
1

Republic of Iraq

Ministry of Higher Education and

Scientific Research University of

Baghdad

Computational Group Theory

 الزمر الحسابية

 محاضرات تدرس لطلبة الدراسات الاولية

 الفصل الدراسي الثاني-المرحلة الثالثة

 جامعة بغداد-كلية العلوم-قسم الرياضيات

سطةبوا
علي عبد عبيد الدكتور

2020-2021

2

Computational Group Theory

Definition 1: Computational Group theory (CGT) is the study of algorithms

for groups. It aims to produce algorithms to answer questions about concrete

groups, given for example by generators or as symmetries of a certain

algebraic or combinatorial structures.

Interest in this comes from (at least) three areas:

1-Interest in developing algorithms.

2- Concrete questions about concrete groups.

3- Complexity theory.

Computational Group Theory

Computer Algebra System Group Theory

 (GAP)

References:

1-The GAP Group, GAP Groups, Algorithms, and Programming, Version

4.4.12, http://www.gap-system.org, (2008).

2- H. Kurzweil B. Stellmacher. The Theory of Finite Groups An

Introduction. Springer, Universitext, (2003).

https://en.wikipedia.org/wiki/Computer_algebra_system
http://www.gap-system.org/

3

Section 1: Short Introduction To GAP

Definition 2: GAP (Groups, Algorithms and Programming) is a computer

algebra system for computational discrete algebra with particular emphasis

on computational group theory.

GAP is a system for discrete computational algebra, with particular

emphasis on Computational Group Theory. GAP provides a programming

language, a library of thousands of functions implementing algebraic

algorithms written in the GAP language as well as large data libraries of

algebraic objects, for example the small groups library which contains,

among others.

Structure of GAP

GAP has a kernel written in C. It implements

1-The GAP language,

2-An interactive environment for developing and using GAP programs,

3-Memory management.

4-Fast versions of time critical operations for various data types.

The GAP system will run on any machine with a UNIX-like or recent

Windows or Mac OS X operating system and with a reasonable amount of

RAM and disk space. The current version is GAP 4, but GAP 3 is also

available.

About Starting and Leaving GAP

If the program is correctly installed then you usually start GAP by simply

typing gap at the prompt of your operating system followed by

the Return key, sometimes this is also called the Newline key.

$ gap

4

GAP answers your request with its beautiful banner and then it shows its

own prompt gap> asking you for further input.

gap>

The usual way to end a GAP session is to type quit; at the gap> prompt. Do

not omit the semicolon!

gap> quit;

$

On some systems you could type Ctrl-D to yield the same effect. In any

situation GAP is ended by typing Ctrl-C twice within a second. Here as

always, a combination like Ctrl-D means that you have to press the D key

while you hold down the Ctrl key.

A simple calculation with GAP is as easy as one can imagine. You type the

problem just after the prompt, terminate it with a semicolon and then pass

the problem to the program with the Return key. For example, to multiply

the difference between 9 and 7 by the sum of 5 and 6, that is to calculate (9 -

7) * (5 + 6), you type exactly this last sequence of symbols followed

by ; and Return.

gap> (9 - 7) * (5 + 6);

22

gap>

Then GAP echoes the result 22 on the next line and shows with the prompt

that it is ready for the next problem. Henceforth, we will no longer print this

additional prompt.

If you make a mistake while typing the line, but before typing the

final Return, you can use the Delete key (or sometimes Backspace key) to

delete the last typed character. You can also move the cursor back and

forward in the line with Ctrl-B and Ctrl-F and insert or delete characters

anywhere in the line. The line editing commands are fully described in

section Reference: Line Editing.

If you did omit the semicolon at the end of the line but have already

typed Return, then GAP has read everything you typed, but does not know

that the command is complete. The program is waiting for further input and

5

indicates this with a partial prompt >. This problem is solved by simply

typing the missing semicolon on the next line of input. Then the result is

printed and the normal prompt returns.

gap> (9 - 7) * (5 + 6)

> ;

22

So the input can consist of several lines, and GAP prints a partial

prompt > in each input line except the first, until the command is completed

with a semicolon. (GAP may already evaluate part of the input

when Return is typed, so for long calculations it might take some time until

the partial prompt appears). Whenever you see the partial prompt and you

cannot decide what GAP is still waiting for, then you have to type

semicolons until the normal prompt returns. In every situation the exact

meaning of the prompt gap> is that the program is waiting for a new

problem.

