is a compact subset of R.

Let {V,},en is an open covering for S.i.e S € Ugen Vg,
0 €SS Ugep Vi, then 3 ay €A suchthat 0 € IV = (—7,7).

Vr>0 , 3keN st 0<-<r , —€V,
k k 0

1 1
0<-<=<r Vn>k - -€V, VYn>k
n k n 0

a

% e ,ﬁ € Vy,_.

. {Val,Vaz, T Van} is an open subcovering for {V,,},en -
v SCULy Vg,

~ Sis a compact subset of R.

3) (0,1) is not compact subset of R.
vn>0,let 4, =(+,15) , (0,1) € Upey 4y, (01) € Upney (5,15)

Vr>0 , 3keEN s.t O<%<r

Claim: {4, },,cn has no finite subcovering for (0,1) if there exists a finite
subcovering from {4, },en for S, then:

(0,1) c UZ, A;

(0,1) c Al UAZ U--- UAm

— (1,1.5) U (% 1.5) U G 1.5) U U (% 1.5) - (% 1.5)
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(0,1) € (i, 1.5) a contraction since m # 0.

0 ¢ 1.5
< 1 1 ) ) S
< \ 1 T 7 7 [
1
1 m
0<e<—
m
+ 1 1
Ve>0,3keZ Ss.t O<E<E<E

~(01) st =¢(=,15) c

m

H.W:

(0,1],[0,1),(—=1,1), are not compact.

Proposition (4.40):

Let (X, d) be a compact metric space, if S is a closed subset of X, then

S is compact
Proof:let S C X, S is a closed.

Let {I/,}4cA is an open covering for S.i.e S € Ugyen Vy,
X = Ugep Vg UX = 5)
Since S is compact, then 3 ay, az,,a, s.t X =UiL; V,, U (X —5).
S=xnSs=(UL, VuuX-9)ns
= (UL, V) nSuX -5 nS= (UL, V)NnS
~ S5 < (U?=1 Vai)
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Examples:

1) Llets={013,5,,%,}c[01]

[0,1] is a compact subset of R.
[(S) = 0is closed

2) (0,1) is not compact subset of R.
(0,1) < [0,1]

[0,1] is a compact subset of R

Note:
If S is not compact, then S is not closed.

Theorem: (4.41):

Let (X, d) be a metric space, if S is a compact subset of X, then S is
closed.

Proof: Suppose that S is not closed.

i.e 3 acluster point p for S such thatp & S.

* p is a cluster point for S, then any open set V such that p € V, we have
VnS+¢9

In particular any ball of form Bi(p), n€ N , Bi(p) NS+ Q.

Dip)nS=0 (1)
VneN , Di(p) isclosed set.

Let I, = X — Di(p) isanopenset VneN .
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Claim: N,ey D1(p) = {p}
Suppose p #q , q ENpey D1(p) , 0<d(p,q)

Jke Zt s.t % <d(p,q) , q € Di(p) acontraction since

P € Npen Di(p)-

§S€ X—Di(p), p&S

= X —Npen D1(p) =Unen (X - Dl(p)) =Unen () W, is open

.V, is an open covering for S

Since S is compact, then 3 V;,V,, -,V s.t SCUL, V=V, UV, U--U
Vin

SinceV, €V, c--CV,,then SCV,,then SNV, #0.

SCX—Di(p) then SNDi(p) #0 C! with(1)

Proposition: (4.42):

Let (X, d) be a metric space and S be a compact subset of X, then S is
bounded.

Proof:let x, €S Vn€N.

B,(xy) = {x € X:d(x,xy) < n}
Vx€S ,aAneZt st d(x,x,) <n.l.
S CUpey (Bn(xp)), = {Bn(x0)} is an open covering for S
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Since S is compact, then 3 B4,B,,:**,B,, s.t S C Uﬁl B;

Then S <€ B, ,- S isbounded.

Examples:

1) (0,1) is not compact subset of R since not bounded and not closed.
2) Q,Q'"is not compact subset of R since not bounded and not closed.
3) R is not compact since not bounded.

Hein Borel theorem(4.43):

Any bounded closed subset of R* is compact.

Proof: let S be a bounded closed subset of R
Since S is bounded, then there exists an open interval I (ball) such that
Sc1I,andhence SCSI;,where I; =1.

Let {V,}4ex is an open covering for S.i.e S € Ugea V,, and suppose that
S can't be covered by a finite subcovering from {V,},en - (%).
Divide I; into two equal closed intervals {I,,],'} at least one of the sets
I, NS or I,'’ NS can't be covered by a finite subcovering from {V,},ex
for otherwise, wegetS = (I, NS ) N (I,' NS) covered by a finite
subcovering from {V,},ex a contradiction with (x).

Let I, NS be the set which can't be covered by a finite subcovering from
{Va3aen-

Divide I, into two equal closed intervals {I3,I5'} at least one of the sets
I; NS or I3’ NS can't be covered by a finite subcovering from {V,},ex
say I; NS.
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continue in this way, hence we get a sequence of closed intervals (I, ) a

satisfies:
1) [2L2+21,2 v n.
2) Vne N, I, isanon-empty closed sets.

1
2n—1

) =0

And I, NS Vn can't be covered by a finite subcovering from {V,},er by

3) The sequence (|I,,|) = (

the nested intervals theorem we get N, I, = {x,}

Claim: x, a cluster point for S.

Let IV be an open set such that x, € V

Since |I,,| = 0,then 3 k € Z* such that I, €V by Archimedean
I, NS S I, €V,but I NS isaninfiniteset, V — {x,} N S # @.
. Xg a cluster point for S

Since S is closed, then xy € S'.
Since xg €S & Ugep Vy, then I 1, such that x5 € 1.

Then3dm € Z* suchthat I, S Vo, hence I, NS SV, acontradiction

since I, NS can't be covered by a finite subcovering from {V,},cn.

Corollary(4.44):

Let S € RX, then Sis compactiff S is closed and bounded.

Proof: =) by proposition (4.42) every compact set is bounded and by
proposition (4.41) every compact set is closed.

&) by Heine-Borel theorem (every bounded and closed subset of R¥ is
compact).
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11 1 .
1) {0’1’5’?"";""}'5 compact.
11 1 .
2) {1,5,5,-»-,;,-'-}5 not compact.
3) @Q < R is not compact.
4) (—1,2] is not compact.
5 [
6) S={X,X,,-,X,}iscompact (every finite set is closed and every finite

a, b] is compact.

set is bounded).

Chapter (5)

Continuity:

Definition(5.1):

Let (X,d) and (X', d") be metric spaces and let f: X — X' be a function, f is said to
be continuousatx, € Xif Ve >0, 36 = 6(xy,€) suchthatforany x € X, if

d(x,x9) < 8, then d'(f(x),f(xy)) < €.
f

; B, X!

X X f(xo)
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i.e fiscontinuous at x, € X, if for any ball in X’ with center f(x,) and radius
€, Be’(f(xo)), there exists a ball Bs(x,) in X with center x, and radius § such
that f(B) € B'.

Note:- if f is continuous at each x, € X, we say that f is continuous.

Proposition (5.2):-

Let f: X — X' be a function, then f is continuous at x, € X iff for any open set V/ in
X" with f(xg) €V, f71(V)isopenin X, where f~1(V) = {x € X: f(x) € V}.

Proof:-=) let V be an open in X’ such that f(x,) € V. To prove f~1(V) is open in
X. Since f(x,) € V, then 3 aball B/(f(x,)) € V but f is continuous so 3 a ball B in
X such that f(B) € B’ € V.Hence B € f~1(V)

&) let xy € X, f(x0) € X', B.(f(x0)) be aball in X’ with center f(x,) and radius
€. To show 3 a ball B(x,) in X such that f(B) € B’.

Since B’ is openin X', f(x,) € B’, then by assumption f~*(B’) is open in X,
clearly x, € f~1(B’) (since f(x,) € B'), then 3 aball B(x,) in X such that
B(x,) € f~1(B") (by definition of open set), hence f(B(xO)) € B’(f(xo)). Thus f
is continuous at x,.

Proposition (5.3):-

Let f: X — X' be a function, f is continuous at x, € X iff for any closed set E in X'
with f(x,) € E, f~1(E)isclosedin X.

Proof:- (H.W)

Hint: f~1(X' — E) = X — f~1(E). E is closed. To prove f ~1(E) is closed, we have to
show X — f~1(E) is open.
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Proposition (5.4):-

Let (X,d) and (X', d") be two metric spaces and let f: X — X' be a mapping, f is
continuous at x, € X iff for each sequence (x,) converge to x, € X , the sequence

f(x,) converge to f(x,).

Proof:-:-=) Suppose f is continuous at x, and let (x,,) be a sequence in X. To
prove f(x,) converge to f(x,).

let V be an open set such that f(x,) € V, since f is continuous at x,, then f~1(V)
is open in X, clearly x, € f~1(V). Since x, = x,, then f~1(V) contain most of the
terms of the sequence (x,,).i.e V contain most of the terms of the sequence ( f(x,,)).
Thus f(x,) = f(xo).
<) Suppose the resultisnottruei.e 3¢ >0 suchthatVneN,§ = % , dx, €X
such that ,if d(x,,x,) < %, then d’(f(xn),f(xo)) > € i.e 3 asequence (x,)inX
such that x,, - x, € X.(by Archimedes (Ve >0 ,3 k € Z* such that % < €, then

d(x,,xy) < % < % < e Vn>k)butf(x,) » f(xy) acontradiction, thus the

result is true and f is continuous at x,.

Examples(5-5):
5) Letf:R — R isdefinedby f(x)=c , Vx € R.Is f continuous?

Let x, € R. To prove f is continuous at x,. Let (x,,) be a sequence in R such that
X, = Xo, We have to show f(x,) = f(xy). f(x,) =cand f(x,) =

=~ f is continuous everywhere since ¢ — c.

6) Let f:R — Risdefined by f(x) =x, Vx € R.Isfcontinuous?
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Let x, € R. To prove f is continuous at x,. Let (x,,) be a sequence in R such that

X, = Xo,we have to show f(x,) = f(xy). f(x,) = x,and f(xy) = xo, f(x,,) = x,, =

Xo = f(xy). Thus f(x;,) = f(x) and f is continuous at x,.
7) Let f:RT - R isdefined by f(x) = % , VX €R*.Is f continuous?

Let x, € RT and let € > 0 To prove 3 6(€,x,) suchthatif [x — x| < &, we have
to show |f(x) —f(xo)l <eE.

FGO) = Fxo)] =

If we take 6 = 1, then lx — xol <1, but |xo| — |x] < | xy — x| <1, then [x,] —1<
|x| , which implies that |x| > |xo] — 1.

x—xo| _ lx—xol

Xo

<€e?

X Xg

So that Ix;xxol < lx;x°| < €? ,thenchoose § = min{l,xy€} i.e |x — xq| < x,€ .
0 0
Now, it is easy to show that & satisfies this relation. In fact if |x — x,| < §, then
1 X— Xg [x— x| [x— x| 1) Xo€ .
—_— | = = - < 0
lf(x) — f(xo)| = - o e < - < e < € .Thus f is
continuous.

Real value mapping:-

Let (X, d) be a metric space, the mapping f: X — R is called a real valued mapping.

Proposition (5.6):-

Let (X, d) be a metric space and f, g: X — R be a real valued mapping, if f and g are
continuous at x;, then:-

cf is continuous at x, such that (cf)(x) = cf (x).
|f| is continuous at x, such that |f|(x) = |f(x)].

1. f ¥ giscontinuous at x, suchthat (f + g)(x) = f(x) ¥ g(x)
2. f.giscontinuous at x, such that (f.g)(x) = f(x).g(x)
U S
3. ; is continuous at x,, g # 0 such that (%) 0
4,
5.
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Example:
If f:[-2,3] > R and g:(0,4] = R,then f + g:(0,3] > R
Proof:- (3)

I.x >R
g

Let (x,) be asequencein X such that x,, & x,, we have to show g(xn) - g(xo).

Xn, = X, Since f and g continuous at x,, then. f(x,,) = f(xy) and g(x,,) = g(x,),
fOm) | FGo)
glxn)  glxo)’

hence then g(xn) — g(xo) . Thus 5 is continuous at x,.

Proposition :

Let (X,d), (X',d") and (X",d"") be metric spaces and f: X — X' be a continuous
mapping at x, and g: X' = X"’ be a continuous mapping at f(x,), then f o g: X - X"
is a continuous mapping at x,.

Proof:- (H.W)

Definition (5.7):-

Let f: X — R be a real valued mapping, we say that f is bounded if there exists
MeR, M>0 suchthat |f(x)|[<M VxeX.

e —M< fx) <M vxeX, f(X)={f(x):x € X}.

Proposition (5.8):-

Let f: X — X' be a continuous mapping, if X is compact, then f(X) is compact, hence
f(X) is bounded and closed.

