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Chapter (1) 
Real and rational numbers 

The axiom of real numbers -:
  Let  be a triple consist of a non-empty set with the operation of 
addition and multiplication. We say the triple  is a field if it satisfies 
the following properties:-  

1)  and  (Commutative la) 
2)  and  (Associative law) 
3)  (Distributive law) 
4) There is distinct real number 0 and 1 s.t  and  
5) For each  there's a real number  such that  and if 

 there is a real number  such that  

 Example-:  

   The real numbers from a field and the rational numbers (which are the real 
number that can be written as , where   and  integers and  ) 

The order relation-:  
   The real numbers ordered by the relation , which has the following 
properties:- 

6) For each pair of real numbers  and  exactly one of the following is 
true  

7) If  ,  and , then   )  (transitive) 
8) If , then  for any  and if , then . 



3 
 

   A field with an order relation satisfying  )6) ,(7) ,(8 ( is an order field. Thus 
the real numbers form ordered field. The rational numbers also forms an 
ordered field . 

Supremum of a set :- 
    A set  of real numbers is bounded above if there is a real number  such 
that  for each . In this case,  is an upper bound of . If  is an 
upper bound of , then so is any larger number, because of property (7)  

   If  is an upper bound of , but no number less than , then  is a 
supremum of  , and we write . 

Example:- 

 . 
   If  is the set of negative integers, then any number  such that  
is an upper bound of , and   

   The example shows that a supremum of a set may or may not be in the 
set since  contains it's supremum but  dose not  

Infimum of a set :- 
    A set  of real numbers is bounded below if there is a real number  such 
that,  for each . In this case  is a lower bound of  so is any 
smaller number because of property (7). If  is a lower bound of  but no 
number greater than , then  is an infimum of , and we write 

. 
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Remark :-  
   If  is a non-empty set of real numbers, we write  to indicate 
that  is unbounded above and  to indicate that  is unbound-
ed below. 

Example:-  

Let  ,  then  and .  

Example:- 

 Let  ,  then  and . 

 If  is the set of all integers, then  and   

H.W): Find  and , state whether they are in . 

1-  

2-  

3-  

The relation between the field of rational of numbers and real number:  

Proposition (1-1):- 
Every orderd field contains a subfield similar to field of rational numbers. 

Proof:- Let  be an orderd field  (1 is the identity element with 
respect to  operation) ( , is the identity of ) 

 

Claim (1)   
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Proof (1)  Suppose the result is not true i.e there exists a positive integer 
.and  It's clear that  and  

( since ) 

 The result is not true. 

Trivial. 

Claim (2)   

Proof :  if  clearly . 

 If . 
Then by (1) . Thus  (  Contains a copy of Z). 

 ( .is a group),  such that , hence  
(  Contains a copy of ) 

(  is a field),   such that . 

 (binary operation). 

 (  Contains a copy of Q). 

Corollary (1-2):- 
  

 orderd field,  

. 

Q/ Is . 

   To answer this question, we beginning by this proposition:  
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Proposition (1-3):- 
The equation  has no solution in . 

Proof: Suppose the result is not true i.e the equation   has a root in  

say  and the greatest common divisor 

. 

 If  and  are odd, then  . 

 If  is odd and  is even, , then 
 . 

 If  is even and  is odd,  (, then 
. 

 If  and  are even,  (,then 
.. 

So that there is no rational number satisfy this equation. 

H.W:- 
The equation  has no solution in . 

Proposition (1-4):- 
The equation  has only one real positive root. 

Proof: Let .  is bounded above (2,3,    
upper bound of ). , since , (  and ,  

Since  is complete orderd field, then by (completeness property: Every non 
empty subset of  has an upper bound, then it has ), then  has 
a least upper bound say .  
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Claim:- , (i.e the least upper bound of  is a root of equation ). 

If not, then either  or   . 

1. If , take , 

  

  

Choose  satisfies:  

  

Hence . Thus  

2. If , take  

   

  

Choose  satisfies:  

  

Hence , since  

Uniquness: 

   Let  such that  and . Then either  or  
 

Thus . 
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Corollary (1-5):- 
. (The field of rational numbers  is proper subfield of the 

field of real numbers ). 

Proof: , from (1.4). 

, from (1.3). 

Corollary (1-6):- 
 is not complete orderd field. 

Proof: Let . 

. 

Thus  is not complete orderd field. 

Remark (1-7):- 
   Let  denote the set of irrational numbers, .  is 
complete orderd field . 

 

   Now, we study the set  and how we distribute the elements of  and 
the element of  in . We start by the following theorem: 

Theorem (1-8) : 
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 bounded 
above by . Since , then by the completeness of real numbers  has a 
least upper bound in  say   

Since , then , hence  is not upper bound of , then 
 such that , , 

. 

Thus the result is true. 

Corollary (1.9):- , there exists a positive integer  such that . 

Proof: Take . By (1.8)  such that , 
hence . 

Theorem (1.10)-: (The density of rational numbers) 

   For each real numbers  and  with , there exists a rational number  
between  and    

                                                         

Proof:                       

                                                           

 )1 ( If  

Define  

Choose  be the smallest positive integer satisfies  

  

From  )1 ( and (2)   
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  is the rational 
number between  and . 

If , then  such that , 
hence by the previous result,  such that  

 ,  is the rational number between  and . 

)2(    

 is the rational number between  and . 

)3(    

And by (1) there exists a rational number  

  

 is the rational number  

Corollary (1-11) :-  

    For each real numbers  and  there exists an infinite countable set of 
rational numbers between  and   

Proof:  by (1.10 )  . 

 by (1.10 )   

 And  

Generally  between  and  and    between  and . 

Thus we have infinite countable set between  and   
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 Theorem(1.12):-  
    For each real numbers  and  with , there exists an irrational 
number  between  and . 

Proof: Suppose the result is not true i.e between and  there is only 
rational number by (1.10 ( )  

  

  

, If , hence a contradiction  

Corollary (1.13) :-  

   For any real numbers  and  there exists an infinite countable set of 
irrational numbers between  and . 

Proof :  by (1.12 )  . 

 by (1.12 )   

 And  

Generally  between  and  and  between  and . 

we have infinite countable set  between  and   

Example:-  

, by Arch., then  

. The number is  
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Chapter  )2(  
The sequences of real numbers 

Definition(2.1) :- 

    Let  be a function, then , is called a 
sequence of real numbers which will be denoted by  or . 

 

Examples:-     

1.  

2.  

3.  

4.  

5.  

6.  

 

Converging sequences: 

 -:Definition(2.2)  

   Let  be a sequence of real numbers ,we say that  is converging 
sequence if there exists a real number  satisfies for all   
there exist a positive integer  (depend on ) such that  i.e 
  if   , then . 
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  Otherwise the sequence is divergence.  

Proposition (2-3):-  

  

, in particular take  such that 

. 

  

 such that . 

. 

. . 

. 

Examples:- 

1)  Is  converge to   

  

Let , to find  such that:  

Proof: , since . 
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By Archimedean  such that 
  

Thus  

 . 

2) Is  converge to 3,  

  

 . 

 

3) Let  be define by: 

  

  

This sequence convergence to .  

 . 

  

4) Let  be a divergence sequence. 