But even if you mistyped the command more seriously, you do not have to

type it all again. Suppose you mistyped or forgot the last closing parenthesis.

Then your command is syntactically incorrect and GAP will notice it,

incapable of computing the desired result.

gap> (9 - 7) * (5 + 6;

Syntax error:) expected

(9 - 7) * (5 + 6;

 ^

Instead of the result an error message occurs indicating the place where an

unexpected symbol occurred with an arrow sign ^under it. As a computer

program cannot know what your intentions really were, this is only a hint.

But in this case GAP is right by claiming that there should be a closing

parenthesis before the semicolon. Now you can type Ctrl-P to recover the

last line of input. It will be written after the prompt with the cursor in the

first position. Type Ctrl-E to take the cursor to the end of the line,

then Ctrl-B to move the cursor one character back. The cursor is now on the

position of the semicolon. Enter the missing parenthesis by simply typing).

Now the line is correct and may be passed to GAP by hitting

the Return key. Note that for this action it is not necessary to move the

cursor past the last character of the input line.

6

Each line of commands you type is sent to GAP for evaluation by

pressing Return regardless of the position of the cursor in that line. We will

no longer mention the Return key from now on.

Sometimes a syntax error will cause GAP to enter a break loop. This is

indicated by the special prompt brk>. If another syntax error occurs

while GAP is in a break loop, the prompt will change

to brk_02>, brk_03> and so on. You can leave the current break loop and

exit to the next outer one by either typing quit; or by hitting Ctrl-D.

Eventually GAP will return to its normal state and show its normal

prompt gap> again.

Constants and Operators

In an expression like (9 - 7) * (5 + 6) the constants 5, 6, 7, and 9 are being

composed by the operators +, * and - to result in a new value.

There are three kinds of operators in GAP, arithmetical operators,

comparison operators, and logical operators. You have already seen that it is

possible to form the sum, the difference, and the product of two integer

values. There are some more operators applicable to integers in GAP. Of

course integers may be divided by each other, possibly resulting in

noninteger rational values.

gap> 12345/25;

2469/5

Note that the numerator and denominator are divided by their greatest

common divisor and that the result is uniquely represented as a division

instruction.

The next self-explanatory example demonstrates negative numbers.

gap> -3; 17 - 23;

-3

-6

The exponentiation operator is written as ^. This operation in particular

might lead to very large numbers. This is no problem for GAP as it can

handle numbers of (almost) any size.

7

gap> 3^132;

9550049507968252368931907017744140119199351389743431298368538

41

The mod operator allows you to compute one value modulo another.

gap> 17 mod 3;

2

Note that there must be whitespace around the keyword mod in this example

since 17mod3 or 17mod would be interpreted as identifiers. The whitespace

around operators that do not consist of letters, e.g., the operators * and -, is

not necessary.

GAP knows a precedence between operators that may be overridden by

parentheses.

gap> (9 - 7) * 5 = 9 - 7 * 5;

false

Besides these arithmetical operators there are comparison operators in GAP.

A comparison results in a boolean value which is another kind of constant.

The comparison operators =, <>, <, <=, > and >=, test for equality,

inequality, less than, less than or equal, greater than and greater than or

equal, respectively.

gap> 10^5 < 10^4;

false

The boolean values true and false can be manipulated via logical operators,

i. e., the unary operator not and the binary operators and and or. Of course

boolean values can be compared, too.

gap> not true; true and false; true or false;

false

false

true

gap> 10 > 0 and 10 < 100;

true

8

Another important type of constants in GAP are permutations. They are

written in cycle notation and they can be multiplied.

gap> (1,2,3);

(1,2,3)

gap> (1,2,3) * (1,2);

(2,3)

The inverse of the permutation (1,2,3) is denoted by (1,2,3)^-1. Moreover

the caret operator ^ is used to determine the image of a point under a

permutation and to conjugate one permutation by another.

gap> (1,2,3)^-1;

(1,3,2)

gap> 2^(1,2,3);

3

gap> (1,2,3)^(1,2);

(1,3,2)

Variables versus Objects

A GAP command sequence_of_letters_and_digits := meaning, where the

sequence on the left hand side is called the identifier of the variable and it

serves as its name. The meaning on the right hand side can be a constant like

an integer or a permutation, but it can also be almost any other GAP object.