71



Proof:

Let {V,} be an open covering for f(X) =Y, f(X) S UueaVy, Va €A , V,isopenin
X', since f is a continuous, then f~1(V,) isopenin X Va € A, since f(X) S
Ugea Vo (1)
Claim: X =u,e, f7Y(V,) Va €A .
Letx € X, then f(x) € f(X) SUguey V, from (1), hence 3 €A 3 f(x) €
Vs iff x€ f~'(Vp), then x €Uyes f1(V,), hence X S Upeq f71(V,) and

Ugea f1(V,) € X. Thus X =Uye, f1(V,).Sothat { f71(V,)} is an open covering
for X.

Since X is compact, then 3 ay, @y, -+, @, € A suchthat X = UL, f‘l(Vai), then

(V) = {xeX: f(x) € Vai} and f(X) € UiL; V. Thus f(X) is compact. Also
since f(X) is compact, then by Hein Boral theorem f(X) is bounded and closed.

Remark:-

Let f: (0,00) = R be a real valued mapping defined by f(x) = I vxe (0, ), then.

X

1) f is continuous mapping.
2) (0,0) € R is not compact.
3) f is not bounded.
Infact VM ER , M>0 , dAn € Z" suchthat f(n)=%>M .

Definition (5.9):-

Let f: X — X' be a mapping, if there exists x, € X suchthat f(x,) < f(x) Vx€X,
then x; is called a minimum point, if there exists zy € X suchthat f(x) < f(z,) Vx€
X , then z; is called a maximum point.

Proposition (5.10):-

Let f: X — R be a continuous mapping, if X is compact, then there exists x,, z, € X
suchthat f(xg) < f(x) < f(zy) Vx€X .
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i.e ( f has minimum and maximum point).

Proof:

By proposition (5.8) f(X) is compact and hence is closed and bounded, since f(X) is
bounded (below, above).

Below: 3N € R suchthat N< f(x) VxeX,ifNef(X)={f(x):x€X} SR,
then3 xy, € X suchthat N = f(x,),then N = f(x,) < f(x). Thus x; is the
minimum point.

If N & f(X) =Y, then N is acluster pointfor f(X) =Y, N € (—¢,¢€), (—€,€) N
f(X) # @ (Since N = g.1.b(f(x)), hence N is a cluster point for f(X) = Y). Thus
N € f(X) (since f(X) is closed). Then3 x, € X suchthat N = f(x,), then

N = f(xg) < f(x). Thus x, is the minimum point.

Above: (H.W).

Uniform Continuity

Definition(5.11):

Let (X,d) and (X', d") be metric spaces and let f: X — X' be a mapping, we say that
f is uniformly continuous if V€ >0, 3§ = §(€) such that, if d(x,y) < §, then

d’(f(x),f(y)) <€e Vx,y€EX.

b'¢ Xy f) f)

Clearly every uniformly continuous mapping is continuous, but the convers is
not true as the following example show:
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Example:

Let f:R — R isdefined by f(x) =x2?, Vx € R.ls f continuous?

Let x, € R. To prove f is continuous at x,. Let (x,,) be a sequence in R such that
X, = Xg,we have toshow f(x,,) = f(xo). f(x,) = x,2 =X, * Xy = Xo* Xo =
%02 = f(xp). Thus f(x,) = f(x,) and f is continuous.

The proof of continuity by using definition:

let €e>0,387 xg€X,if|lx —xyl <dand § <1, then |x| — |xo] < |x — x| < I <
1, hence x| < 1+ |xo] and |x + x| < |x]| + |xo] < 1+ 2|x,]

If(x) = fxo)] = |x? — x0%| = |x — x| |x + x| < [x — x| (Ix] + |x0]) < |x = x0|(1 +
2|x0|).Take6=min{1, - }

1+2|x0|
Thus |f(x) — f(xy)| < € and f is continuous.
But f is not uniformly continuous.

Take xn=n+%, Yo=mn MNEN |xn—yn|=%,byArchimedean‘v’6>0,

Jk suchthat%< 6,|xk—yk|=% <4d.

F (o) = FOOl = e = yi?l = |(k + ) e

=|k*+2+ k_12 —k* =2+ kiz > € = 2. Thus f is not uniformly continuous.

Notice that f is uniformly continuous on (—1,a] , Va = 1.

let € >0, 35(e)? ,suchthat Vx,yeX,iflx—y|<éd = [f)—fy)I<e

IfG) —fl=x*>=y*|=lx=ylIx+y| < |x=ylClx| + |[yD) < [x —yl(a+a) =
lx —yl(2a) <e

Take § = i Vxy€(—1a].

Example:

Let f:(0,00) = R isdefined by f(x) = i , Vx € (0,0). f is continuous but not

uniformly continuous on (0, ). Take § = min{1, |x,|€ }
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let e =1 we mustshow that V § > 0 there exists x,y € (0, o) such that
|x —y| <&ébut|f(x)— f(y)| > 1. By Archimedean there exist a positive integer n

such that % < 9.

Let xn=% , yn=% neN.

lx, — yul = %—ﬂ = |—%| =% , V6 >0, 3k suchthat %<6,hence
X = ynl <6

fe) = foRl = | =] =k =5 =5 >e=3

By Archimedean there exist a positive integer n such that nz—k >1 = §>%= €.

n

1 2 1 n
Orlet x== , y=2 thenlx—y|=2 <& butlf(@) —f»)I=|n-3=2>1

Thus f is not uniformly continuous.

Notice that f is uniformly continuous on [a, ) , Va > 0.

let €e >0, 38(e)? ,suchthat Vx,yeX,iflx—y| <6 = [f(x)-fY)I<e
fe—fol= |- == =22 < 2H

x y xy xy a?

So thatif € > 0 , we canfind § = a®e. Inthis case if |[x — y| < §, then

1 1 |ly—x| |ly—x]| 1) . .
— =l = T &=
lf(x) — f(y)I " y| e @ <5 =€ . Thus f is not uniformly
continuous.
H.W:

Let f:R* - R isdefined by f(x) = Sin% , Vx € (0,). Prove that f is continuous

but not uniformly continuous on (0, o).

Theorem (5.12):-

Let f: X — R be a continuous mapping, if X is compact, then f is uniformly
continuous.
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Proof:

let €e >0, 35(e)? ,suchthat Vx,yeX,ifd(x,y)<dé = |f(x)—f(y)| <e€,
letx € X, f(x) ER ,let Vi) = (f(x) —% , f(x) +§) be an open interval, since f is
continuous, then 3 Us(y is openin X and f(Usy) SV and x € Ugyy.

: .1 .
Let B%S(x) (x) be a ball with center x and radius 55()6), hence {B%S(x) (x)}xex is an

open covering for X i.e X =U, Bls(x)(x) , since X is compact, then 3 x4, x5, -+, X,
3

such that X =U}, B§5(xi)(xi)'

Choose § = min{%c’)‘(xl), %5(952),--- ) %6(xn)}.

Claim:- ¢ is satisfies the condition of uniformly continuous.
Vx,yeX,ifd(x,y)<é T.P |f(x)—f(y)| <e€.

Since x € X =U1L, B§6(x)(xi), then3 k € N suchthatx € B(xy)i.e d(x, x;) <
§5(xk) .

dy,x,) <d(y,x)+d(x,x,) <6+ %5(9%) < gd(xk) + gd(xk) < 8(xy), since f is

continuous, then

FG) = FO)I = 1f () = FOa) + FOa) = FOI < 1FG0) = FGaol + 1f G =
fO)l < S+i=e.

Corollary (5.13):-

If f:[a,b] = R isa continuous mapping, then f is uniformly continuous.

Examples:-

1. Let f:[-2,3] = R be defined by f(x) = x* + 2x3 + 3x% + 5.
Let ( x,,) be a sequence such that x,, = x, .
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flxy) = x,% +2x,3 + 3x,% + 5 = X0 X Xy Xy + 2% X Xy + 3% %, + 5
f(xO) = x04 + 2x03 + 3x02 + 5
Since x,, = x, ,then f(x,) — f(xy).

2. Let f:[1,7] = R be defined by f(x) = % vV x € [1,7].
Let { x,,) be a sequence such that x, — x, . f(x,) = xi , fxo) = xi
n 0

Since x, = x, ,then f(x,) = f(x,),hence f is uniformly continuous.

3. Letf:[—2,2] = R bedefined by f(x) =sin(x) Vx € [-2,2].
Let ( x,,) be a sequence suchthat x, = x, . f(x,;,) =sin(x,) , f(xy) =
sin(xg)

Since x,, = xg ,then f(x,) = f(xy), hence f is uniformly continuous.

Definition (5.14):-The intermediate value property

Let f: [a, b] = R be a mapping, f is said to be satisfies the intermediate value

property, if for all x, y € [a, b] and for each z between f(a) and f(b), then there exists
s between x and y such that f(s) = z.

Theorem (5.15):- The intermediate value - theorem

Let f:[a, b] = R be a continuous mapping and z between f(a) and f(b), there
exists s in [a, b] such that f(s) = z

Proof:

Let I = [a, b], since z between f(a) and f(b), then either f(a) < z < f(b) or
fb) <z<f(a)
a+b

1) Iff(b) <z<f(a)let m=—

> "
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If f(m) = z, then we are done.

If not i.e f(m) # z, then either f(m) <z ,then f(m) <z < f(a)or f(m) >z,
then f(b) <z < f(m).

Let [ay, b1] = [a,m] or [aq, b;] = [m, b], then either f(a,) < z < f(by) or f(b;) <
z < f(ay)

aq +b1

Let 11 - [al, bl]l let my = >

If f(m;) = z, then we are done.

If either f(m,) <z ,then f(m;) <z < f(a;)or f(my)>z,then f(b) <z <
f(my).

Let [a,, b,] = [ay,m4] or [a,, b,] = [m, b;], then either f(a,) < z < f(b,) or

f(by) <z<f(ay) .

Continuo in this way we get a sequence of closed intervals (I,,) such that f(b,) < z <
f(a,) Vvn --(2).and|I,| = 0sinc ( .

2n—1
theorem of closed intervals N,, I,, = {s}

— 0), hence by nested intervals

Claim:- f(s) =z

a, » s and b, - s,Since|I,|] - 0,then Ve >0, 3k € N,suchthat| ;| <e€.
lay —s | <|I|<e Vn>kand |by —s|<|I|<e Vn>k,sincefis
continuous, then f(a,) = f(s) and f(b,) — f(s)and by (2) f(b,) <z <
f(a,) Vn .Thusf(s)=z.

If f(s) # z, theneither f(s) <z or f(s)>z.
If f(s) <z<f(a,) — f(s) C!.
If f(s) >z>f(b,) = f(s) C!.

2) f(a)<z<f(b) (HW).
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Examples:-

1) Let f:[a,b] = R be a continuous mapping, if Vx € [a,b] ,f(—x) = —f(x) ,
then f has at least one real root.
Proof:
ff(x)>0= f(—x)=—f(x) <0
f(=x) = =f(x) < f(x)
—fx) <0< f(x) =
Thus By intermediate value theorem 3 s suchthat —x < s < x where f(s) =0
If f(x) <O
Then —f(x) >0 = f(—x) >0
fx) <0< f(=x)
Then3s suchthat x <s<—x and f(s)=0
2) If f(x) = x3 + 3x odd and continuous.
~ by satisficing theorem (5.15)
ff(x) >0 = f(—x)= —f(x)<0
f(—x) <0< f(x) = 3 s suchthat f(s) =0
ff(x) <0 = —f(x)>0 = f(—x)>0
f(x) <0< f(—x)
Hence 3 s suchthat f(s) =0
3) Ifp(x) is even, then p may have no real root.

Example:-
x2+1=0
x = +i
Prewar Theorem (5.16):-

Let f: D™ — D™ be a continuous mapping, then f has at least one fixed point where
D™ disk in R.
Example:

Let f:[a, b] = [a, b] be a continuous mapping, then f has at least one fixed point.
Sol:
Let g(x) = f(x) —x g is continuous mapping on [a, b].
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g@=f(a-a=0 a<f(a)<bh.
gb)=f(b)—-b<0 a<f(a)<bh.
g) <0< g(a)

By theorem (5.15) 3 x € [a, b] such that g(x) =0
f(x)—x=0

f(x)=x

= f has at least one fixed point.

Chapter (6)

Sequences and series of functions:

Definition (6.1):

Let D € R . Define F(D) ={f:D — R: f is amapping }, the sequence (f,,),n € N is
called a sequence of function where Vn € N, f, € F(D), f,:D — R.

Definition (6.2):(Point wise convergence and uniform convergence)

Let (f,,) be a sequence of function on D, we say that (f,;) converges to a function f on
D,if Vve>0and Vx€D, 3k e€Z*, k =k(e x) suchthat |f,(x) — f(x)| <e.

vn>k.

In this case, we say that (f;,) converges point wise to a function f for short, we write
p.w

fo S f

l.elim, o fr(x)=f(x) Vx€D or fn(x) = f(x) V x€D

And (f,;) converges uniformly to a function fonD,if Ve >0, 3k € Z*t, k = k(e)
such that |f,(x) — f(x)|]<e Vn>k ,b V x € D,forshort we write f, if
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Examples (6-3):

8 VneN,letf,:R— R bedefinedby f,(x) = % , Vx € R.Is(f,;) converges point wise
tof =07

(f) =) VxER (f)=x55,- 5

1) lim,_, o (f,,(x)) = lim,,_, % = 0, then a sequence f,, = 0.