  

If , then for all ,  contain all odd terms but 
doesn't contain any even term and since the even terms are infinite, then 

 . 
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If , then for all   contain all even terms but 
doesn't contain any odd term and since the odd terms are infinite, then 

  . 

If  or   

. 

 If we choose  , then any open interval  
doesn't contain any term of the sequence and hence . 

Thus  is a divergence sequence. 

H.W: Which of the following sequence convergence or divergence. 

1. . 

2. . 

3. . 

Bounded sequences: 

Definition(2.4) :- 

   A sequence   of real numbers is said to be a bounded sequence ,if 
there exists a real number  such that . 

. Examples-: 

1.  is bounded sequence since . 

2.   is bounded sequence since  . 

3.    
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This sequence is bounded since  . 

  is bounded sequence since 
 .

4.   is not bounded sequence 
since . (bounded below but not bounded above). 

Proposition (2-5):-  
   Every convergence sequence is a bounded sequence. 

 i.e  

, such that  . 

. 

Then  

Hence . 

  

Take . 

. 

Example:- 

 is not bounded sequence and by this 
theorem is divergence. 

Remark(2.6):- 
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The converse of proposition (2.5) is not true in general, as the following 
example shows. 

Example:- 

 is bounded sequence which is a divergence sequence. 

 

Monotonic sequences: 

Definition(2.7) :- 

   Le   be a sequence, we say that   is a non- decreasing sequence ,if 
. 

  is an increasing sequence, if . 

  is a non- increasing sequence, if  .  

 And  is a decreasing sequence ,if  .  

And we say that   is a monotonic sequence ,if  satisfies one of the 
above conditions . 

Examples-: 

1)  is decreasing sequence. 

2)  is an increasing sequence. 

3)  is a non- increasing sequence and a non- 
decreasing sequence. 

4)  is not monotonic sequence. 

Proposition (2-8):-  
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   Every bounded monotonic sequence is convergence sequence. 

   
 

 bounded ( above and below ). 

1) Suppose  is a non- decreasing sequence,  

Since  is bounded above, then by completeness of real number  has a least 
upper bound say . 

. 

Claim:  

then   is not an upper bound. 

  such that  

    

  

. 

(2) Suppose    is a non- increasing sequence, 

i.e   
Since  is bounded below, where , then by 
completeness of real number  has greatest lower bound, say . 

Claim: 
. 
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 … (1). 

  is not a lower bound (since ). 

 such that  …(2) 

Since   is a non- increasing sequence, then …(3). 

From (1), (2), (3) . 

. 

Then . 

Thus  is converges.  

Examples:- 

1. .. 

. 

This sequence is decreasing and bounded (below, above). 

. 

2.  Converges  monotonic. 

5. Let   

  

It is converges but not monotonic sequence. 

 

Cauchy sequences: 
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Definition(2-10) :-  

    A sequence    is called a Cauchy sequence if   there exist a 
positive integer   such that . 

Proposition (2-11)  
   Every convergence sequence in  or  is a Cauchy sequence. 

i.e   

 such that  . 

. 

. 

 . 

Thus   

Remark(2-12) : 
Proposition (2-11) is not true in general in the field of 

rational number. 

We need the following lemma: 

Lemma (2-13):- 
number rational number 

converge to . 

Proof: Let  
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By the density of rational numbers   such that  

, then  

And by the density of rational numbers   such that  

.  

Continue in this way we get a sequence of rational numbers  

 … (*) 

 Claim :  from (*) . 

(Arch.)  such that  

  (   

Thus  

i.e  

Remark (2.12) :- 

   The converge of proposition (2.11) in general is not true in . 

Proof: Let  

 then by lemma (2.13)  a sequence of rational numbers  such 
that , since , then by proposition (2.11)  is a 
Cauchy sequence,  but   is not converges in  

H.W: 

(1)    
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(2) For any real number there exists a sequence of irrational numbers 
converge to . 

Theorem (2.14):- (The nested intervals theorem) 

  Let   be a sequence of closed intervals such that . Then 
.  

  Moreover if  converges to zero, then  consists of only one 
point.  

Proof: Let    

Let  

. 

. Then  . 

So that each element in  is an upper bound of . Thus   is 
bounded above. 

By completeness of real numbers  has a least upper bound say . 
 

 and   

. Hence . Thus . 

 

-If  

Suppose, there exists another point , such that  and  
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Since   then  such that  

  

Thus  

Remark (2.15):  

   In general theorem (2.14) is not true if the interval is not closed. As 
the following example show: 

Example:   

      

If   

 such that  ? 

i.e  thus  

. 

Completeness of real numbers  
Every Cauchy sequence in  is converging in .  

Proposition (2.17):  

   Every Cauchy sequence is a bounded sequence. 

Proof: let  be a Cauchy sequence, i.e  such 
that   

In particular take   
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 Take   

Thus . 

Proposition (2.18):  

Let  and  be two convergence sequences such that  
and , then: 

1. . 

2. . 

3.  

4. . 

Proof: (4)  

Since  then  such that 

  

Since  then  such that 

  

Since  is converge, then  s.t . 

Since  is converge, then  s.t . 

   

. 
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. 

Countable sets 
 is countable set. 

Proposition (2.19): 

 is not countable set. 

 Proof: Let  be a countable set   

Let  be a closed interval in  such that  and  .  

Let  be a closed interval in  such that  and  and  . 

       

Let  be a closed interval in  such that  and  and 

  and , by nested 

theorem    

 and . Then . Thus  

Corollary (2.20): 

The set of irrational number is uncountable set. (The union of two 
countable set is countable) 

Proof: If not, then , then countable C! 
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Thus  is not countable.  

 

 

 

 

Chapter (4) 
 

The metric spaces: 

Definition(4.1):  

   An order pair  is called a metric space if  is a non-empty set and  
is a function 

 

Satisfies: 

1)   

2)  

3)  

4)  

  is called the distance function, and the elements of  are called the 
element of the space. 
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Examples(4.2):  

1) ;  the set of real numbers and  

  is defined by  

  

  

  

  

  

 is a metric space. 

2)    If  such that  

. 

If . 

Defined:  by:
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To prove (4) we need the following: 

Lemma (4.3): The Cauchy - Schwarz inequality 

   For each real numbers  we have: 

  

  

 

Lemma (4.4): 

   For each real numbers  we have:  

  

 

Proof:  

  

By lemma (4.3) 
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Let  

  

[By lemma (4.4)] 

. 

 

3) Let  is a non-empty set define: 
 

By: 

 

1)  

2)  

3)  

  

4)  
 

4) If  such that  

  

Defined  by: 
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1)  
2)  

  
  

3)  
  

4)  

Let  

  

  

  

H.W: If . Defined  by: 

  

  

Is  a metric space? 

 

Remarks(4.5):  

   Let  be a metric space, then 

1) For any , we have . 
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2) For any , we have  

 

Proof(1): 

  

  

From (1) we get:  

From (2) we get:  

  

 

Proof(2): 

By induction on the element of . 

  

, then  

  

Suppose the result is true for any  

i.e  

  

To prove is true for any  

 by (3) 
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Basic principles of topology:

Definition(4.6):

Let   be a metric space, and , then: 

Is called a ball of radius and center .