From now on, we will use the term object to denote something that can be

assigned to a variable.

There must be no whitespace between the : and the = in the assignment

operator. Also do not confuse the assignment operator with the single

equality sign = which in GAP is only used for the test of equality.

gap> a:= (9 - 7) * (5 + 6);

22

gap> a;

22

gap> a * (a + 1);

506

gap> a = 10;

false

gap> a:= 10;

9

10

gap> a * (a + 1);

110

After an assignment the assigned object is echoed on the next line. The

printing of the object of a statement may be in every case prevented by

typing a double semicolon.

gap> w:= 2;;

After the assignment the variable evaluates to that object if evaluated. Thus

it is possible to refer to that object by the name of the variable in any

situation.

There are some further interesting variables one of which will be introduced

now.

Whenever GAP returns an object by printing it on the next line this object is

assigned to the variable last. So if you computed

gap> (9 - 7) * (5 + 6);

22

and forgot to assign the object to the variable a for further use, you can still

do it by the following assignment.

gap> a:= last;

22

About Functions

A program written in the GAP language is called a function. Functions are

special GAP objects. Most of them behave like mathematical functions.

They are applied to objects and will return a new object depending on the

input. The function Factorial(Reference: Factorial), for example, can be

applied to an integer and will return the factorial of this integer.

gap> Factorial(17);

355687428096000

10

Applying a function to arguments means to write the arguments in

parentheses following the function. Several arguments are separated by

commas, as for the function Gcd (Reference: Gcd) which computes the

greatest common divisor of two integers.

gap> Gcd(1234, 5678);

2

There are other functions that do not return an object but only produce a side

effect, for example changing one of their arguments. These functions are

sometimes called procedures. The function Print (Reference: Print) is only

called for the side effect of printing something on the screen.

gap> Print(1234, "\n");

1234

A comfortable way to define a function yourself is the maps-to operator -

> consisting of a minus sign and a greater sign with no whitespace between

them. The function cubed which maps a number to its cube is defined on the

following line.

gap> cubed:= x -> x^3;

function(x) ... end

After the function has been defined, it can now be applied.

gap> cubed(5);

125

Lists and Sets

A list is a collection of objects separated by commas and enclosed in

brackets. Let us for example construct the list primes of the first ten prime

numbers.

gap> primes:= [2, 3, 5, 7, 11, 13, 17, 19, 23, 29];

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

The next two primes are 31 and 37. They may be appended to the existing

list by the function Append which takes the existing list as its first and

another list as a second argument. The second argument is appended to the

11

list primes and no value is returned. Note that by appending another list the

object primes is changed.

gap> Append(primes, [31, 37]);

gap> primes;

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]

You can as well add single new elements to existing lists by the

function Add which takes the existing list as its first argument and a new

element as its second argument. The new element is added to the

list primes and again no value is returned but the list primes is changed.

gap> Add(primes, 41);

gap> primes;

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41]

Single elements of a list are referred to by their position in the list. To get the

value of the seventh prime, that is the seventh entry in our list primes, you

simply type

gap> primes[7];

17

This value can be handled like any other value, for example multiplied by 2

or assigned to a variable. On the other hand this mechanism allows one to

assign a value to a position in a list. So the next prime 43 may be inserted in

the list directly after the last occupied position of primes. This last occupied

position is returned by the function Length.

gap> Length(primes);

13

gap> primes[14]:= 43;

43

gap> primes;

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]

Note that this operation again has changed the object primes. The next

position after the end of a list is not the only position capable of taking a

new value. If you know that 71 is the 20th prime, you can enter it right now

in the 20th position of primes. This will result in a list with holes which is

however still a list and now has length 20.