2) Let €>0
|fn(x) — 0| = %— 0| = |x| , by Archimedean property 3k € Zt s.t |x| < ke,
thenm<e
Clp@ -0 =i =2 <B<e vn>k.

Thus f,(x) = ; 20
But f,(x) = f does not converge to 0 uniformly.
Sinceif Vx €R, 3 ko =ky(e) , —<e then |x| < kpe i.e kpe <x < kye .

Which is contradiction, since R is not bounded.

To show the sequence (g) is converges uniformly to a function f =0 Vx € (0,a]

vn %: (0,a] - R.
ful) =0l =|Z—0| =

AkeZt s.t a<ke,then ;<e

le

— = % V x € (0, a], by Archimedean property on €,a

vn>k .Thus f,(x) =§ %0 on (0,al.

n

9) VneN,letf,:[0,1] = R bedefinedby f,(x) =x", where 0 < x < 1.Is(f,)

converges point wiseto f = 0?

(x™) is decreasing sequence and bounded below by zero, so it is converges sequence. In
factif e >0, 3k € Z* s.t x¥ <e,whichimpliesthat x®* <e Vn >k ,thereforeIf
x=0,then f,=x"—>0.

If x=1,then f, =x"=1,1,1, ---,;,1 -1 O0,then f, =x" > 1.
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0<x<1

Thus f, = f  when f(x)={10 ‘=1

But f, does not converge uniformly.

Is 3k eZt s.t |f,(x)—fx)| <€ vn>k Vx€e[01]?

Speciallyis 3 k s.t x| <e vn>k vx €[0,1] ?
1 11

if xn—Z n , then |f,(x) — O|=(x")"=(2 n) =2>7

Thus (f,,) does not converge uniformly on [0,1].

=€ .

To show the sequence (x™) is converges uniformly to a function f =0 V x € [0,a]
vn x":[0,a] >R vx € [0,1] 0<a<l.
[fn(x) = f(X)| =1x"—0] = |x"| <€? , by Archimedean property on €,
JkeZt s.t k<e,then af¥<e
Lt < xt<a<af<e vn>k x€]0,al.

Thus f,(x) = x™" % 0 on [0, a].

10)Vn € N, let f,: R = R be defined by f,(x) =

pointwiseto f =07

, Vx € R.Is(f,) converges

1+n2 2

<fn) - (1+Tl2 2) ) Vx € R'
Let €e>0
|fn(x) = 0| = |1+an2 :Zlilz = o , by Archimedean propertyon |x|le,1 , 3k =
k(e,x) st - < |x|e ,then m <€
1 p.w
() = 0] = |1+an2 o < pp |<E Vvn>k .Thus f, — 0

But f,,(x) = ; does not converge to 0 uniformly.

1

n
1+n? (1)2
n

Thus (f,,) does not converge uniformly on [0,1].

Since if if x, =% ,then |f,,(x) — 0] =

To show the sequence (
nx
14+n2x2

2x2> is converges uniformly to a function f =0 Vx € (a,»)

Vn .(a,OO)—>R.
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=L<—<e7 Vx€(a. o), by

n|x|

nx

nx
ful0) = FOO1 = | — 0| = | 2| <

Archimedean propertyon ae,1 , 3k €Zt s.t 1<kae,then é <€

n2x2

. | nx
14+n2x?

<—<—<e vn>k , k=k(e) , x€(a ).

na

Thus (f;,) converges uniformly on (a, ).

Proposition (6.4):-

Let (f;,) be a sequence of function such that (f;;) convergence point wise to a function f on
D, and (T,) = Sup,eplfn(x) — f(x)|, then (f,,) converge uniformly to f iff (T,) — O.

Ty = Supyeplfi(x) — f(x)]
Ty = Supyeplfo(x) — f (0]
T3 = Supyeplfz(x) — f ()]

Example:

vn€eN,let f,:[0,1] = R be defined by f,(x) = ﬁ , Vx € R. Show that whether

(fn) convergence uniformly or not.?

T = Supxeplfu(x) — fF(X)] = Supxep nxx+1 | and by proposition
x 1
(5 10) Supxe[o 1] nx+1| maxxe[o'l] nx+1 - E
fu(x) = nx+1
, _ (x+1)-nx _ 1
f n(x) T (x+1)2 (nx+1)2 > 0.

Then Vn € N f,,(x) isincreasing function, hence (T,) = (ﬁ) sothat T,, — 0. Thus

u.
—a 0.By(6.4).

The following propositions give some properties of uniformly converges.
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Proposition (6.5):-

Let (f;,) be a sequence of mappingon D, if Vn € N f, isbounded on D and (f;,)
converges uniformly to f on D, then f is bounded on D.

Proof:
Toproof IM' >0, M"eR s.t |f(x)|[< M VxeD

Since f;, iifi._e‘v’45>0 , 3k e€Z, k=k(e) suchthat |f,(x) —f(x)|]<e<1
vn>k,V x€eD.

Since f;, isbounded Vn,then 3 0 <M € R suchthat |f,(x)]<M , V x € D, hence

|frr1 () <M.
IFCOI = 1f () = free1 () + fier1 (X)]

<) = frrr D Hfrr1 (D <1+ M < M VxeD.
Thus |f(x)|< M Vx€eD.

Proposition (6.6):-

Let (f,,) be a sequence of continuous mapping on D such that (f;,) converges uniformly to f
on D, then f is continuous.

Proof:

To proof f is continuous at a point x, it's enough to show that for each sequence (x,,)
converge to x, on D, the sequence f(x,,) converge to f(x;).

Let x, € D and (x,,,) be a sequence on D such that x,, — x, T.P. f(x,,) — f(x0).
Since f,, is continuous and x,, — x,,then f,(x,,) — f,(xo), i.e I k; € Z" such that

|fn(xm) - fn(xo)l < g
vm> k.

Take € > 0, since f, 5 f, 3k, €Z*, k =k(e) suchthat |f,(x) — f(x)] <§

vn>k,,Vx€ED.
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|f(xm) - f(x0)| = |f(xm) - fn(xm) + fn(xm) - fn(xo) + fn(xo) - f(x0)| <
|fn(xm) - f(xm)l'l'lfn(xm) - fn(xo)l +|fn(x0) - f(xo)l < g + g + § =€,
take k = max {kq, k,}. Thus f(x,,) = f(x0).

Remark:
e s . p.w
The above Proposition is not true if f, — f for example

2 3

fo=x"=x,x",x° --,x", - ,then f, =x" > 1.

0 0<x<1
1 x=1
But f =1 is not continuous.

Thus f, =x" e f(x) ={

Theorem (6.7):-

Let (f,,) be a sequence of continuous mapping on D that converges to f on D, if either
far1(X) < fu(x) Vx€D VneNorfp,(x)=f(x) Vx€ED VneN and D is
compact, then (f,,) converges uniformly to f on D.

Proof:
Case (1):- When f,,,,(x) < f,(x) V x€D VneN,toproof f, 5 f.

u. u.
Let g, =fn — f wewill provethat g,— 0.
vneN g, iscontinuousonD.

Inr1(X) = frp1(0) = f(x) < fo(x) = f(x) = gn(x),hence gpi1 < gn.
pw. pw.
Since f, — f,then g, =f,—f — 0.
Thus Ve>0,3k€eZ, k=k(x) st |gk(x)(x)| <e ,VxeD --(1).

VvneN g, iscontinuous VxX€D , 3§ =6(x,€) s.t |gk(x)(x) —gk(x)(y)| <e€
whenever |x —y| <§ .

(i.e V ball Iy in R, aball J, withcenter x in D suchthat x € J, and gy (Ux ) E
Iy -

So that {J, },ep isan open covering for D, (D SU,¢p Jx ).
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Since D is compact, 3 x;,x;,Xx3,*, X, suchthat D CU™, ], ,take
k = max {k(xl);k(XZ)J k(xg), Ty k(xn)} s.t gn(x) < gk(x)(x)| <E€.

u.
Thusg,— 0.

Case (2):- When f,,.1(x) = f,(x) V x€D Vne€N (increasing) (H.W).

Definition (6.8):

Let (f,,) be a sequence of mapping on D, we say that (f;,) is uniformly bounded sequence
if there exists a real number M > 0 suchthat |f,(x)|<M Vn,V x€eD .

e |[f(x))|<M Vn, Vx€eD

b)) <M Vn, Vx€D

Example:
vneN,let f,:[0,3] » R be defined by f,,(x) = % , Vx € [0,3] . Show that (f;,)

uniformly bounded

(fn(x»:x;g;g -
()| <3 Vvn , Vxe[03] .

Definition (6.9):

Let (f,;) be a sequence of mapping on D, we say that (f,,) is a bounded converging to f on
D if:-

1) (f,) convergesto fonD. f, o f
2) (fn) uniformly bounded sequence.

Example:
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VneN,let f,:[0,1] > R be defined by f,,(x) =x™ , Vx €[0,1] .Show that
(f,) uniformly bounded

1) fn p—>w f where f(x):{lo gif<1

2) ()= |x"<1 , vxe[0,1] , Vn.

b.c
(x™) is uniformly bounded sequence. Thus f,, — f.

Theorem (6.10):

Let (f,,) be a sequence of mapping on D that converges uniformlyto f on D, if Vn € N,
fn is bounded, then (f;,) is a bounded converges to f on D.

Proof:
Toproof 3 M>0, MeER s.t |f,(x)|] <M VnVxeD.

Since f, 5 f by proposition (6.5) f is boundedon D i.e 3 M; >0 s.t |f(x)| <
M; VxeD Vn>k.

Also f, = f ie Ve >0 3k=k(e) suchthat |f,(x) - f(x)|<e<1, V x€
D vn>k.

GOl = 1fu(0) = f) + fO < () = fOIHIf)I<1+M, Vn>k.
Take M = max{[fi(x)|, |CIl, IfzCOl, =, Ife(D], 1+ My}

Uniformly converges — bounded converges — point wise converges.
But the converse in general is not true.

Example:

vneN,let f,:[0,1] - R be defined by f,(x) =x™ , Vx€[0,1] .Is(f,)
uniformly converges?

1) fn et f where f(x)={10 2§T<1

2) fn » f uniformly.

b.c
and fp = f
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Thus (x™) is not uniformly converges sequence.

Example:

vneN,let f,:(0,1] = R bedefined by f,(x) = % , Vx €(0,1] .Is{fyn)

uniformly bounded

L o2

nx

Ve >0 , |i—0|= |i|=i , 3k =k(e x) s.t lelcex vn>k.
nx nx nx n k

Then |f,(x) —f(X)| = — <e , Vn>k.

(=)= 2,2~ .., = - isnot uniformly bounded

nx X 2X nx

If (é) is uniformly bounded,then 3 M >0 s.t |f,,(x)| = |% | <M Vn
vxe (0,1 - (1.

By Archimedes on = M 3k =k(e,x) s.t * S M
nx nx
n k 1 .
If n >k, then — 2 —> M, then f1(x) =- > M (! with (D).
If n <k?

Hence (f,,(x)) is not uniformly bounded

Proposition (6.11):

Let (f,,) be a bounded convergence sequence to f on D, then (f) is bounded.

Proof:
Toproof 3 M >0, MER s.t |[f(x)|[< M VxE€D.

b.c
Since f, — f
1) fi > f

2) (fy) is uniformly bounded.
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ie Ve >0 Vx€D 3Fk=k(ex) suchthat |f,(x) —f(x)|]<e<1 , Vn>k .In

particular |fry;(x) —f(x)| <1 , Vn>k .Since (f,,) isbounded, then 3 M >
0 st |f,(0))|<M VxeD VneN .

FCOI = 1) = fier1(0) + fier1 (O] < |fier1 () = FOO I+ fier1 (]
<1+M Vx€D.

If(x))|<1+M=M VxEeD.

Seris of mapping (6.12

Let (f,,) be a sequence of real valued mapping where on D, (D = R), the sum
Yin=1 fn is called the series of mappings.

Y fa=fit ot ot ot fyt e
S1(x) = f1(x)

S,(x) = f1(x) + £, (%)

S3(x) = f1(x) + fo(x) + f3(x)

Sn(x) = () + () + -+ fu(x) = XLy fi

(S,,(x)) is called the sequence of partial sums of ), f,

If (S,,(x)) converges uniformly to a function f(x) on D, then )., f, = f and the
convergence is uniformly on D

If (S,,(x)) converges point wise to a function f(x) Inthis case, }.,, f;, = f and the
convergence point wise on D

Example:
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Yo x™t=1+x+x%+--+x"1+ .. . Geometric series.

When x =0,then Yo, x™" 1 =1,

whenx # 1.

(1—x)S,(x)=1— x™ then S,(x)= 11__xn

If x| <1 , —1<x<1,then x" —0.thus S,(x) - —

X
If |[x| =1 ,then S,(x) is diverges series since (x™) not bounded, hence diverges.

Thus Yoo x" 1 = i only on (—1,1).