Is called a disk of radius and center .

Examples:

1)   is a metric space.

                        (                 |                 )

2)   is a metric space 

; is a usual 

distance
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  is a metric space; is a usual distance

3)   is a metric space 

Definition(4.7):
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Let be a metric space and, , is called an open set if for 
each there exists , , such that: 

Examples:

Proof:
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Let be a metric space, and be a collection of all open subset of X, 
then satisfies the following:

open set
is again in .
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  is again in .
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.

                       (            |           )                                                                       (              |                 )                               

(H.W)

Find .

: suppose the result is not true i.e a 

is closed, then is open, hence ( is a 
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let ,T.P is closed i.e is open.

Let is not a 

open set and .

In particular a ball is open 

is closed.

Example:

is not closed.

                                                     |      |       |        |        |                             

is not open, any ball 
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If , then 

The converse of remark (4.18) is not true in general as the following 
example show:

Example:

Let .

                                                 (                         )               

: suppose that T.P is a 

is not a 

a ball 

is a 

If by remark (4.18) .

If is a 
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In particular  a ball  

  

  

 

:  by proposition (4.19) (  iff  or  is a 
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: Suppose there exists another limit point  

 and

  and  
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: Let 

: Let 
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:  let 

  

  

And  

  

And  

 in  and  in . 

 is complete  

 and   

 . 

Claim: . 
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H.W: In  

 

 in 
 

: if that  T.P  is a 

ball  

  is a 

 If , then . 

If  is a ball , we have: 
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Then   

  is a sequence in . 

Claim:  converge to . 

. 

  

  

 

 
set,

: let  be a Cauchy sequence in . T.P  converge to

 is a Cauchy sequence in . 

 is complete  

. 

By proposition (4.29) 

If , then we are done. 

If 

proposition (4.16) . 
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 let , then  such that . 

 (upper bound). 

 

Cantor nested sets theorem(4.33): 

   
: 

1) . 
2)  is a non-empty closed sets. 
3) The  converges to zero. 
If  is a complete 

then  such that . 
. 
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 from(1) 
, then  is a Cauchy 

sequence. 
   Since  is a complete  is converge to 

. 
 
Claim: . 

. 
  

 most of the term of the sequence in . 
 most of the term of the sequence in . 
 by proposition (4.29) either  is a cluster point for 

 (intersection of closed sets is closed). 
 is closed, hence .(proposition4.16) 

 
Uniqueness: Suppose . 

  
 such that . 

In particular when  
  

. 
  

 

Contracting mapping principle theorem(4.34): 

: 
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   (in this case  is called a contracting mapping), 

  

  

  

  

Claim:  is a Cauchy sequence. 

 if   

  

  

  

. 
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By using mathematical induction   

  

Such that  

  

Claim: . 

  

  

  

  

  

  

Claim: uniqueness 

Suppose   
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Example: 

   Let  be a mapping satisfies  such that 

  

    is closed subset of a complete metric space , then by propostion 
(4.30)  is complete. 

By theorem (4.34)  has only one fixed point. 

 

 

Remark(4.35): 

   If  is a differentiable mapping satisfies  
such that , then  is a contracting mapping. 

  

  

And hence  has exactly only one fixed point. 

 

Example: 

   Let  defined by: 

 such that 
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    the mapping  has only one fixed point. 

i.e the equation  has only one root. 

 

 

 

Compact space: 

Defnition(4.36): 

   
  is an open covering for  if 

. 

 

Note: 

   Every set has at least one open covering , since . 

 

Defnition(4.37): 

    is called a compact subset of , if for any open covering for , there 
exists a finite open subcovering for . 
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i.e 

   if any open covering  for , there exists 
 such that . 

In this case if , then  is compact. 

 

Defnition(4.38): 

   If  is an open covering for , we say that , is an open sub 
covering from , if . 

 

Examples: 

1) Every finite set in any metric space is compact. 

Let  

Let  is an open covering for . 

i.e 

, 

, then  such that . 

 then  such that  

  

 then  such that  
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 is an open subcovering for . 

 

2) Let  is a compact subset of . 

Let  is an open covering for . i.e , 
, then  such that . 

  

  

  

  

 is an open subcovering for . 

  
 is a compact subset of . 

 
3)  is not compact subset of . 

, let   

  

Claim:  has no finite subcovering for  if there exists a finite 
subcovering from  for , then: 
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a contraction since .

                                                                   (   |   |          )        )            

H.W:

are not compact.

Let is an open covering for . i.e ,

Since is compact, then .

ϵ
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Examples: 

1) Let   

 is a compact subset of . 
 is closed  

 
2)  is not compact subset of . 

  
 is a compact subset of   

 
Note: 
   If  is not compact, then  is not closed. 
 

closed.

i.e  a cluster point  for  such that . 
 is a cluster point for , then any open set  such that , we have 

 
In particular any ball of form . 

  

 is closed set. 

Let  is an open set . 
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Claim:   

Suppose  

 a contraction since 

. 

  

  is open  

 is an open covering for  

Since  is compact, then 
 

Since , then , then . 

  

 

bounded.

. 
,  is an open covering for  
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Since  is compact, then  

Then ,  is bounded. 

 

Examples: 

1)  is not compact subset of  since not bounded and not closed. 
2)  is not compact subset of  since not bounded and not closed. 
3)  is not compact since not bounded. 
 

Hein Borel theorem(4.43): 

   Any bounded closed subset of  is compact. 
 

bounded  subset of  
bounded, then there exists an open interval  (ball) such that 

, and hence , where . 
   Let  is an open covering for . i.e , and suppose that 

 can't be covered by a finite subcovering from . 
Divide  into two equal closed intervals  at least one of the sets 

 or  can't be covered by a finite subcovering from  
for otherwise, we get  covered by a finite 
subcovering from  a contradiction with . 
   Let  be the set which can't be covered by a finite subcovering from 

. 
   Divide  into two equal closed intervals  at least one of the sets 

 or  can't be covered by a finite subcovering from  
say . 
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continue in this way, hence we get a sequence of closed intervals  a 
satisfies: 
1) . 
2)  is a non-empty closed sets. 
3) The   
And  can't be covered by a finite subcovering from  by 
the nested intervals theorem we get  
 
Claim:  a cluster point for . 
Let  be an open set such that  
Since , then  such that  by Archimedean 

, but  is an infinite set, . 
 a cluster point for  

Since  is closed, then . 

Since , then  such that . 

Then  such that , hence  a contradiction 
since  can't be covered by a finite subcovering from . 

 

Corollary(4.44): 

   Let , then  is compact iff  is closed and bounded. 

Proof:  by proposition (4.42) every compact set is bounded and by 
proposition (4.41) every compact set is closed. 

 by Heine-Borel theorem (every bounded and closed subset of  is 
compact). 
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Examples:

1) is compact.

2) is not compact.

3) is not compact.
4) is not compact.
5) is compact.
6) is compact (every finite set is closed and every finite 
set is bounded).

Chapter (5)

Continuity:
Definition(5.1):

   Let and be metric spaces and let be a function, is said to 
be continuous at if such that for any , if 

, then .
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i.e  is continuous at , if for any ball in  with center  and radius 
, there exists a ball  in  with center  and radius  such 

that . 

 is continuous at each  is continuous

   Let  be a function, then  is continuous at  iff for any open set  in 
 with  is open in , where . 

 is open in 
.  is continuous

 is open in , 
clearly  (since ), then 

 
is continuous at . 