12

gap> primes[20]:= 71;

71

gap> primes;

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,,,,,, 71]

gap> Length(primes);

20

Sets

GAP knows several special kinds of lists. A set in GAP is a list that contains

no holes (such a list is called dense) and whose elements are strictly sorted

w.r.t. <; in particular, a set cannot contain duplicates. (More precisely, the

elements of a set in GAP are required to lie in the same family, but roughly

this means that they can be compared using the < operator.)

The elements of the sets used in the examples of this section are strings.

gap> fruits:= ["apple", "strawberry", "cherry", "plum"];

["apple", "strawberry", "cherry", "plum"]

gap> IsSSortedList(fruits);

false

gap> fruits:= Set(fruits);

["apple", "cherry", "plum", "strawberry"]

For and While Loops

Given a list pp of permutations we can form their product by means of

a for loop instead of writing down the product explicitly.

gap> pp:= [(1,3,2,6,8)(4,5,9), (1,6)(2,7,8), (1,5,7)(2,3,8,6),

> (1,8,9)(2,3,5,6,4), (1,9,8,6,3,4,7,2)];;

gap> prod:= ();

()

gap> for p in pp do

> prod:= prod*p;

> od;

gap> prod;

(1,8,4,2,3,6,5,9)

13

First a new variable prod is initialized to the identity permutation (). Then

the loop variable p takes as its value one permutation after the other from the

list pp and is multiplied with the present value of prod resulting in a new

value which is then assigned to prod.

The for loop has the following syntax

for var in list do statements od;

The effect of the for loop is to execute the statements for every element of

the list. A for loop is a statement and therefore terminated by a semicolon.

The list of statements is enclosed by the keywords do and od (reverse do).

A for loop returns no value. Therefore we had to ask explicitly for the value

of prod in the preceding example.

The for loop can loop over any kind of list, even a list with holes. In many

programming languages the for loop has the form

for var from first to last do statements od;

In GAP this is merely a special case of the general for loop as defined above

where the list in the loop body is a range :

for var in [first..last] do statements od;

You can for instance loop over a range to compute the factorial 15! of the

number 15 in the following way.

gap> ff:= 1;

1

gap> for i in [1..15] do

> ff:= ff * i;

> od;

gap> ff;

1307674368000

The while loop has the following syntax

while condition do statements od;

14

The while loop loops over the statements as long as the condition evaluates

to true. Like the for loop the while loop is terminated by the

keyword od followed by a semicolon.

We can use our list primes to perform a very simple factorization. We begin

by initializing a list factors to the empty list. In this list we want to collect

the prime factors of the number 1333. Remember that a list has to exist

before any values can be assigned to positions of the list. Then we will loop

over the list primes and test for each prime whether it divides the number. If

it does we will divide the number by that prime, add it to the list factors and

continue.

gap> n:= 1333;;

gap> factors:= [];;

gap> for p in primes do

> while n mod p = 0 do

> n:= n/p;

> Add(factors, p);

> od;

> od;

gap> factors;

[31, 43]

gap> n;

1

As n now has the value 1 all prime factors of 1333 have been found

and factors contains a complete factorization of 1333. This can of course be

verified by multiplying 31 and 43.

 Writing Functions

Writing a function that prints hello, world. on the screen is a simple exercise

in GAP.

gap> sayhello:= function()

> Print("hello, world.\n");

> end;

function() ... end

This function when called will only execute the Print statement in the second

line. This will print the string hello, world. on the screen followed by a

15

newline character \n that causes the GAP prompt to appear on the next line

rather than immediately following the printed characters.

The function definition has the following syntax.

function(arguments) statements end

A function definition starts with the keyword function followed by the

formal parameter list arguments enclosed in parenthesis (). The formal

parameter list may be empty as in the example. Several parameters are

separated by commas. Note that there must be no semicolon behind the

closing parenthesis. The function definition is terminated by the

keyword end.

A GAP function is an expression like an integer, a sum or a list. Therefore it

may be assigned to a variable. The terminating semicolon in the example

does not belong to the function definition but terminates the assignment of

the function to the name sayhello. Unlike in the case of integers, sums, and

lists the value of the function sayhello is echoed in the abbreviated

fashion function() ... end. This shows the most interesting part of a function:

its formal parameter list (which is empty in this example). The complete

value of sayhello is returned if you use the function Print (Reference: Print).

gap> Print(sayhello, "\n");

function ()

 Print("hello, world.\n");

 return;

end

Note the additional newline character "\n" in the Print (Reference: Print)

statement. It is printed after the object sayhello to start a new line. The

extra return statement is inserted by GAP to simplify the process of

executing the function.