Power seris (6.13)

The power series is of the form:-

Y s (= @™ = g+ a3 (= @)+ @y (x = 0 e g (= @)
n=1
When a = 0, then
z A1 (x— )" =ay+ a;x + a,x? + -+ ap_ x™ 1 + -
n=1

When x = 0, then

e}

z an_1(x —a)" "t =a,

n=1
Thus Yo a,—1(x —a)™ ! converges when x = 0.

Example:
SE (1) X" = x4 20 e

Since ((n —1)! x™ 1) is not bounded V x, then ((n — 1)! x™ 1) is diverges sequence,
hence Y7 (n—1)! x™ 1 is diverges series.

Thus the series Y22 (n — 1)! x™ 1 is converges only when x = 0.
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Theorem (6.14):

Let Y1 a,_1 X" ! be a power series, if Yo, a,_1x™ ! converges at x, # 0, then
Yoo a,—1x™ ! converges at each x; such that |x;| < |x,].
Proof:

o n—-1
Yn=1Qn_1X]

== aO + a1x1 + alez + o + an_lx:{l_l + o

X1
X

Yoeilan_ X7 = Yiglan_qxg Xo # 0

Since Yo la,_1 x5t is a converges series, then by proposition (3.5) the sequence
(la,—1x3~|) convergence to zero, hence (|a,_; x5 *|) is bounded sequenceie I M >
0 suchthat |a,_x}¥ | <M VneN.

x n—1 n—1
12 < YoM

Ymelan_1x7 7 = Yrilan_1xg - % x, # 0 is a geometric
0 0
n—1

converges when

<1 but |x;| < |xo]|.Hence

. X X
series, hence Y71 M x—1 x—1
0

Il <.
Xo

Remark (6.15):

Let Yo, a,,_1x" "1 be a power series
1) Y a,_1x™ ! convergesonly at x = 0.
2) Y a,_1x™ ! absolutely converges on R.
3) There exists ¥ > 0 such that Yo, a,_;x™ ! absolutely converges for each x with
|x|] < r inthiscase ris called the radius of convergence of the series and (— T, r) is called
an interval of convergence.

Theorem (6.16):

Let ¥, a,,_1x" 1 be a power series with a,,_; #0 Vn.

an

1) If the sequence ) converges to p, then r = i when p #0,andifp =0,

an—1
then r = oo. Thus (— 0o, 00) is a convergence interval.

an

2) If the sequence ( ) is not bounded, then ¥.7°_; a,,_;x™ ! converges only when

an-1
x =0.
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Examples (6.17):

. xn—l _ 1
L. Yn=1 Gy ¢+ %1 = i)
1
an _ Pl _ /-1 1
2= (=P =R =G -0
(n—-1)!
n—-1
Hence p =0, r = o, then Z?ﬂh Converges V x € R . Thus (— 0, 00) isa
convergence interval.
w x1 1
2. Zn=1F v An-1 = 503
an |y _ |2y = 2 1
2= (E)p =& -3
n-—1
Hence p = g, r = 2, then Zf{’:lﬁ Converges V x € R . Thus (-2,2) is a convergence
interval.

3. Yoo n—Dx™t, a,,=m—-1)!
(|===]) = ¢

Hence Y5 ,(n — 1)!x™ 1 Convergesonlyatx = 0.

T1)r|> = (n) not bounded.

an-1 (n

Chapter (7)

Riemann integration:
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Definition (7.1):

Let f:[a,b] = R be abounded mapping ,and T ={a =x, < x; <x, < - <Xx,, = b}
7 is called a Riemann partition, put J; = [x;_;, x;], since f is bounded, then f has sup. and
inf. Let M =sup{f(x):x €J} , m=inf {f(x):x € J}

M; = sup {f(x):x € J;} , m; =inf {f(x):x € J;}.
Clearly:- m<m; <M; <M Vi=12,,n.

R(f,m) = ¥, M;|J;| is called Riemann upper sum, and R(f,7) = X1-, m;|J;| is called
Riemann lower sum.

Clearly:- R(f,m) < R(f,m), (sincem; <M; V i=12,-,n).

Definition (7.2):

A partition ' on [a, b] is called refirement for i if every x; in m isin m'.

+
L

Example:- [a, b] = [0,5].

Proposition (7.3):-

If ' is a refirement for m, then R(f,n") < R(f,m),and R(f,7’) = R(f,m)

Proof: (H.W)

Proposition (7.4):-

For any partitions 7, , 7, on [a,b] we have R(f,m;) < R(f,m,).
Proof:

Let T = m; U m,, clearly m is a refirement for m; and m,. Thus

B(f'nl) SB(}C,TC) < ﬁ(f,ﬂf) < ﬁ(f'T[Z) .
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Let R(f) = {R(f,m): wis any partition on J } bound below.

R(f) = {B(f, m): 7 is any partition on J } bound above.

By proposition (7.4), we have each element in R(f) is a lower bound for R(f) and each
element in R(f) is an upper bound for R(f).

And by completeness of R, R(f) has a greatest lower bound and R(f) has a least upper
bound.

Now, let RT f= inf(ﬁ(f)) which is called Riemann upper integral and
RLf = sup (Q(f)) which is called Riemann lower integral.

Clearly that:-R[ f < RT f.
IfR[ f = RT f, then f is called Riemann integrable. O.W we say that f is not Riemann

integrable.

Examples (7.5):-

Let f:[a, b] = R bedefinedby f(x) =c Vc € R.is_f.Riemann integrable?
Let m, = {a =x, <x; <x, <+ <x, = b} beapartitionon J; = [x;_1, x;].

M; =sup {f(x):x €]} , m; =inf {f(x):x €]}

R(f,m) = Zi MilJil = cljal + cl2| + -+ + cl/al
=c(Jal + 12l + -+ UnD =clJl = c(b—a)

R(f,m) = Xisamillil = clil+ clfal + -+ cl/nl
=c(il + 12l + -+ UnD =clJl = c(b—a)

R(f) ={c(b — a): forany partitionm onJ } .

R(f) = {c(b — a): forany partition on] }

R f =inf(R(f)) = c(b — a)

Rf f=sup(R(F)) =c(b-a)
" RLf = RT f . Thus f is Riemann integrable.
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2) -Let f:[0,1] » R bedefinedby f(x) =2x Vx €[0,1].is_f_Riemann integrable?

Let m, = {0 = 06 ,(1)(3) ,(2)(3) ,_"’(n)nﬁ = 3} be a partition on J; = [x;_1,x;].

n n n

M; = sup {f(x):x € J;} , m; =inf {f(x):x € J;}
R(f»ﬂ) = ?leiUil = M1|]1| + M2|]2| + et Mn—ll]n—ll + Mn|]n|

[0 o= ] d= [ o= (22525

(233 123 183 243 6n 3
i T P e
n n nn nn nn n n
6 3 18 /1
=2 (144243 +- +n)——2()(n)(n+1)

9 9
=—(n+1)=9+-—
n n

B(f;ﬂ) = ?=1mi|]i| =myli| + malfo| + -+ my_q -1l + myl/,|

h=(od] =l =il = 8]

3 63 123 18 3 2(n—1) 3
— 04— — =22

n nn nn nn n n

0 42434t (-1

n'n n

18

1 9 9
.ﬁo@@—1y_a{n—u_9—£

S
/

EU)={9+%:nEN}.
R(H)={9-2:nen }

Rf f=inf(R(f)) =9
RJ f=sup(R()) =9
" RLf = RT f . Thus f is Riemann integrable.
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3) f:[1,5] = R suchthat f(x) = %x .is f Riemann integrable? (H.W).

2 x€QnNla,b]

3 ¥ €0 N [ab] .is_f_Riemann

4) Let f:[a,b] » R be defined by f(x) = {

integrable?
Let m,, ={a =x, <x; <x, <:-<x,= b} beapartitionon J; = [x;_,,x;].

M; =sup {f(x):x €]} , m; =inf {f(x):x €]}

R(f,m) = Xos MilJil = 31Jul + 3121 + -+ + 31/al
=3l + 12l + -+ 1nD) =3I =30 —a)

R(f,m) = Zimamyllil = 211l + 22| + -+ + 2],
=2(al+ 12l + -+ nD = 2]l =200 — )

R(f) = {3(b — a): forany partition on ] } .

R(f) = {2(b — a): forany partition onJ }

R f=inf(R(f)) = 3(b —a)

Rf f=sup(R(F) =2(b-a)
" Rf_f * RT f . Thus f is not Riemann integrable

Q1/ Is there exists a discontinuous mapping in finite infinite of point and Riemann integrable?
Q2/ Is every continuous mapping and Riemann integrable?
Q3/ Is there exists a relation between points of continuity and Riemann integrable?

There exist discontinuous mappings in a point and Riemann integrable.

5 x>0

1 . : 2 £
1 <0 s.f _Riemann integrable? f is

5) Let f:[—3,4] > R be defined by f(x) = {

not continuous at 0.

Let T, = [—3,_71] V] _?1,%] U [%,4] be a partition on J; = [x;_1, x;]-
N I S D

96



M, = sup {f(x):x E]nl} = sup {f(x):x € _—3,_—1]} =sup {1} =1.

M; = sup {f(x):x E]nz} = sup {f(x):x € 71 }— sup {1,5} =5.

1
Ms = sup {f(x):x € J,,} = sup {f(x):x € ]} p {5}=5.

R(f,mn) = X3 Mi|Jn,| = My|Jn,| + Ma| T, | + M3 |Jn, |
=1.(3 ! 52 5.(4 !
=LB-)+5-+5(4-)

1 10 5 4
=3—-——+—+20——=23+—
n o n n n

my = inf {f(x):x € Jo,} =inf {f():x€[-3,2|} =inf (1} =1.
m, = inf {f(x):x € J,,} = inf {f(x):x €|=,2|} =inf (1,5} =1

= inf {f(:x € Ju,} =inf {f():x €|} 4]} =inf (5} =5
R(f,mn) = Zieamilln| = malin, [ + ma|n, | +ms|n |

=1.(3 1+12+54 !
=1LGB-D 41454

1 2 5 4
=3—-——+—+20——=23——
n o n n n

R(f) = {R(f,m,): forany partitionm,, onJ} = {23 +% in € N} :
R(f) = { R(f,my,): forany partition ,, on]} = {23 —% :n €N }
R[] f=inf(R(f)) = 23
RJ f =sup (R()) =23
RLf = RJ f.Thus f is Riemann integrable.
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3 -2<x<-1
6) Let f:[—2,2] = R bedefinedby f(x) =42 —1<x <0 .is_f_Riemann integrable? (H.W)
5 0<x<2

e (IR M MeE MED

To answer question tow
Lemma (7.6):

Let f:[a,b] —» R be abounded function f is Riemann integrable iff for each € > 0, there
exists a partition 7y on [a, b] such that R(f,my) — R(f, 1) < €.

Proof:

=) Lete > 0, since f is Riemann integrable, then Rf f = RT f

Rf f = inf(R(f)) = inf {R(f,m,): forany partition ; on]}.

i.e there exists a partition 7r; on J such that R(f,m;) — RT f < g - (1).
_ € —
R(fm) < +RJ f

R[ f = sup (B(f)) = sup {R(f,m,): forany partition 7, on] }.

i.e there exists a partition 7, on J such that R(f,m,) — Rif < g - (2).

€

Let Ty, = m; U m, clearly my is a refirement to each m; and m,.

R(f,my) = R(f,my) < R(f,m;) — R(f,m)

By proposition (7.3) < g + RT f—R[f +§ < g +§ = € (since f is integrable)

&) Let € > 0 and there exists a partition 7, on J such that R(f,m,) — R(f, ) < €.
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Rf f—RJ f <R(f,m) — R(f,mp) <
" Rif = RT f.Thus f is Riemann integrable

Proposition (7.7):

Let f:[a,b] = R be abounded function, if f is continuous, then f is Riemann
integrable.

Proof:
By previous proposition (5.10) f has a minimum and a maximum points and also by
proposition (5.12) f is uniformly continuous.

Divided J into n equal closed intervals each of length b_Ta, Ji=Ix_1,x;] Vi=
1’2’...’n

Vi=12--,n fisuniformly continuouson J;.
lete >0 , 36(e) :if [x; —x;—1| <&,then |f(x;)—f(xi—1)] < ﬁ.
R(f,my) — R(f,my) = zMiljil _Zmiljil = Z(Mi —mplJil
i=1 i=1 i=1
M; = max {f(x):x € J;} = f(x;) , my =min {f(x):x € J;} = f(x;_1)

b—a ne

= D1 G = FaDI < ) s il == =" =

Thus f is Riemann integrable.by (7.6)

Monotonic function and Riemann integrable:

Definition (7.8):

Let f:[a,b] = R be afunction f is called a non-decreasing (increasing) if V x,y €
[a,b]if x <y,then f(x) < f(y) (f(x) < f(¥))and f is said to be a non-increasing
(decreasing)if Vx,y € [a,b]if x <y,then f(x) = f(y) (f(x) > f(y)).

Examples:
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1. f(x) =sin(x) Vx €R, fis continuous function but not monotonic.
2. f(x)=|x| on [—2,2] is monotonic function but not continuous.