   Let  be a function,  is continuous at  iff for any closed set  in  
with  is closed in . 

 (H.W) 

Hint: .  is closed. To prove  is closed, we have to 
show  is open. 
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   Let  and  be two metric spaces and let  be a mapping,  is 
continuous at  iff for each sequence  converge to  , the sequence 

 converge to . 

 is continuous at sequence in 
 converge to . 

 is continuous at ,
clearly 
sequence sequence

, then sequence

 is continuous at .

 

Examples(5-5):  

5) Let   is defined by . Is  continuous? 

Let . To prove  is continuous at . Let sequence in  such that 
, we have to show .  and  

 is continuous everywhere since . 

6) Let is defined by . Is  continuous? 
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   Let . To prove  is continuous at . Let sequence in  such that 
, we have to show .  and , 

. Thus  and  is continuous at . 

7) Let   is defined by . Is  continuous? 

   Let  and let  To prove  such that if , we have 
to show . 

  

If we take , then , but , then 
, which implies that . 

So that , then choose . 

Now, it is easy to show that  satisfies this relation. In fact if , then 

. Thus  is 

continuous. 

   Let  be a metric space, the mapping  is called a real valued mapping.

   Let  be a metric space and  be a real valued mapping, if  are 
continuous at , then:- 

  continuous at  such that 
  continuous at  such that 

  continuous at  such that .

  continuous at  such that .
  continuous at  such that .
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Example: 

 (3) 

Let sequence in  such that , we have to show . 

, since  continuous at , then.  and  , 

hence , then . Thus  is continuous at . 

 

   Let ,  and  be metric spaces and  be a continuous 
mapping at  and  be a continuous mapping at , then  
is a continuous mapping at . 

 (H.W) 

 

   Let  be a real valued mapping, we say that  is bounded if there exists 
 such that . 

, . 

 

   Let  be a continuous mapping, if  is compact, then  is compact, hence 
 is bounded and closed. 
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be an open covering for ,  is open in 
, since  is a continuous, then  is open in , since 

. 

 . 

 So that  is an open covering 
for . 

   Since  is compact, then  such that , then 
 and ,. Thus  is compact. Also 

since  is compact, then by Hein Boral theorem  is bounded and closed. 

   Let  be a real valued mapping defined by , then. 

1)  is continuous mapping. 
2)  is not compact. 
3)  is not bounded. 

In fact  such that . 

 

   Let  be a mapping, if there exists  such that , 
then  is called a minimum point, if there exists  such that 

, then  is called a maximum point. 

   Let  be a continuous mapping, if  is compact, then there exists  
such that . 
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has minimum and maximum point).

By proposition (5.8) is compact and hence is closed and bounded, since is 
bounded (below, above).

Below: such that , if , 
then such that , then . Thus is the 
minimum point.

If , then is a cluster point for , 
(Since , hence is a cluster point for ). Thus 
(since is closed). Then such that , then 

. Thus is the minimum point.

Above: (H.W).

Uniform Continuity

Definition(5.11):

   Let and be metric spaces and let be a mapping, we say that
is uniformly continuous if such that, if , then 

.

Clearly every uniformly continuous mapping is continuous, but the convers is 
not true as the following example show:
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Example:  

Let   is defined by . Is  continuous? 

Let . To prove  is continuous at . Let sequence in  such that 
, we have to show . 

. Thus  and  is continuous. 

The proof of continuity by using definition: 
let , if , then 

, hence  and  

. Take  

Thus  and  is continuous. 
But  is not uniformly continuous. 
Take  , by Archimedean 

 such that , . 

  

. Thus  is not uniformly continuous. 

Notice that  is uniformly continuous on . 

   let , such that , if  

  

Take . 

Example:  

Let  is defined by .  is continuous but not 

uniformly continuous on . Take  
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Let  we must show that  there exists  such that 
 but . By Archimedean there exist a positive integer  

such that . 

Let . 

,  such that , hence 

  

  

By Archimedean there exist a positive integer  such that . 

Or let , then  but . 

Thus  is not uniformly continuous. 

Notice that  is uniformly continuous on . 

let , such that , if  

. 

So that if , we can find . In this case if , then  

. Thus  is not uniformly 

continuous. 

H.W:  

Let   is defined by . Prove that  is continuous 
but not uniformly continuous on . 
 

   Let  be a continuous mapping, if  is compact, then  is uniformly 
continuous. 
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   let , such that , if , 
let , let  be an open interval, since  is 

continuous, then  is open in  and  and . 

   Let  be a ball with center  and radius , hence  is an 

open covering for  , since  is compact, then  

such that . 

Choose . 

Claim:-  is satisfies the condition of uniformly continuous. 

, if . 

Since , then  such that  i.e 

. 

, since  is 

continuous, then  

. 

  If  is a continuous mapping, then  is uniformly continuous. 

1. Let  be defined by . 
Let  be a sequence such that . 
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Since , then . 
 
2. Let  be defined by . 

Let  be a sequence such that .   

Since , then , hence  is uniformly continuous. 

 
3. Let  be defined by . 

Let  be a sequence such that . 
  

Since , then , hence  is uniformly continuous. 

 

   Let  be a mapping,  is said to be satisfies the 
for each  between  and , then there exists 

 between  and  such that . 

 

   Let  be a continuous mapping and  between  and , there 
exists  in  such that  

   Let , since  between  and , then either  or 
 

1) If , let . 
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If , then we are done. 

If not , then either , then  or , 
then . 

Let  or , then either  or 
 

Let , let . 

If , then we are done. 

If either , then  or , then 
. 

Let  or , then either  or 
. 

Continuo in this way we get a sequence of closed intervals  such that 
.and  sinc , hence by nested intervals 

theorem of closed intervals  

Claim:-  

 and , Since , then , such that . 
 and , since  is 

continuous, then  and  and by (2) 
. Thus . 

If , then either  or . 

If . 

If . 
 
2)  (H.W). 
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1) Let  be a continuous mapping, if  , 
then  has at least one real root. 

If  
  

  
Thus By intermediate value theorem  such that  where   
If  
Then  

  
Then  such that  

2) If  odd and continuous. 
 by satisficing theorem (5.15) 

If   
  such that  

If  
  

Hence  such that  
 

  
  

 
 

   Let  be a continuous mapping, then has at least one fixed point where 
 disk in . 

 
Let  be a continuous mapping, then has at least one fixed point. 
Sol: 
Let    is continuous mapping on . 
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.

.

By theorem (5.15) such that 

has at least one fixed point.

Chapter (6)

Sequences and series of functions:
Definition (6.1):

   Let . Define , the sequence is 
called a sequence of function where .

Definition (6.2):(Point wise convergence and uniform convergence)

   Let be a sequence of function on , we say that converges to a function on 
, if such that .

.

In this case, we say that converges point wise to a function for short, we write 

And converges uniformly to a function on , if 

such that , for short we write 
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Examples (6-3):  

8) , let   be defined by . Is  converges point wise 

to ? 