Remarks (7.9):

1) Let f:[a,b] = R be a monotonic function, then f is bounded.

If f is non-decreasing, thenV x € [a,b] , f(a) < f(x) < f(b) , a<x<h.
If f is non-increasing, then Vx € [a,b], f(b) < f(x) < f(a) , a<x <bh.

2) Let f:[a,b] = R be a monotonic function and f is non-decreasing, then —f is non
increasing and if f is non-increasing, then —f is non-decreasing.
Theorem (7.10):

Let f:[a,b] = R be a monotonic function, then f is Riemann integrable.

Proof: (H.W)

Definition (7.11):

Let S € R,S iscalled a negligible set (zero set) if for each € > 0, there exists a countable
collection of open intervals {I,} such that.

1. Scu,l,
2. S| <e.

Remarks examples (7.12):

1) Every finite set is a negligible set.
Let S = {x{,x,,,x,} € R.

€ €

Let € >0, [, = (xk o Xk +—)

€ ne €

2. ?=1|Ii|: ?=1£=5=5<6.

2) In general every countable (finite or infinite) set is a negligible set.
LetS = {x;,x5,"*, %, } € R.
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Let€>0, Ik=( X —
1) SC Upey Iy

) Selll =Tk o = S gmr =Tk SO =

X t 2k+2)

2k+2 4

-PIf'h

S m

In particular Q (the set of rational numbers) is a zero set.

3) If S; isanegligiblesetand S, € S; ,thenS, is a negligible set.

Proof:

Since S; isanegligible set,then Ve >0, 3{[,,} , n € N of open intervals such that
1. S1CuU, I,
2. YLl <e.

SinceS, € S, €U, I,,and X, |I,| <€ |I,| <€, hence we are done.

4) The union of a countable number of negligible sets is again negligible set.
Proof:
Let {S;} .be a countable collection number of a negligible set. T.P. U, S, is a negligible set.

Ve>0, 3 {I,(lk)} a countable collection of open intervals such that 1) S, C U, Ir(lk),

€
2) anlnl < ZI‘T

1) Uy Sp S U, U, I

) Si|un 1] =3k Za 10| <3k S0 =

€
4

€
=-< €.
1— 2

NP

5) Every interval in R is not a negligible set.
Proof:
Every open covering for | I| = €, any intervals I is of length equal or greater than | I| and

hence when e=% | I].

The condition (2) is not hold.

6) Q' is not a negligible set.
R=0QuQ'.
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R is not a negligible set by (5) and Q is a negligible set by (2)
If Q" is azeroset,then R =Q U Q'.is a zero set C!
Theorem (7.13): (Lebesgue theorem in Riemann integration)

Let f:[a,b] = R be abounded function, then f is Riemann integrable if and only if the
set of discontinuous points [D(f) | of f on [a, b] is a negligible set.

Example: Every empty set is a zero set.
—€ €
let e>0, 3 (?'E)_IE
1) 9c I,
2) [Ll==<e.

Corollary (7.14):

Let f:[a,b] = R be a monotonic function, then the set of discontinuous points of f on
[a,b], (D(f)) is a zero set.

Proof:

By remark (7.9) f is bounded and by theorem (7.10) f is Riemann integrable, then by
(7.13) D(f) is a zero set.

Corollary (7.15):

Let f:[a,b] = R be a bounded Riemann integrable function and let g: [c,d] = R bea
bounded function, if [c,d] € [a, b], then g is Riemann integrable.
Proof:

Since f:[a,b] = R is bounded and Riemann integrable, then by (7.13)the set D(f) of f on
[a, b] is a zero set and every subset of a zero set is also is a zero set, hence [c, d] is a zero set
and again by (7.13), then g is Riemann integrable
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Proposition (7.16):

Let f:[a,b] = R be a bounded function and let ¢ € [a, b], if f is Riemann integrable on
[a, b], then f is Riemann integrable on [a,c] and [c, b]. Moreover.

jf Rff+ij
Proof:

Let m; and m, be partitionson [a,c]and [c, b] respectively.

m = m; U m,.
R(f,my) + R(f,m2) = R(f,m) - (1)
R(f,m) + R(f,m2) = R(f,m) +(2)

Notice that f is Riemann integrable on [a,c] and [c, b].

By corollary (7.15)
c b € €
R(ED =R+ REm) < [ 4| £ < RGEm)+5+REm) +5
=R(f,m) +¢
c b
RED< [ f+[f < REM+e )
And
b
RED< [ f < REm+e (%)
From (%) and (xx) we get f;f — (facf + fcbf) <e€
Thus [ f=[if+] f

Remark (7.17):

Let RI[a,b] = {f:[a,b] = R 3 f bounded Riemann integrable function}, then
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(RI[a, b],+ ,7) is a vector space.
Let f,g € Rl[a,b], f:[la,b] > R, g:[la,b] > R, f+ g:[a,b] > R,.
then f + g € RI[a,b]
D(f+g)=D(f)uUD(g), D(f + g) is a zero set.
V ceR,let f € RI[a,b], D(f)isazeroset. D(c-f) S D(f).
D(f) is a zeroset, then D(c - f) is a zero set.
Thus c - f is a Riemann integrable, then c - f € RI|a, b].
Now, define R [:RI[a,b] — R
R [ f =(Number)
R [ is a linear transformation i.e
1)  Rff+9=R[f+R[yg
2) Rf(c./))=cR[f Vc€eER ,Vf,g€RIab]

Proposition (7.18):

Let f:[a,b] = R be a bounded function, if f is Riemann integrable and f(x) >0 Vx €
[a, b], then Rf:f > 0.

Proof:
Let m be a partitionon [a,b].
m = {a=xq Xy, Xy, **, Xp = b}.

Ji =[x, %], My=sup {f(x):x €]}, m;y=inf {f(x):x €]}
R(f,m) =X MilJil =0 ,since f(x) =0

R(f,m) = Xy MilJil = My|J1| + Mp|Jo] + - + My ||

R(f) = { R(f,m): forany partitionm on [a,b] } = 0

Rf f=inf (R()) =0
Since f is Riemann integrable 0 ST f =f_f = f;f

Corollary (7.19):
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Let f,g:[a,b] = R be bounded functions, if f and g are Riemann integrable and

f(x) = g(x) Vx €]la,b], then f;f > ffg.

Proof:

let h(x) =f(x) —g(x) =0 Vx €|a,b]

Since f is bounded, then 3 M; € R s.t  |f(x)|<M; Vx €][a,b].

Since g is bounded, then 3 M, € R s.t |g(x)|<M, Vx €]la,b].

RGO = 1f(x) =g < [fGI+ =g = f )+ gl =My + M, Vx €lab]
Then h(x) is bounded and h(x) is Riemann integrable [f, g € RI[a, b]] and by proposition
(7.18) [[h>0,then [(h=[f—g = [[f+[ —g=[ f—[ g=0.Thus [ f >

b
J, g

Corollary (7.20):

If f € RI[a,b],then| f| € RI[a, b] and |f;f| Sf:lfl.

Proof:

1. Since Dom| f| €S Domf, gof ={x € Dom f: f(x) € Dom g}
Since f € Rl[a, b], then by Lebesgue theorem D, ,1(f) is a negligible set. Hence Diq 4| f] is
a negligible set and then by Lebesgue theorem |f| € RI[a, b].

2. Since —|f(x)| < f(x) <|f(x)] Vx €][a,b],thenby corollary (7.19) f;—lfl <
[2F < Lf1 thus | ] < 211
Remark :

The convers in general is not true i.e if | f| € RI[a, b], then needn't be f € RI|[a, b].

Example:
(2 x€QnN]Ja,b]
f(x)‘{—z x€Q n[ab]’

| fl =2 Vx €[a,b] is.Riemann integrable but f_is not Riemann integrable

Remark:

Clearly that [ 0 = 0, butif [ f =0 isf=0?
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In general No

Examples:
1) Letf(x) =[-1,1] - R.bedefinedby f(x) =x Vx € [a,b]

[Lx=0but f#0

X ¥+ 2

2) Let f(x) =[—2,3] = R.bedefined by f(x) = {2 ‘=

[ f=0but f#0

Proposition (7.21):

Let f € RI[a, b] and f(x) is continuous function, f(x) >0 Vx € [a,b] and f;f(x) =0,
then f = 0.

Proof:

Suppose that the result is not true (i.e) 3 x, € [a,b] s.t f(xy) >0 .

Let V = (f(xo) — E,f(xo) + Z) be a ball in R, since f is continuous on [a, b], then 3 a ball
Uin[a,b]suchthat f(U) SV

Let E = U closed interval, since f(x,) > 0, then f(x) >0 Vx €E.

E is closed and bounded, then by Hien-Borel theorem E is compact, hence f: E = R is

continuous on a compact space, hence f has minimum and maximum points.
m = min{f(x):x € E} from (*) since f(x) > 0

0=fbf>ff > m|E| C!

E
m,=E,UE,U---UE,
B(fr”) = my|E1| + my|Ep| + - + my |Ey|
> ml|E;| + m|E,| + -+ + m|E,]
> m(E,+E,+--+E,)
> m|E| >0

Definition (7.22):
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Let (f;,) be a sequence of real valued functions on [a, b], we say that (f;,) converges (point
wise)to f on [a,b]if Ve >0, Vx €[a,b], 3k = k(e x) suchthat |f,(x) — f(x)| <
€E Vn>k.

And we say that (f;,) converges uniformly to f on [a,b]if Ve >0, 3 k = k(e) such that
Ifi(x)—f(x)|<e Vn>k Vx €]a,bl].

Q4: If (f,,) is a sequence of real valued bounded function on [a, b] that converges point wise
to f on [a,b] and V n € N the sequence (f;,) is Riemann integrable on [a, b]. Is f Riemann
integrable?

Answer: No in general as the following example show:

Example:

Let [a,b] € R, let {ry, 1y, -+, 1.} be the set of rational numbers in [a, b]

Vvn €N , f:[ab] = R bedefined by f,(x) = {_22 xxe e{ﬁfizr’ij}
i) = {—22 xxee{gf}

ra=ll

0=l et

Digpifn = {11,712, -+, 1.} is a negligible set V n. Hence f,, € RI[a, b] by Lebesgue.
- pw (2 x € [a,b] N Q
Claim: f,(x) — f(x), where f(x) = {_2 x €[a,b]NQ’

£ > £,
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fa(12) :’ f(r2),

fulr) > £,

fo(r) = fi(r), fo (), fo(r) = 22,42 > 2 = f (1)
fo(r2) = fi(r), fo(r2), -, fu(r2) = 2,2,++,2 > 2 = f(1y)
fo(rs) = fi(13), fo(13), -+, fu(13) = 22,4 ,2 > 2 = f(13)

Ifx & {r;, 1y, -, 1} Vn,thenf,(x) =—-2 - =2 € [a,b]NQ’
Thus £,(x) = f(x)and f & Ri[a,b].

H.W:

_n? 1
fnlx) = {n nx 0<x< n converges point wise to 0.
0.Ww

Q,: If (f,,) is a sequence of real valued bounded functions on [a, b] that converges point wise
to f on [a, b], V n € N if the sequence (f,,) is Riemann integrable on [a, b] and f Riemann
integrable. Is lim [ f;, = [lim f;,?

Answer: No. in general as the following example show:

Example:
n’x 0< x<—
n
Vvn €N , f,:[a,b] > R bedefinedby f,(x) =<{—n?x+2n %S xS%
| o Z<x<1
n

filx) =x 0<x<1

108



o
=
(e}
IA
=
IA

N R

fZ(X)= 1

—4x + 4 ES x <1

( 9x 0< xS%
fz(x) =4-9x+4 %s xS%

0 2<x<1

\ 3

( 16x 0< xsi
i =) _16x+8 i<xs<:

\ 0 o.w

[ fn =1 .Hence f,, € RI[a, b]

1 2
folfn = [pn®x + [['—n’x +2n + f:0
n n

1 2 2
=n® [rx—n® ['=n’x + [['2n
n n

pw
fa(x) — 0
f010 = 0, hence in general lim [ f;, # [lim f;,

[fi=1 »[0=0

Note: If the converges is uniformly the answer for two questions are yes.as in the following
theorem:

Theorem (7.23):

Let (f;,) be a sequence of bounded functions on [a, b] that converges uniformly to f on [a, b]
andif vne N, f, € RI[a,b], then f € Rl|[a, b].
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Moreover ([ f,,) convergesto [ f i.e lim [ f, = [lim f;,.

Proof:

Since f, 5 f and (f,,) is bounded V n, then f is bounded by proposition (6.5).
Let D(f;,) = the set of discontinuous pointsof f,, Vn on [a,b].
Since VneN , f, €RI[a,b],then Vn e N, D(f,) isanegligible set.

Let D =U,, D(f;,) is a negligible set, then Yn € N , f, is continuouson [a,b] —D .

Since f, 5 f and (f;,) is continuous on [a, b] — D, then by proposition (6.6) f is continuous
on [a,b] — D, then D(f) € D where D(f) = the set of discontinuous points of f, then
, D(f) is anegligible set and hence f € RI|[a, b] .

[ 5= [r]=|[ca-p|<[1h-7

Then 3 k(e) suchthat |f f, — [fI < fﬁ=ﬁ-(b—a)=e vn>k , Vx.
Chapter (8)

Differentiation:

Definition (8.1):

Let f:(a,b) = R be afunction, we say that f is differentiable at x, € (a, b) if for any
sequence (x,) in (a, b) such that x,, # x, Vn and x,, = x,, there exists a real number
a = f'(xy) such that the sequence

o) = fG0)

Xn — Xo

i.e:- V (x,) in(a,b) suchthat x, #x, Vn, x, = x5, 3 a=f"(xy) such that
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o) = fx)

Xn — Xo

: - : , d
a is called the derivative of f at x,, also is denoted by a = f'(x,) = é |x,

li

X—Xg X xo

im f(x) :f(xo) = F'(xo)

Otherwise f is not differentiable at x,.

Remark (8.2):

If f is differentiable at each x, € (a, b), then we say that f is differentiable.

Theorem (8.3):-

Let f:(a,b) = R be afunction then f is differentiable at x, € (a, b) iff there exists a
real number a and a continuous function w: (a,b) - R with w(x,) = 0 satisfies f(x) =

f(xo) + [(x = x0)a + (x = x) w(x)]

Proof:

=) Since f is differentiable at x, € (a,b), thenV (x,,) in (a,b) such that x, #

Xo Vn, x, = x5, 3 a €R such that W - X e (%)
n—40

Define w(x):(a,b) » R as follows
FO) —fo)
w(x) = X — X
0 if x=x

if x#x

Claim: w is continuous

Let x,, » x5 € (a,b) T.P w (x,) » w(x,) =0.
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S (xn)—f (x0)

Xn—Xo

w (xn) = —x = 0=w(x) by (x)

Hence w is continuous.

FO) —flxo) [ = flxo) —alx —xo)

X — Xo X — Xo
(x = x0) w(x) = f(x) — f(xo) — alx — xo).
Thus

X#+x, , wlkx) =

&) = fxo) + [(x = x0)a + (x = xo) w(x)]

&) T.P f is differentiable at x, we have 3 @« € R ,3 w:(a,b) = R continuousa w(xy) =0

f) = fxo) + [(x = xo)a + (x = xo) w(x)]

Let (x,) be a sequence in (a, b) such that x,, # x, Vn and x, = x;,

fn) = f(xo) 2

- X
Xn — Xo

Since x,, = xy and w is continuous at x;, then
w (xn) = wlxg) =0 - (%%)

(x — xp) w(x) = f(x) = f(x0) — alx — x0)
[O)FGo) o

X—Xq

w(x) = , @(x) =0

fxn)—1(x0)

il e 0 = w(xy) from (*x)

w (xn) =

Thus
f(xn)—1(x0)

Xn—Xo

Proposition (8.4):-

Let f:(a,b) = R beafunctionif f is differentiable at x, € (a, b), then f is a continuous
at x, .

— «.And f is differentiable at x,

Proof:
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Since f is differentiable at x, € (a, b), then 3 areal number @ and a continuous function
w: (a,b) - R with w(x,) = 0 satisfies

f) = flxo) + (x —xp)a + (x — x0) * w(x)

Since f(x) , (x —xy) and w(x) are continuous functions.
Then f isacontinuous at x; .
Remark :-

The convers of the above proposition in general is not true as the following example shows.

Examples:-

x=0 in[0,1)

7) Let f:(=1,1) - R be defined by f(x) = |x| = {—fc x<0 in (=1,0)

f is a continuous at 0.

let %, > 0, f () = xal - £(0)=0

But f is not differentiable at 0 i.e 3 (x,) in (a,b) suchthat x, #x, Vn, x, = x,
S (xn)—f(%0)

3 a suchthat ————— » <
Xn—Xo
f(3)-r@  X-o0
250, =-#£0 Vn (”1) = +— =1
n n Z—O ——0
_ - fF(Z)-f0  X-o0
n n —_0 —_0

Thus « is not unique and f is not differentiable at x,

Now, we have some examples about differentiation:

8) Let f:(a,b) = R bedefinedby f(x)=c Vx€(ab) c€ER.
f is differentiable

Let xo € (a,b) andlet (x,) € (a,b) , x, 2 xy , Xp#FX9 V1N,
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fO) = f(x0) _ c—c

Xn — Xo Xn — Xo

=0

9) - Let f:(a,b) = R bedefinedby f(x)=x Vx€(ab).
f is differentiable

Let xo € (a,b) andlet (x,) € (a,b) , x, =Xy , XpF+X, Vn ,

f(xn) — f(x0) _ Xn — Xo

Xn — Xo Xn — Xo

=1

10) Let f: (a,b) » R bedefinedby f(x)=x? .is f differentiable?
Let xo € (a,b) andlet (x,)€ (a,b) , x,—=x9 , XpoFX, VN ,
fOR) = f(x0) _ xn® — %0 (o — x0) - (xp + xo)
Xn — Xo - Xn — Xo B (x _xo)
Then f is differentiable

ntXo = Xo+ X9 = 2X,

11) Let f: (a,b) = R be defined by f(x) = {_32 xzeQ'an(gaLl;) :

f is not differentiable (H.W).

Proposition (8.5):

Let f,g : (a,b) = R be differentiable functions at x,, then:

f £ g isdifferentiable at x, and (f £ g)'(xo) = f'(x0) £ g’ (xp) .
f - g isdifferentiableatx, and (f-g) (xg) = f(xg) g (xo) + f'(xg) - g(xp)-

1
2
3. Vc€ER c-f isdifferentiableatx, and (¢ f) (xy) =cf'(xy) .
4

g(xo)f (x0)—f (x0)-9' (x0)
(g(x0))? .

5 is differentiable at x, ,g(xy) # 0 and( ) (xg) =

Proof:(4)

let (x,) € (a,b) , x,—=x9 , Xpo#*Xx, VN ,
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6 wo-() o,

f(xn) _ f(xo)
90)  gleo)  _ fG)g(x) — f(xo)g(xn)

Xn — Xo (xn — x0)g(x5) g (x0)
_ fGen)g () — fxo)g(xo) + f(x0)g(xo) — f(%0) g (xn)
(xn — x0)g(xn) g (x0)

f () = f (%) 9(xn) — g(xo)

— cg(xn) — Fx
Gn —xo>g<xn>g<xo>] 900) |G =20 g )] T
Since x,, > Xy, , Xxpn*+x9 Vn,f and g are differentiable function at x,, then
3 a; =f'(xy) and T a, = g'(x,) such that.
f () = f(x0) 9(xn) — g(xo)
- and - a,

(X = %o) (X = %o)

And f(x,) = f(xy) , g(x,) = g(x,) continuous

fOn) = flxe) g(xn) — g(x0)
(xn — x0)g(x5) g (x0) Xn — X0) g (xn)g(x0)

f'(x0) * g(x0) _ f(x0) - g'(x0) _ g(xo)f'(xo) — f(x0) = g' (x0)
(g(xO))z (g(xo))z (.g(xo))z

g(xo)] - [f(xo) ' (

Proposition (8.6): (Chain Rule)

Let f : I > R be adifferentiable functionatx,and g : ] = R be a differentiable function

at f(xy), then go f is differentiable at x, and (g o f)'(xo) = f'(xp) -g’(f(xo)); I,] are
open intervals.

Proof:

Since f is differentiable at x, 3 @; = f'(x,) and a continuous function w;:I - R
with w;(x,) =0 , w; satisfies:

f(x) = f(xo) + (x — x0)a; + (x — x0) wy(x) = (D)
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Since g is differentiableat f(xo) =y, f(xX) =y, Ja,=9"(yy) = g'(f(x0)) and a
continuous function w,:/ - R with w,(y,) =0 , w, satisfies:

9 =900 + v —yo)az + (v —yo) w(y) -+ (2)
g(f(x)) - g(f(xo)) = (f(x) - f(xo))[“z + w,(¥)]
g(f(x)) - g(f(xo)) =(x—x9) [a; + w;(X)]* [az + w,(¥)]

9UE@N=00 ) _ (4 4 w, ()] [ + wa(f(0)]

X—Xo

=001 Qay

= f"(x0) '.g’(f(xo)) .

Examples:-
1) Let f:(a,b) » R beafunction definedby f(x) =x" V x€(ab) , neZ,.

f'(xg) =n X" (H.W)
2) h(x)=x*+2x)® Vxe(ab), fx)=x*+2x V x€(ab)
gx)=x®  Vx€(ab), h(x)= (ge°[f)(xp)
(gof)(x) = f'(x) g'(f(x0)) = (2x0 + 2) .8 (x§ + 2x,)7
=8 (x¢ + 2x4)7.(2xo + 2)

Definition (8.7):

Let f:(a,b) = R be afunction, let x, € (a,b), we say that f is increasing at x,, if there
exists an open interval V,(x, € V) suchthat V x eV if x <x, ,then f(x) < f(xy),and
if x> x, ,then f(x) > f(xq).

And f is decreasing at x,, if there exists an open interval V', (x, € V) suchthat Vx € IV if
Xo < x ,then f(xy) > f(x),andif xo > x ,then f(x,) < f(x).
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If f isincreasingatx, , V xy € (a, b), then f is increasing function and if f is decreasing at
Xo , V Xy € (a,b),then f is decreasing.

Theorem (8.8):

Let f:(a,b) = R be adifferentiable function at x,, if f'(x,) > 0, then f is increasing at x,
and if f'(xy) < 0, then f is decreasing at x,. Hence if f'(x,) # 0, then there exists an open
interval V , (x, € V) suchthat f is1-1landonV.

Proof:

The inverse function theorem (8.9):

Let f:1 — R be adifferentiable function at x,, if f'(xy) # 0, then there exists an open
interval V and an inverse function g of f where g: f(V) — V and g is differentiable at f(x,) .

Moreover g'(f(xy)) = ,; ; [ is open intervals.
[ (xo)
Proof:
Since f'(x,) # 0, then by theorem (8.8) there exists an open interval V, x, € VV and
f:V =R is1-1.

f:V = f(V)is1-1andontosinceif y € f(V), y = f(x) ; x €V .Hence f hasinverse say
9. GfW =V, VSFWNSV  gef=1, fONSVSFWV) fog =l
(gef)x)=x Vx€eV, (gef)(x)=1 chain rule g’(f(x)) f'(x) =1 at x,, then
9'(fG0)).f'(x0) = 1, then g'(f (x0)) = 7=, where f'(xo) # O [given].
Since f is differentiable at x,, then 3 w;:1 = R continuous and w,(x,) = 0 satisfies:
f) = fxo) = (x —x0) " [f"(x0) + wl(x)] = (1)
9(£ ) = g(F ) = () = £ 0) [ 77 + w2F )]
= G x0) (F160) + 0200) [ + w(00)]

(g° @) = (g o Hx) = (¥ =) (f () + 0, (D) - [ + w,(F))]
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xX—

x—iz = (f’(xo) + (U1(x)) : [ﬁ%) + wz(f(x))]
1= (feo) + 1) |55 + w2(f@)]

1 1 ~
F(xg) + o (x)  f'(x0) w, (f(x))
Thus w,(f(x)) is continuous on f(x). And

wZ(f(xO)) - f’(xo) + a)l(xo) a f,(xO)

=0 ,since w;(x,) =0

Definition (8.10):

Let f:S — R beafunction S € R, we say that x, € S is a local maximum point, if there
exists an open interval V 3 x,, suchthat Vx € V, f(x) < f(x,), and we say that z, € Sis a
local minimum point , if there exists an openinterval U 3 z, and f(z,) < f(x) Vx€U.

Proposition (8.11):

Let f:1 - R be a differentiable function, if x, is either a local minimum point or a local
maximum point, then f'(x,) =0
Proof:

If f'(xo) # 0, then either f'(x,) < 0, then f is decreasing at x,, or f'(x,) > 0, then fis
increasing at x, in each case x, is not local minimum and not local maximum a contradiction,
hence f'(x,) =0

Remark (8.12):-

In general the convers of the above proposition is not true as the following example shows:-

Example:-
Let f: (—2,2) » R be defined by f(x) = x3.

f'(0)=0
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Since f is increasing at x,, then x; is not local minimum and not local maximum

Roll's theorem (8.13):

Let f:[a,b] = R be a differentiable function on (a, b) and continuous on [a, b], if
f(a) = f(b), then there exists ¢ € (a,b) , a < c < b suchthat f'(c) =0.
Proof:
If f is constant, then f'(x) =0 Vx € (a,b)
If f is not constant
Since f is continuous on [a, b] (compact set), then f has maximum and minimum values say
X0, Yo-
i.,e 3 x9, Yo €[a,b] suchthat f(x,) <f(x)<f(y,) VxE€ [ab]
Clearly f(xy) # f(yo) since f is not constant.
X0, Yo Maximum and minimum points, then x, is local minimum, then f'(x,) = 0 by (8.11),
put x, =c¢
Clearly xy #a,b and y, #a,b,sinceif x, =a or b ,then f(x,) = f(a) = f(b) =
f o)
Or yo =a or b ,then f(xo) = f(a) = f(b) = f(¥o)
Then f is constant C!
Say xo #a or b ,then f'(x,) =0, put x, =c.
And y, #a or b ,then f'(y,) =0, put y, =c.