. . 

1) sequence . 
2) Let   

, by Archimedean property , 

then  

. 

Thus  

But  does not converge to  uniformly. 

Since if , then . 

Which is contradiction, since  is not bounded. 
To show the sequence  is converges uniformly to a function   

. 

, by Archimedean property on ,a  

, then  

. Thus  on . 

 

9) , let   be defined by . Is  
converges point wise to ? 

 is decreasing sequence and bounded below by zero, so it is converges sequence. In 
fact if , which implies that , therefore If 

, then . 

If , then  ,then . 
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Thus  

But  does not converge uniformly. 
Is ? 
Specially is ?  

if , then . 

Thus  does not converge uniformly on . 
To show the sequence  is converges uniformly to a function   

. 
, by Archimedean property on , 

, then  
. 

Thus  on . 
 

10) , let   be defined by . Is  converges 

point wise to  ? 

.  

Let   

, by Archimedean property on 

, then  

. Thus  

But  does not converge to  uniformly. 

Since if if , then . 

Thus  does not converge uniformly on . 
To show the sequence  is converges uniformly to a function   

. 
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, by 

Archimedean property on , , then

.

Thus converges uniformly on .

   Let be a sequence of function such that convergence point wise to a function on 
, and , then converge uniformly to .

Example:

, let be defined by . Show that whether 

convergence uniformly or not.?

and by proposition 

(5.10) .

.

Then is increasing function, hence so that . Thus 

. By ( 6.4).

The following propositions give some properties of uniformly converges.
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   Let  be a sequence of mapping on , if   is bounded  on  and  
converges uniformly to  on , then  is bounded  on . 

i.e  such that   

. 

is bounded , then  such that , hence 
. 

  
. 

Thus . 
 

   Let  be a sequence of continuous mapping on  such that  converges uniformly to  
on , then  is continuous. 

 is continuous for each sequence  
converge to  on , the sequence  converge to . 

 be a sequence on  such that 
continuous and , then ,  such that 

 

 such that   

. 
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, 

take . Thus  
 

,then . 

Thus  

But  is not continuous. 

   Let  be a sequence of continuous mapping on  that converges to  on , if either 
 or  and  is 

compact, then  converges uniformly to  on . 

Case (1):- When , to proof . 

Let  we will prove that . 
 is continuous on . 

, hence . 

Since , then . 

Thus  s.t . 

 is continuous  
whenever . 

( i.e  ball  in , a ball  with center  in  such that  and 
. 

So that  is an open covering for , ( . 
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Since  is compact,  such that , take 
. 

Thus . 

Case (2):- When  (increasing) (H.W). 

 

Definition (6.8):  

   Let  be a sequence of mapping on , we say that  is uniformly bounded sequence 
if there exists a real number  such that . 

i.e   

  

  

Example: 

, let   be defined by . Show that  

uniformly bounded  

  

. 

 

Definition (6.9):  

   Let  be a sequence of mapping on , we say that  is a bounded converging to  on 
 if:- 

1)  converges to  on .   
2)  uniformly bounded sequence. 
 
Example: 
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, let   be defined by . Show that 
 uniformly bounded  

1)  where  

2) . 

 is uniformly bounded sequence. Thus . 
 

Theorem (6.10):  

   Let  be a sequence of mapping on  that converges uniformly to  on , if , 
 is bounded, then  is a bounded converges to  on . 

 

bounded on  i.e 
. 

i e  such that 
. 

. 
Take . 
 
Uniformly converges  bounded converges  point wise converges. 
But the converse in general is not true. 
 
Example: 

, let   be defined by . Is  
uniformly converges? 

1)  where  and  

2)  uniformly . 
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Thus  is not uniformly converges sequence. 
 
Example: 

, let   be defined by . Is  

uniformly bounded  

? 

 s.t . 

Then . 

 is not uniformly bounded  

If , then  

 
By Archimedes on   

If , then , then  with . 

If ? 

Hence  is not uniformly bounded  

 

Proposition (6.11):  

Let  be a bounded convergence sequence to  on , then  is bounded. 

 
  is uniformly bounded
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i e  such that . 
. Since  is bounded, then 
. 

  
. 

. 
 

Seris of mapping (6.12) 

   Let  be a sequence of real valued mapping where on , the sum 
 is called the series of mappings. 

  

  

  

  

  

. 

  

 

 is called the sequence of partial sums of  

converges uniformly to a function  on , then  and the 
convergence is uniformly on  

If converges point wise to a function  In this case,  and the 
convergence point wise on  

 

Example:  
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. Geometric series. 

When , then . 

If , then . thus  

If , then  is diverges series since  not bounded, hence diverges. 
Thus  only on . 

 

Power seris (6.13) 

The power series is of the form:- 

 

When , then 

 

When , then  

 

Thus  converges when . 
 

Example:  

. 

Since  is not bounded , then 
is diverges series.

Thus the series  is converges only when . 
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Theorem (6.14): 

   Let  be a power series, if  converges at , then 
 converges at each  such that . 

Proof: 
  

  

Since  is a converges series, then by proposition (3.5) the sequence 
 convergence to zero, hence  is bounded sequence i.e 

. 

 is a geometric 

series, hence  converges when  but . Hence . 

Remark (6.15): 

   Let  be a power series 
1)  converges only at . 
2)  absolutely converges on . 
3) There exists  such that  absolutely converges for each  with 

 in this case  is called the radius of convergence of the series and  is called 
an interval of convergence. 
 

Theorem (6.16): 

   Let  be a power series with . 

1) If the sequence  converges to , then  when , and if , 

then . Thus  is a convergence interval. 

2) If the sequence  is not bounded, then  converges only when 

. 
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Examples (6.17): 

1. ,   

  

Hence , , then  Converges . Thus  is a 

convergence interval. 
 

2. ,   

  

Hence , , then  Converges . Thus  is a convergence 

interval. 
 
3. ,   

 not bounded. 

Hence  Converges only at . 
 

(H.W): . 

 

 

Chapter (7) 
 

Riemann integration: 
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Definition (7.1):

   Let , and 
is called a Riemann partition, put , since is bounded, then has and 
. Let 

. 

Clearly:- .

is called Riemann upper sum, and is called 
Riemann lower sum.

Clearly:- , (since ).

Definition (7.2):

   A partition on is called refirement for if every in is in .

Example:- .                                             [              |                ]          

   If is a refirement for , then , and 

Let , clearly is a refirement for and . Thus 

.
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Let  bound below. 
 bound above. 

By proposition (7.4), we have each element in  is a lower bound for  and each 
element in  is an upper bound for . 
And by completeness of ,  has a greatest lower bound and  has a least upper 
bound. 
Now, let  which is called Riemann upper integral and  

 which is called Riemann lower integral. 

Clearly that:- . 

If , then  is called Riemann integrable. O.W we say that  is not Riemann 
integrable. 

 Let  be defined by . Riemann integrable

  

  

  

  

  

 . 

  

  

 

Riemann integrable. 
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 Let  be defined by . Riemann integrable

  

  

  

 

 

 

  

  

 

 

 

 . 

  

  

 

Riemann integrable



96 
 

  such that . Riemann integrable

 Let  be defined by . Riemann 

integrable

  

  

  

  

  

 . 

  

  

 

Riemann integrable

Q1/ Is there exists a discontinuous mapping in finite infinite of point and Riemann integrable? 
Q2/ Is every continuous mapping and Riemann integrable? 
Q3/ Is there exists a relation between points of continuity and Riemann integrable? 

There exist discontinuous mappings in a point and Riemann integrable. 

 Let  be defined by . Riemann integrable
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. 

  

  

  

 

 

 . 

  

  

 

Riemann integrable
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 Let  be defined by . Riemann integrable

  

 

To answer question tow 

Lemma (7.6): 

Let   be a bounded function  is Riemann integrable iff for each , there 
exists a partition  on  such that . 

Proof: 

 Let , since  is Riemann integrable, then  

. 

i.e there exists a partition   such that . 

 

. 

i.e there exists a partition   such that . 

 

Let  clearly  is a refirement to each  and . 

  

By proposition (7.3)  (since  is integrable) 

 Let  and there exists a partition  on  such that . 
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. Thus  is Riemann integrable 

Proposition (7.7):  

Let   be a bounded function, if  is continuous, then  is Riemann 
integrable. 

Proof: 

By previous proposition (5.10)  has a minimum and a maximum points and also by 
proposition (5.12)  is uniformly continuous. 

Divided  into  equal closed intervals each of length , 
 

 is uniformly continuous on . 
Let  if , then . 

 

 

 

Thus  is Riemann integrable.by (7.6) 

Monotonic function and Riemann integrable: 

Definition (7.8):  

   Let   be a function  is called a non-decreasing (increasing) if 
 if , then   and  is said to be a non-increasing 

(decreasing) if  if , then  . 

 

: 



100 
 

1. ,  is continuous function but not monotonic. 
2.  is monotonic function but not continuous. 

 
Remarks (7.9): 
1) Let   be a monotonic function, then  is bounded. 

If  is non-decreasing, then . 

If  is non-increasing, then . 

2) Let   be a monotonic function and  is non-decreasing, then  is non 
increasing and if  is non-increasing, then  is non-decreasing. 
Theorem (7.10): 

Let   be a monotonic function, then  is Riemann integrable. 

Proof: (H.W) 
 
Definition (7.11):  

   Let  is called a negligible set (zero set) if for each , there exists a countable 
collection of open intervals  such that. 

1.  
2. . 

 
Remarks (7.12):

 

Let  

1.  
2. . 

 

2) In general every countable (finite or infinite) set  
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Let  

1)  

2) . 

 
In particular  (the set of rational numbers) is a zero set. 
 
3)  is a  and , then  is a  
Proof: 
Since  is a 

1.  
2. . 

Since , and , hence we are done. 
 

4) The union of a countable number of  sets  
Proof: 

a countable collection number of a  set. T.P.  

a countable collection of open intervals such that 

. 

1)  

2) . 

 
5) Every interval in  is not a  set. 
Proof: 

Every open covering for , any intervals  is of length equal or greater than  and 
hence when . 
The condition (2) is not hold. 
 

6)  is not a  set. 
. 
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 is not a  set by (5) and  is a  set by (2) 
If  is a zero set, then . is a zero set C!   
 
Theorem (7.13): (Lebesgue theorem in Riemann integration) 

Let   be a bounded function, then  is Riemann integrable if and only if the 
set of discontinuous points  of  on  is a  set. 

: Every empty set is a zero set. 

Let  

1)  
2) . 

 

Corollary (7.14):  

Let   be a monotonic function, then the set of discontinuous points of  on 
,  is a  set. 

bounded  is Riemann integrable, then by 
 is a  set.

Corollary (7.15):  

Let   be a bounded Riemann integrable function and let   be a 
bounded function, if , then  is Riemann integrable. 

Since   is bounded and Riemann integrable, then by  of  on 
 is a  set and every subset of a zero set is also is a zero set, hence  a zero set 

and again by (  is Riemann integrable
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Proposition (7.16):  

Let   be a bounded function and let , if  is Riemann integrable on 
, then  is Riemann integrable on  and . Moreover. 

Let  and  be partitions on  and  respectively. 
. 

. 

  

Notice that  is Riemann integrable on  and . 

By corollary (7.15) 

 

 

 

And 

 

From  and  we get  

Thus 

Remark (7.17): 

Let , then 
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 is a vector space. 
Let ,. 
then  

,  is a zero set. 
, let ,  is a zero set. . 

 is a zero set, then  is a zero set. 
Thus  is a Riemann integrable, then . 
Now, define  

(Number) 
  

1)  
2)  

Proposition (7.18):  

Let   be a bounded function, if  is Riemann integrable and 

, then . 
 

Let  be a partition on . 
. 

  

, since  

  

  

  

Since  is Riemann integrable  

 

Corollary (7.19):  
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Let   be bounded functions, if  and  are Riemann integrable and 

, then . 

Let  
Since  is bounded, then . 
Since  is bounded, then . 

 
Then  is bounded and  is Riemann integrable [  and by proposition 

(7.18) , then . Thus 

. 
 

Corollary (7.20):  

If , then  and . 

1. Since ,  
Since , then by Lebesgue theorem  is a negligible set. Hence  is 
a negligible set and then by Lebesgue theorem . 

2. Since , then by corollary (7.19) 

, thus . 

Remark : 

   The convers in general is not true i.e if , then needn't be . 
Example: 

 .

Riemann integrable is not Riemann integrable

Remark : 

   Clearly that , but if  is ? 
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In general No
Examples:

Let .

but 

Let .

but 

Proposition (7.21):

Let and is continuous function, and , 
then .

Suppose that the result is not true (i.e) .

Let be a ball in , since is continuous on , then a ball 

in such that 
Let closed interval, since , then .

is closed and bounded, then by Hien-Borel theorem is compact, hence is 
continuous on a compact space, hence has minimum and maximum points. 

from (*) since 

Definition (7.22):
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Let  be a sequence of real valued functions on , we say that  converges (point 
wise) to  on  if  such that 

. 

And we say that  converges uniformly to  on  if  such that 
. 

 

: If  is a sequence of real valued bounded function on  that converges point wise 
to  on  and  the sequence  is Riemann integrable on . Is  Riemann 
integrable? 

Answer: No in general as the following example show: 

Example: 

Let , let  be the set of rational numbers in   

 be defined by . 

  

  

  

  

 is a negligible set . Hence  by Lebesgue. 

Claim: , where  

, 



108 
 

,  

  

, 

  

   

   

If , then  

Thus  and . 

H.W: 

 converges point wise to . 

 

: If  is a sequence of real valued bounded functions on  that converges point wise 
to  on ,  if the sequence  is Riemann integrable on  and  Riemann 
integrable. Is ? 

Answer: No. in general as the following example show: 

 

Example: 

 be defined by . 
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. Hence  

  

  

  

, hence in general  

  

 

Note: ormly the answer for two questions are yes.as in the following 
theorem: 

 

Theorem (7.23): 

Let  be a sequence of bounded functions on  that converges uniformly to  on  
and if , then . 
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Moreover  converges to  i.e . 

Proof: 

Since  and  is bounded , then  is bounded by proposition (6.5). 

Let  the set of discontinuous points of  on . 

Since , then  is a negligible set. 