Mean Value Theorem (8.14):

Let f:[a,b] = R be a differentiable function on (a, b) and continuous on [a, b] , then

there exists ¢ € (a,b) suchthat f'(c) = % :
Proof:
Define g:[a,b] > R by:-
960 = £00 - fl@) - LD g

g is differentiable function on (a, b) and continuous on [a, b]
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9(@) = f(@) - f(@) - F2LE (@ -a) = 0

b —_
g(b) = f(b) - f(@) - LELL (h—a) =0
So that g(a) = g(b), then by Roll's theorem 3 ¢ € (a,b) such that g'(c) = 0.
Then 0 = g'(c) = f'(c) — % . Thus

o fB) = f(a)
fle)=———
Chapter (9)

Measure Theory:

The length of open bounded intervals:

Step 1.If I = (a,b) = {x € R:a < x < b} isan open bounded interval, then the length of
I is denoted by A(I) or A((a, b)) and defined by:

_(b—a if 1=1(aDb)
A(’)‘{ 0 if I=0

Where @ is the empty set

1. ACD = A(a,b))=b—a=0
=dim(I) = Sup{d(x,y):x,y € (a,b)}
2. If I,] are two open intervals with I € ] ,then A(I) < A(J).
3. If I,] are two open intervals,then A(IUJ) <A(I)+A(J) andA(IU]) +

ACIN]) =A(D+A()),if INn]=@¢,then AC(IUJ) =A(D +A()).

In general if I;,1,,-+,I, are open intervals, then A(UL; ;) < X, A(l;)

If 1,1+, 1, aredisjoint, then A(U, I;) = X7*; A(I;) .
4, If {I,},,en is acountable number of open intervals, then A(U,, I,) < Y., A(I,,) and
if { I }ney aredisjoint [ NI, =@ Vj,k,then A(U, L) = X A(L,).
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5. A(I+t) = A(I) VtER.WhereI+t={x+t:x €I}
ACT+t) =Sup{l{x+t) -+ t)|:x+t,y+te((+t)}=Sup{lx —yl:x,y € I}
= A(I)

The length of open bounded sets:
Step 2. If G is any bounded open subset of R

Lemma (9.1):-

Every open bounded subset of R can be written as a union of a countable number of

disjoint unique open intervals and this representation is unique.

i,e 3{I;}pey , Inareopenintervals Vn I;nl, =@ Vjk, G=U,I, Hencebylemma
(9.1) if G is an open subset (interval) of R, then, G =U,, I,

Let u(G) = A(G) =AY, I,,) =, A(,) (disjoin).

Is )., A(l,) exits?
S, = A() +Ay)

Sp= AU + -+ AL) = X, AU
Let (S,) be the sequence of partial sum of ), A(I,)) .

Si= A() < Sy = A() +AU) < -+ < Sy, = A() + -+ AU)
Then §; < S, < -+ < §,,.Thus (S,,) is an increasing sequence
Since G = U, I, G is bounded, then U, I, is bounded, hence 3 an open interval (ball)
I; G <1I,then U, [, CI.
A(Up I) = Sup{lx —yl:x,y €Uy I} =X, A(,) =L
Si= A(l;) <L.
vn , S, < Y,A(,) =L,then S, is bounded, hence (S,,) is bounded and monotonic
sequence.
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Thus ), A(I,) converges (3.,A(l,) = L) and u(G) = Y., A(l,) exists.

Note :-

1 wG)=A(6) 20, (A(G) = XnA(LL), u(@) =A(G) =0

2 If G4,G, are open bounded subset of R with G, € G, , then u(G,) < u(G,).

By (9.1)[ G, =U, I, € G, =U,, I, then ¥, A(L,) < ¥, A(L,). Thus u(G,) < u(G,)].
3 If G4, G, are open bounded subset of R, then u(G; U G,) < u(Gy) + u(G,).

Gy =Upl,, G, =Uy, L, , G UG, =Upy (Up L Uy ) =Up Ky

#(G1 U G2) < T A(Knm) = Zn A0n) + T Ally) = 1(Gy) + 1(G2)

In general if Gy,G,, , G, are open bounded intervals, then u( UL, G;) < X, u(G;)
If Gy,G,,+,G, aredisjoint, then u( UL, G;) =X, u(G;) .

4 If {G,}nen is acountable collection of open bounded subset of R, then

u( Uy Gp) < X u(Gy) and if { Gplpey are disjoint G; NG, =@ Vj, k,then

U( Un Gn) = Zn :u(Gn)-
5 If G isopen boundedset,thenA(G+t) = A(G) VteR
u(G+t) = u(G) vteR,where G+t={x+t:x €G}.

u(G+t)=A(G+t)=u, (U, +1) =X, A0, +t) =X, A(,) = u(G)

Step 3. If S isany bounded subset of R, let
A={G: SC Gisopenand bounded } + @
S is bounded, then a ball I (open interval) open and bounded such that S € I.
B={u(G)=A(G)=0:S5< G} bounded below, since R is complete,
Let u* (S) =inf { u(G) =A(G): SS G, G isopenand bounded}
u* (S) is called the outer measure of S. (for short we write u* (S) by u (S)).

Examples:-

12)IfS =0
u* (S) =inf {u(G) =A(G): ® S G, G isopenandbounded}.
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= inf {A(Ge) 10 C (_76,2) = G, , ‘v’e}

=inf{e: Ve>0}=0

13) - If S = {x}
u* (S) =inf { u(G) = A(G) : {x} S G, G isopenand bounded}.

= inf {A( G.): {x} c (x — %E,x + g) =G, ,V e} , G is open and bounded.

=inf{e: 0<e<1}=0

14) S = {xy, x5, 20,) L= (i — =, % + )

2n

p(S) =inf {u(G)=A(G): SS€ G=ULI }

=inf{ ?=1A(Ii):2?=1£= % - 6}: 0.

15) If S = {xq,x5,**, X, ,*+ } is aninfinite countable subset of R, I; = (xi — X+ — ),

2i+2 2i+2

G =VUien [;

p (§) =inf {u(6) = A(G) =XienA(1) : SS G =VUsen I; }

= inf {ZiENA(Ii) = Sienses = In g(%)i_l} — inf { } =inf {S< €} =0.

16) If S = [a, b)
€ €
u* (S) = inf {,u(G) =A(G)=b—a + 5 [a,b) © (a — E'b) is open and bounded}

=b—a
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17) If S = [a, b] (H.W)

18) If S isabounded zero set, then u* (S) = 0 and conversely if u* (§) = 0,then S isa
zero set

Proof:

Let S be a bounded zero set

i,e Ve >0 , 3 {I,},ey of openinterval such that:
1. Scu,l,.
2. Yl < €.
TP u* (S) =inf {u(G) =A(G):S € G, Gisopenandbonded} =0
Take G = U, I,.
pr () =inf {ACG) = A(U, ) <2,0(L) <e€}=0

Conversely, let u* (§) = 0. T.P Sis a zero set.

Let € > 0,then 3 G open and bounded subset of R such that A(G) < €.
0= u (S)=inf {u(G) = A(G): S € G, G isopenandbonded}

Since G is open, then by lemma G is a union of open balls (intervals in R).
Thus G = U, I, , {I,},en of openintervalsin R.
1. ScGeG=uU, I, .

2. Since u(G) =A(G) < €,then u(G) =AU, L) < Y.l < €.

Bounded measurable sets:

Definition (9.2):

Let S be a bounded subset of R, we say that S is a measurable set,if Ve >0 , 3 an
open bounded subset G of RsuchthatS € G and u* (G —5) < €.

Note: If S is a measurable set, we put u(S) = u* (S)

Examples:
1) If S=C(a,b].is S measurable set?
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Let € >0,
take G=(a, b+§) ) (a,b]§G=(a,b+§)

€
G—(a,b]—(b,b+5)
* _ * € _ €\ €
W (G- (ab]) = p ((b,b+5))_A (b.b+9)=5<e
Hence S = (a, b ]is measurable.
2) If S ={xq,x,,x,} SR.is S measurable set?

Let e >0 Iiz(xi—i,xi+ﬁ) , 1=12,--,n. SS G =UL

G—S =V l; — {xy, x5, 2}
=un, ((xi—ﬁ %) U (%, xi+ﬁ))
R At (CREIR I
=i<A(xi_ﬁ,xi)M(xl.,xﬁﬁ))

i=1
n n
ZG € ZE_
A Liano2n 2 €

i=1

3) If S =[a,b] bounded.is S measurable set?
€
—) is open and bounded}

w* ([a,b]) = inf {,u(G) =A(G) :[a,b] S G = (a—g,b+2

=inf{A<(a—§,b+§)) : }= inf{b—a+e}=b-a.
4) If S=1[ab) , (ab) .is S measurable set? (H.W)

Proposition (9.3):

Let S be a bounded measurable set, then
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1 ulS§)=0, u(®=0.

2 If S;, S, are measurable sets with S; € S, , then u(S;) < u(S,).

3 If S;, S, are measurable sets, then u(S; US,) + u(S;nS,) = u(S;) + u(S,), then
u(S; U S;) < u(Sy) +u(Sy),

If S,, S, are measurable disjoint sets, then u(S; US,) = u(S;) + u(S,).

4 If {S,} isa collection of measurable bounded sets, if S =U,, S, is bounded, then S is
measurable setand u(S) = u(uU, S,) <>, u(s,).

If {S,,} disjoint, then u(S) = u( Uy Sy) = 2pnu(Sy)

5 If S isbounded measurablesetand t € R, then u(S+1t) = u(S).

Proposition (9.4):

Let S be abounded subset of R. S is a measurable setiff Ve >0 , 3 anopen
bounded subset of R, G suchthat (1) SS€ G, (2) u(G-95) <e.

Examples:
1) Every open bounded set is a measurable set.

let e >0,take G=S , GSG , u(G—-G)=u(P)=0 <e.

2) Every bounded interval is a measurable set.

1 1
S =[a,b],let € >0, take an(a——, b+Z) ,

n

1) [a,blS G , 2) ,u((a—%, b+%)—[a,b])=u<(a—%, a)U(b, b+%)>

1 1 2
=u<(a—;,a))+u((b,b+z)>=; <E€.
By Arch median Ve >0, 3 k s.t % <€

3) Every bounded countable (finite or infinite) subset of R is a measurable set

), S € Uien Gy

€
2i+2

Let S = {x1,%x3,*, %, ,"*} SR, let G; = (xl-—L x; +

2i+2 7

W (G—5)=p ey Gi—) = u" (Uiew (Gi—{x;})) < Biex 1" (G) < €
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Theorem (9.5):

let S be a bounded measurable subset of R, then.

D wu® =0, w®=0.
2) If S;, S, are bounded measurable sets such that S; € S, , if S, is measurable, then

S, is measurable and u(S;) < u(S,)

3) If $1,S,+++,S, are bounded measurable sets, with UL, S; is bounded, then Ui, S; is
measurable and u( U, S;) < X, u(Sy).

fS;NS; =0 Vi=*j,thenu(UiL;S;) =X, u(S)

4) If §4,S,,-+, S, , - are bounded measurable subsets of R with U,, S,, is bounded, then
U,, S, is measurable sets and u( U, S,,) <X, u(S,) .

If {S,,}disjoint, then u(U,, S,) =X, u(s,)

5) If S is bounded measurable subsets of R, thenforanyt € R,S + t is a measurable
setand u(S) = u(S+t).

Chapter (10)

Lebesgue Theory of Integration:

Definition (10.1):

Let S be a bounded measurable subset of R and {S;}/-; be a finite collection of subset of
S. {S;}i=, is a Lebesgue partition on S if satisfies:

2) S; are measurablesets V i=1,2,--'n
3) Vi#j,85NS isazeroset.

1)If P={S;}iv, and P' = {Sj};nﬂ, we say P’isarefinementtoPif VjEN,S; € P
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2)If P={S;}}v, and P' = {Sj};nzl are Lebesgue partitionson S, then L ={S; NS : i =

1,2,--n, j=1,2, m} is a Lebesgue partition on S.

Definition (10.2):

Let S be a bounded measurable setand f:S — R be a bounded function.) If P = {S;}I*,
is a partitionon S, put

M; =sup {f(x):x €S;} , m; =inf {f(x):x €S;} i=12,-n.
And put M =sup{f(x):x € S} , m =inf {f(x):x € S}
Clearly:- m<m; < M; <M vVi=12:-,n.
Now define
L(f,P) = X" M; u(S;) is called Lebesgue upper sum for Lebesgue partition P.
And
L(f,P) = Y=, m; u(S;) is called Lebesgue lower sum Lebesgue partition P.
Clearly:-m; u(S;) < L(f,P) < L(f,P) < M; u(S;)), YV i=1.2,-,n.
Remarks :
(1) If P, is arefinementto Py, then.

L(f, P;) < L(f, P1)

L(f, P,) 2 L(f, P1)
(2) For any two partitions P; and P, on S.