Let  is a negligible set, then  is continuous on . 

Since  and  is continuous on , then by proposition (6.6)  is continuous 
on , then  where  the set of discontinuous points of , then 

 is a negligible set and hence . 

 

Then  such that . 

 

Chapter (8) 
 

Differentiation: 
Definition (8.1):  

   Let  be a function, we say that  is differentiable at  if for any 
sequence  in  such that  and , there exists a real number 

 such that the sequence 

 

i.e:-  in  such that ,  such that 
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is called the derivative of at , also is denoted by 

Otherwise is not differentiable at .

Remark (8.2):

   If is differentiable at each , then we say that is differentiable.

      Let be a function then is differentiable at iff there exists a 
real number and a continuous function with satisfies 

is differentiable at , then in such that 

, such that 
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 T.P  is differentiable at  we have  continuous a   

 be a sequence in  such that  and ,  

 

 is differentiable at 

   Let  be a function if  is differentiable at , then  is a continuous 
at . 
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Since  is differentiable at , then  a real number  and a continuous function 
 with  satisfies  

 
Since  and  are continuous functions.  

Then  is a continuous at . 

Remark :- 

   The convers of the above proposition in general is not true as the following example shows. 

7) Let  be defined by . 

 is a continuous at . 

Let 

 is not differentiable at  i.e  in  such that , 

 such that  

 is not differentiable at 

 

Now, we have some examples about differentiation: 

 Let  be defined by .
 is differentiable  

Let and let ,  
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 Let  be defined by .
 is differentiable  

Let  and let ,  

 

 

 Let  be defined by . differentiable
Let  and let ,  

 

 is differentiable  

11) Let  be defined by . 

 is not differentiable (H.W). 
 

Proposition (8.5):  

   Let  be differentiable functions at , then: 

1.  is differentiable at  and . 
2.  is differentiable at  and . 
3.  is differentiable at  and . 

4.  is differentiable at  and . 

 
Proof:(4) 

Let  , 
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Since ,  are differentiable function at , then 
 and  such that. 

 

And  continuous 

 

 

 

Proposition (8.6): (Chain Rule) 

   Let  be a differentiable function at  and  be a differentiable function 
at , then  is differentiable at  and ;  are 
open intervals. 

Proof: 

 is differentiable at   and a continuous function  
with  satisfies: 
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 is differentiable at ,  and a 
continuous function  with  satisfies: 

  
  

  

  

  

. 

 

1) Let  be a function defined by ,. 
. (H.W) 

 
2)  

  

 

 

 

Definition (8.7):  

   Let  be a function, let , we say that  is increasing at , if there 
exists an open interval  such that  if , then , and 
if , then . 

And  is decreasing at , if there exists an open interval  such that  if 
, then , and if , then . 
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If  is increasing at , then  is increasing function and if  is decreasing at 
, then  is decreasing. 

 

Theorem (8.8):  

   Let  be a differentiable function at , if , then  is increasing at  
and if , then  is decreasing at . Hence if , then there exists an open 
interval  such that  is 1-1 and on . 

 

The inverse function theorem (8.9):  

   Let  be a differentiable function at , if , then there exists an open 
interval  and an inverse function  of  where  and  is differentiable at . 
Moreover ;  is open intervals. 

Proof: 
Since , then by theorem (8.8) there exists an open interval ,  and 

 is 1-1. 
 is 1-1 and onto since if . Hence has inverse say 

. , . 
, , chain rule  at , then 

, then , where  [given]. 

Since  is differentiable at , then  continuous and  satisfies:  
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Thus  is continuous on . And  

 

 

Definition (8.10):  

   Let  be a function , we say that  is a local maximum point, if there 
exists an open interval , such that , , and we say that  is a 
local minimum point , if there exists an open interval  and . 

 

Proposition (8.11):  

   Let  be a differentiable function, if  is either a local minimum point or a local 
maximum point, then  

, then either , then  is decreasing at , or , then  is 
increasing at  is not local minimum and not local maximum a contradiction, 
hence  

Remark (8.12):- 

   In general the convers of the above proposition is not true as the following example shows:- 

Let  be defined by . 
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Since  is increasing at , then  is not local minimum and not local maximum 

 

Roll's theorem (8.13):  

   Let  be a differentiable function on  and continuous on , if 
, then there exists  such that . 

If  is constant, then  
If  is not constant 
Since  is continuous on  (compact set), then  has maximum and minimum values say 

. 
i.e  such that  
Clearly  since  is not constant. 

 maximum and minimum points, then  is local minimum, then  by (8.11), 
put  
Clearly  and , since if , then 

  
Or , then  
Then  is constant C! 
Say , then , put . 
And , then , put . 
 

Mean Value Theorem (8.14):  

   Let  be a differentiable function on  and continuous on , then 

there exists  such that . 

 is differentiable function on  and continuous on   
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So that , then by Roll's theorem  such that .  

Then . Thus 

 

 

Chapter (9) 
 

 

Measure Theory: 
The length of open bounded intervals:  

Step 1. If  is an open bounded interval, then the length of 
 is denoted by  and defined by: 

 

Where  is the empty set  

1.  
 

2. If  are two open intervals with , then . 
3. If  are two open intervals, then  and 

, if , then . 
In general if  are open intervals, then  
If  are disjoint, then . 

4. If  is a countable number of open intervals, then  and 
if  are disjoint , then . 
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5. . Where . 

 
 
 

The length of open bounded sets:  

Step 2. If  is any bounded open subset of   

      Every open bounded subset of  can be written as a union of a countable number of 
disjoint unique open intervals and this representation is unique. 

 

 are open intervals  , . Hence by lemma 
(9.1) if  is an open subset (interval) of , then ,  

Let  (disjoin). 

bounded bounded

bounded bounded 
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 If  are open bounded subset of  with , then .

By (9.1) [ , then . Thus ].
 If  are open bounded subset of , then .

In general if  are open bounded intervals, then  
If  are disjoint, then . 
4 If  is a countable collection of open bounded subset of , then 

 and if  are disjoint , then 
. 

5 If  is open bounded set, then  
, where . 

  

Step 3. If  is any bounded subset of , let  

 

 is bounded, then a ball  (open interval) open and bounded such that . 

 bounded below, since  is complete,  

Let  

 is called the outer measure of . (for short we write  by ). 

 If  
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 If  

,  is . 

  

 

 If  

. 

 

 If  is an infinite countable subset of , , 

 If  
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 If  (H.W)

 If  is  is 

: 

   Let  be  

i.e 
1. . 
2. . 
T.P  
Take . 

  

. T.P  is . 

Let , then  open and subset of  such that . 
   

Since  is open, then by lemma  is a union of open balls (intervals in ). 

Thus 

1. . 
2. Since , then . 

 
Bounded measurable sets: 

Definition (9.2):  

   Let  be a subset of , we say that  is a measurable set, if  an 
open subset  of  such that  and . 

Note: If  is a measurable set, we put  

Examples: 
1) If . is  measurable set
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Let , 

take  

is measurable

2) If . is  measurable set

 .

 

 

3) If  is  measurable set

. 

4) If . is  measurable set  (H.W)

Proposition (9.3):  

   Let  be a measurable set, then  
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 If  are measurable sets with , then .
 If  are measurable sets

If  are measurable disjoint sets . 
4 If  is a collection of measurable bounded sets, if  is bounded, then  is 
measurable set and . 
If  disjoint, then  
5 If  is bounded measurable set and , then . 

 

Proposition (9.4):  

   Let  be a subset of .  is a measurable set iff an open 
bounded subset of ,  such that . 

 
Examples: 

1) Every open bounded set is a measurable set. 
Let , take . 
 

2) Every bounded interval is a measurable set. 

, let , take  

  

. 

By Arch median  

3)  Every bounded countable (finite or infinite) subset of R is a measurable set 

Let , let , 
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Theorem (9.5):  

let  be a bounded measurable subset of , then. 

 
 If  are bounded measurable sets such that , if  is measurable, then 
 is measurable and 

3) If  are bounded measurable sets, with  is bounded, then  is 
measurable and . 
If , then  
4) If  are bounded measurable subsets of  with  is bounded, then 

 is measurable sets and . 
If  disjoint, then  
5) If  is bounded measurable subsets of , then for any ,  is a measurable 
set and . 
 

Chapter (10) 
 

 

Lebesgue Theory of Integration: 

Definition (10.1): Lebesgue Partition 

   Let  be a bounded measurable subset of  and  be a finite collection of subset of 
.  is a Lebesgue partition on  if satisfies: 

1)  
2)  are measurable sets  
3)  is a zero set. 

Notes: 

1) If  and , we say  is a refinement to  if   
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2) If  and  are Lebesgue partitions on , then 

 is a Lebesgue partition on . 

 

Definition (10.2): Lebesgue Integral 

   Let  be a bounded measurable set and  be a bounded function. ) If  
is a partition on , put  

. 

And put   

Clearly:- . 

Now define 

 is called Lebesgue upper sum for Lebesgue partition . 

And 

 is called Lebesgue lower sum Lebesgue partition . 

Clearly:- . 

Remarks : 

(1) If  is a refinement to , then. 

 

 

(2) For any two partitions  and  on . 

 

  
. 

From (1)  is bound below and  is bound above, by completeness of   
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Put which is called Lebesgue upper integral and 

which is called Lebesgue lower integral.

Clearly that:- . If , then is called Lebesgue integrable and we 

write .

Remarks (10.3):

     Every Riemann partition is a Lebesgue partition.

Let be a closed interval. It's clear that 

1.
2. is a measurable sets 
3. or only one element which is a zero set.

Hence we have the following result.

      If is a bounded function and is Riemann integrable, then is Lebesgue
integrable

every Riemann partition is a Lebesgue partition 
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 is Riemann integrable, then  and hence . 

Remark : 

Let  be defined by 

 
 is not a zero set, then by Lebesgue theorem . Thus 

Riemann integrable 
Let  where  and . 
Claim:  is a Lebesgue partition 
1)  
2)  

  
. 

. 
3)  is a zero set. 
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. 

  

  

 

Lebesgue integrable. 
 

Let  be a measurable bounded set and  be a bounded function, then  is 
Lebesgue integrable iff for each , there exists a Lebesgue partition  such that 

. 

Compare with Lemma (7.6)

Some properties of lebesgue integral:  

Remarks : 

 Let  be a measurable  bounded set and  be a function defined by 

, is Lebesgue integrable
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 and  zero set, then  
  

Thus . 

  

  

 . 

  

  

 

Lebesgue integrable. 
 

20) Let  is a bounded measurable set and  be a bounded Lebesgue integrable 

function, if , then . 

Lebesgue   
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 If  is a zero set and  is a bounded function, then Lebesgue integrable and 

.

Lebesgue
 . 
  are measurable sets  
  is a zero set. 

Since  is a zero set, then each  is a zero set and . 

, then  

  

  

Similarly . 

Then Lebesgue integrable and .

22) If  is a bounded measurable set and  is a bounded Lebesgue integrable function, 

, then . 

From (2) , then . Thus  

  

 

Let  be bounded function,  be a measurable bounded set if  are subsets of  
such that  and  and  is Lebesgue integrable, then  
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Proposition (10.7):  

Let  be a measurable bounded set and  be bounded Lebesgue integrable 
functions, then. 

3)  

4)  
 

Corollary (10.8):  

If  is a measurable bounded set and  are bounded Lebesgue integrable 

functions such that , then . 

Let  

By (4) . 
Then  

. 
 

Corollary (10.9):  

   If  is a measurable bounded set and  is a bounded Lebesgue integrable function , 

then  is Lebesgue integrable and . 

Definition (10.10):  

Let  be function

Proposition (10.11):  
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Let  is be bounded measurable set and  be bounded function , if  is 

Lebesgue integrable and , then  is Lebesgue integrable and . 

Example: 

Let  be defined by .

 
Measurable functions and integrable functions 

Definition(Measurable functions)  (10.12):  

    Let ,  be bounded function,  is said to be a measurable function if for each 
open set  in ,  is a measurable set. 

 

Remarks:  

1) If  is a measurable function, then  is a measurable set. 
Since  is open, then  is a measurable set. 
 

2) If  is a measurable set and  is a continuous function, then  is a measurable function. 
 

Let be any open set, since  is a continuous function, then ,  is 
open set and  is a measurable set, hence  is a measurable set. 
 

Proposition (10.13):  

     If  and  is a function, then the following are equivalent: 
1)  is a measurable function. 
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2) For each closed set , then  is a measurable set. 
3) For each , then  are 

measurable sets 
3) For each , then  are measurable sets. 
4) For each , then  are measurable sets. 

 
Corollary(10.14): 

  is a function: 
1)  is a measurable function iff for each , then  is a measurable set. 
2)  is a measurable function iff for each , then  is a measurable set. 
3)  is a measurable function iff for each , then  is a measurable set. 
4)  is a measurable function iff for each , then  is a measurable set. 

 
Example: 

Let  be defined by . 

Sol: let ,  is open  

 

  
 is bounded countable set, the  

 [disjoint] 
  

  
In each case  is a measurable set, hence  is a measurable function. 
 

Remark: 
If  is a monotonic function, then is a measurable function? (why) 
 

Proposition (10.15):  
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    If  and  is a measurable function and  are continuous function, 
then  is a measurable function. 
 

 
Let be any open set in , since  is a continuous function, then  is open set in . 

, since  is open set in  and  is a measurable 
function, hence  is a measurable set. 
 
 

Bounded variation functions 
Definition(10.16): 

Let  be a function and 
  

Let  

 

Let , then  is bound below. 
If  is bound above, then  has least upper bound. 
Put . 

 is called the variation of  on   

 is called the bounded variation function. 

Otherwise if  is bound above, then  is not bounded variation function. 
 

Remark (10.17):  

If  is a bounded variation function, then  is bounded. 
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. 
 exists, then  

Take . 

 

Remark (10.18):  

      If  is a bounded monotonic function, then  is a bounded variation 
function. 

 

Remark (10.19):  

      If  are bounded variation functions, then  is a bounded variation 
function. 

  

. 
  

  
  

  
 

  
  

Thus  



139 
 

 

Remark (10.20):  

If  is a bounded variation function, then  is a bounded variation function. 

 (H.W) 
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