é(f» Py) < Z(f: P;) (1)

L(f) = {L(f,P): P is any partitionon S} € R
L(f) = {L(f, P): P is any partitionon S } S R.
From (1) L(f) is bound below and L(f) is bound above, by completeness of R
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Put LT f= inf(Z(f)) which is called Lebesgue upper integral and
L[ f = sup (é(f)) which is called Lebesgue lower integral.

Clearly that:- L f < LT f.If LT f = LJ f, then f is called Lebesgue integrable and we
write L] f=L[f=/ f.

Remarks (10.3):

Every Riemann partition is a Lebesgue partition.

Proof:
Let [a, b] be a closed interval. It's clear that [a, b] measurable.

Let 1, ={a =x, < x; < x, <:-<Xx, = b} beapartitionon J; = [x;_1,x;]

1. U?:l]i = [a, b]
2. Jiisa measurable sets V i
3. Vi #k , Jin]Ji, =@ oronly one element which is a zero set.

Hence we have the following result.

Proposition (10.4):-

If f:[a,b] » R isabounded function and f is Riemann integrable, then f is Lebesgue
integrable

Proof:
By remark (10.3) every Riemann par  nis a Lebesgue partition

R(f) = {R(f,m): w is any partition on [a, b] }
R(f) = {R(f,m): m is any partition on [a, b] }
L(f) = { L(f,P): P is any partition on [a, b]}

L(f) = { L(f, P): P is any partition on [a, b] }
It's clear that R(f) € L(f) and R(f) € L(f)
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Then
sup (R()) < sup (L(FH))
inf(R(f)) 2 inf(L(f))

This means that
RIf<L{f<L] f <R[ f

Since f is Riemann integrable, then R[ f = RT f andhence L f = LT f.

Remark:

The converse of remark (10.4) is not true in general as the following example shows.

Example :
Let f:[a,b] — R be defined by f(x) = {; ;EEQQ, 2 El l}ﬂ

D(f) = [a, b] is not a zero set, then by Lebesgue theorem f & RI[a, b]. Thus f is not
Riemann integrable
let S=[a,b], P ={S5,S,} where S; =Qn|[ab]land S, = Q' N [a,b].
Claim: P is a Lebesgue partition
1) S,US,=[ab]=S
2) u(s;) =0, S;US, =1[a,b] ,S; NS, =@ (disjoint)
u(S1 U Sy) = u(Sy) + pu(Sz)
u(la,b]) =0+ u(S;) =b—a.

pu(S)=b—-a.

3) §;NS, =0 isazero set.

M; =sup {f(x):x €S;} , m; =inf {f(x):x €S}
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L(f,P) = Xf_1 Miu(S;) = Myu(Sy) + Mou(S,)
=1(0)+5(b—a) =5(b — a)

L(f,P) = X mip(S) = myu(Sy) +myu(s,)
=1(0)+5(b—a) =5(b — a)

L(f) ={5(b — a): forany partition P }.

L(f) = {5(b — a): forany partition P }

Lf f=inf(L(f)) = 5(b — a)

L f=sup(L(F)) =5(b—a)

. Lf_f = L[ f.Thus f is Lebesgue integrable.

Proposition (10.5):-

Let S be a measurable bounded set and f:S — R be a bounded function, then f is
Lebesgue integrable iff for each € > 0, there exists a Lebesgue partition P, such that

L(f,Py) — L(f,Py) <E€.

Proof:
Compare with Lemma (7.6) in chapter (7).

Some properties of lebesgue integral:

Remarks :

19) Let S be a measurable bounded set and f:S — R be a function defined by f(x) = a
,Vx €5 ,a € R, then f is Lebesgue integrable and fS f =au(S)

Proof:
Let P = {S;};=, be any partition on S.

M; =sup {f(x):x €S;} , m; =inf {f(x):x €S;}
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L(f,P) = Xiuy M; u(Sy) = ap(Sy) + au(Sy) + -+ au(S,)
= a(u(Sy) + u(Sy) + -+ u(Sy)) = au(s) ?

UL;S;=Sand §;NS; = zeroset, then u(S) = u(UiL; S;) +u(niL, ;) = Ximg u(Sy)

u(S) = u(Uis; S) = Xie, u(Sy) = au(s)
Thus L(f, P) = au(S) .

L(f,P) = Ximymiu(S)) = au(Sy) + apu(Sz) + - + au(Sy)
= a(u(Sy) +pu(Sy) + -+ u(Sy)) = a u(s)
L(f) = { a u(S): forany partition P } .
L(f) = {a u(S): forany partition P }
L f =inf(L()) = a u(s)
L] f = sup(L(f)) = a p(s)
# LI f=Lff=au(d).

Thus f is Lebesgue integrable.

20) Let S is a bounded measurable setand f: S — R be a bounded Lebesgue integrable
function,if a < f(x)<b, Vx €5,then au(S) < [, f < bu(S).

Proof:
Let P = {S;}i-; be a Lebesgue partition on S, M; = sup {f(x):x € S;}

Z(f»P) = Xie M; u(S;) = Myu(Sy) + Mau(Sy) + -+ + Mypu(Sy)
< bu(S;y) + bu(S;) + -+ + bu(Sy)

= b(u(Sy) + u(Sy) + -+ u(Sy)) = b u(s)

ff = Lf f= inf{ L(f) = { L(f, P): forany partition P }}
S < b u(s)
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21)If Sisazerosetand f:S — R is abounded function, then f is Lebesgue integrable and

f, f=0.
Proof:

Let P = {S;}-, be a Lebesgue partition on S.
1) UL, S, =S.

2) S; are measurable sets V i
3) Vi #j , §;NS; isazeroset.

Since S is azero set, then each S; isazerosetand u(S;) =0, Vi.

M; =sup {f(x):x €5;} , m; =inf {f(x):x €S5;} , then

L(f,P) = =1 M u(Sp) = Myu(Sy) + Mau(S;) + -+ + Mpu(Sy)
=M;-0+M,-0+--+M,-0=0

Similarly L(f,P) = 0.
Then Lf f = LT f =0, hence f is Lebesgue integrable and fS f=0.

22) If S is a bounded measurable setand f:S = R is a bounded Lebesgue integrable function,
f(x)=0 , vx €S,then [ f >0.
Proof:
From(2) 0< f(x) , Vx ,then 0-u(S) < [, f(x) , Vx.Thus

Ostf

Proposition (10.6):-

Let f: S — R be bounded function, S be a measurable bounded set if A,B are subsets of S
suchthat S=AUBand AUB =@ and f is Lebesgue integrable, then

frejrels
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Proposition (10.7):

Let S be a measurable bounded setand f,g:S — R be bounded Lebesgue integrable
functions, then.

3) U+ =) f+[ g
4) J Ce.f) =c f VcER

Corollary (10.8):

If S is @ measurable bounded set and f,g:S — R are bounded Lebesgue integrable

functions such that f(x) < g(x) Vx €S, then fs f < fs g -

Proof:
let h(x) =g(x)—f(x) =20 Vx €S

By(4) 0<[ . h=[(g-f) =[9+) ~f=) 9/ -
Then

s f=<l,g.

Corollary (10.9):

If S is @ measurable bounded setand f:S — R is a bounded Lebesgue integrable function ,
then | f| is Lebesgue integrable and |fs f| < fS | 1.
Proof: (H.W)

Definition (10.10):

Let f,g:S = R be functions, if there exists a zero set S, € S such that f(x) = g(x)
Vx&S, [Vx€e(S—S,)],then wesaythat f = g almost everywhere (a.e)

Proposition (10.11):
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Let S is be bounded measurable set and f, g:S = R be bounded functions, if f is
Lebesgue integrableand f = g a.e,then g is Lebesgue integrable and fS f = fS g -

Example:
2 x€Qn]a b]—{0}

Let f:[-2,2] = R bedefinedby f(x) ={—-1 x€Q n[ab]l—V2.

4 x={0,\/§}
gx)=-1 vxe[-22], fx)=g(x) Vx€S,=0Q Nnlab]—-2
f=g ae Yx&Qn]|ab]u {0\/5}

i f=fg=-14=—4

Measurable functions and integrable functions

Definition(Measurable functions) (10.12):

Let S C R, f:S — R be bounded function, f is said to be a measurable function if for each
openset GinR, f71(G) € S is a measurable set.

Remarks:

1) If f:S = R is a measurable function, then S is a measurable set.
Since R is open, then f"1(R) = S is a measurable set.

2) If S isameasurable setand f is a continuous function, then f is a measurable function.
Proof:
Let G be any open set, since f is a continuous function, then f71(G) € S, f~1(G) is
open set and S is a measurable set, hence f~1(G) is a measurable set.

Proposition (10.13):

If S € Rand f:S = R is a function, then the following are equivalent:
1) f is a measurable function.
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2) For each closed set E € R, then f~1(E) is a measurable set.

3) Foreach[a,b),[a,b),(a b) SR,then f‘l([ a, b)) ,f‘l([ a, b)),f‘l((a, b)) are
measurable sets

3) Foreach a € R,then f~1((a,»)),f *((—%,a)) are measurable sets.

4) Foreach a € R, then f‘l([ a, 00)) ,f‘l((—OO, a]) are measurable sets.

Corollary(10.14):
Let f:S — R is a function:
1) f is a measurable function iff for each a € R, then f‘l((a, 00)) is @ measurable set.

2) f is a measurable function iff for each a € R, then f‘l([ a, 00)) is @ measurable set.
3) f is a measurable function iff for each a € R, then f‘l((—OO, a)) is @ measurable set.

4) f is a measurable function iff for each a € R, then f‘l((—OO, a]) is @ measurable set.

Example:
_ , (-2 x€QnNla,b]
Let f:[a,b] = R be defined by f(x)—{1 x€Q Nlab]
Sol:let G € R, G isopen
[a,b] 1,-2€G

f7Y(G)=<5Q'nla,b] 1€G,-2¢G
Qnla,b] 1€¢G,-2€G
f71(G) = {x € [a,b]: f(x) € G}
Q N [a, b] is bounded countable set, the u (Q N [a,b]) =0
[a,b] = (Q Nn[a,b]) U (Q' N [a,b]) [disjoint]

ula, b] = u(Q n[a,b]) +u(Q' N [a, b))
b—a=0+u(Q' nla,b))
In each case f~1(G) isameasurable set, hence f is a measurable function.

Remark:
If f:[a, b] = R is a monotonic function, then fis a measurable function? (why)

Proposition (10.15):
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If S € Rand f:S — Risameasurable function and g: R — R are continuous function,
then g o f is a measurable function.

Proof:
Let G be any open set in R, since g is a continuous function, then g~1(G) is open set in R.

(g° G = g7 (G)),since f~1(G) isopensetin R and f is a measurable

function, hence f~*(g™*(G)) is a measurable set.

Bounded variation functions
Definition(10.16):

Let f:[a,b] » R beafunctionandLet m, ={a=x;, <x; <x, <-+<x, = b} bea
partition on [a, b], J; = [x;—1,x;]] i=12,--,n

Let

V(i) = D 1fG) = fGril =0

Let V(f) ={V (f,m,): m,, is any partition on [a,b]} € R = 0, then V(f) is bound below.
If V(f) is bound above, then V(f) has least upper bound.

Put V = Sup(V(f)).
I is called the variation of f on [a, b]

f is called the bounded variation function.

Otherwise if V(f) is bound above, then f is not bounded variation function.

Remark (10.17):

If f:[a,b] = R is a bounded variation function, then f is bounded.

Proof:
Toproof I M >0, MeER s.t |f(x)|]< M VxE€]lab]

Let m, = {a =x, < x; <x, <-<x, = b} beapartitionon [a,b], J; = [x;_1,x;]
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V{m) = ) IfG) — f)l 20

V(f) ={V (f,n,): m, is any partitionon [a,b]} SR =0.

V= Sup(V(f)) exists, then |f(x) <| X lf(x) — f(xi— )| <V Vx€E]Ja,b]
Take M =V .
Thus |f(x)|< M Vx € |a,b]

Remark (10.18):

If f:[a,b] = R is a bounded monotonic function, then f is a bounded variation
function.

Remark (10.19):

If f,9:la,b] = R are bounded variation functions, then f + g is a bounded variation
function.

Proof:
Let m, ={a =x, <x; <x, <:+<x, = b} beapartitionon [a,b], J; = [x;_1,x;]
i=12,-,n

V{f+g, m)=Xl(f+9) &) — (f+9) (xi-1)| 20.
= Xicalf () = f(ximq) + g — g(xi4)|
< Yiealf () = fla)l + Xizalg(x) — g(xi-1)
V(if+g9)={V (f +g,m,): m, is any partition on [a, b]}
<{V (f,m,) +V (g,m,): T, is any partition on [a, b]}
={V (f,m,): m, is any partition on [a, b]} U {V (g, m,): 7, is any partition on [a, b]}
=V()uV(g)
Sup (V(f + 9)) < Sup(V(f)) + Sup(V(9))
Thus V(f +g9) <V(f)+V(g)
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Remark (10.20):

If f:[a,b] = R is a bounded variation function, then cf is a bounded variation function.

Proof: (H.W)
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