The newly defined function sayhello is executed by calling sayhello() with

an empty argument list.

gap> sayhello();

hello, world.

16

However, this is not a typical example as no value is returned but only a

string is printed.

If Statements

In the following example we define a function sign which determines the

sign of an integer.

gap> sign:= function(n)

> if n < 0 then

> return -1;

> elif n = 0 then

> return 0;

> else

> return 1;

> fi;

> end;

function(n) ... end

gap> sign(0); sign(-99); sign(11);

0

-1

1

This example also introduces the if statement which is used to execute

statements depending on a condition. The if statement has the following

syntax.

if condition then statements elif condition then statements else statements fi

There may be several elif parts. The elif part as well as the else part of

the if statement may be omitted. An if statement is no expression and can

therefore not be assigned to a variable. Furthermore an if statement does not

return a value.

Fibonacci numbers are defined recursively by f(1) = f(2) = 1 and f(n) = f(n-

1) + f(n-2) for n ≥ 3. Since functions in GAP may call themselves, a

function fib that computes Fibonacci numbers can be implemented basically

by typing the above equations. (Note however that this is a very inefficient

way to compute f(n).)

gap> fib:= function(n)

17

> if n in [1, 2] then

> return 1;

> else

> return fib(n-1) + fib(n-2);

> fi;

> end;

function(n) ... end

gap> fib(15);

610

There should be additional tests for the argument n being a positive integer.

This function fib might lead to strange results if called with other arguments.

Try inserting the necessary tests into this example.

Local Variables

A function gcd that computes the greatest common divisor of two integers

by Euclid's algorithm will need a variable in addition to the formal

arguments.

gap> gcd:= function(a, b)

 local c;

 while b <> 0 do

 c:= b;

 b:= a mod b;

 a:= c;

 od;

 return c;

 end;

function(a, b) ... end

gap> gcd(30, 63);

3

Repeat

repeat statements until bool-expr;

The repeat loop executes the statement sequence statements until the

condition bool-expr evaluates to true.

18

The repeat loop in the following example has the same purpose as

the while loop in the preceding example, namely to sum up the squares 1^2,

2^2, ... until the sum exceeds 200.

gap> i := 0;; s := 0;;

gap> repeat

> i := i + 1; s := s + i^2;

> until s > 200;

gap> s;

204

Break

break;

The statement break; causes an immediate exit from the innermost loop

enclosing it.

gap> g := Group((1,2,3,4,5),(1,2)(3,4)(5,6));

Group([(1,2,3,4,5), (1,2)(3,4)(5,6)])

gap> for x in g do

> if Order(x) = 3 then

> break;

> fi; od;

gap> x;

(1,5,2)(3,4,6)

It is an error to use this statement other than inside a loop.

gap> break;

Syntax error: 'break' statement not enclosed in a loop

Continue

continue;

The statement continue; causes the rest of the current iteration of the

innermost loop enclosing it to be skipped.

19

gap> g := Group((1,2,3),(1,2));

Group([(1,2,3), (1,2)])

gap> for x in g do

> if Order(x) = 3 then

> continue;

> fi; Print(x,"\n"); od;

()

(2,3)

(1,3)

(1,2)

It is an error to use this statement other than inside a loop.

gap> continue;

Syntax error: 'continue' statement not enclosed in a loop

Line Editing

GAP allows one you to edit the current input line with a number of editing

commands. Those commands are accessible either as control keys or

as escape keys. You enter a control key by pressing the Ctrl key, and, while

still holding the Ctrl key down, hitting another key key. You enter an escape

key by hitting Esc and then hitting another key key. Below we denote

control keys by Ctrl-key and escape keys by Esc-key. The case of key does

not matter, i.e., Ctrl-A and Ctrl-a are equivalent.

Normally, line editing will be enabled if the input is connected to a terminal.

Line editing can be enabled or disabled using the command line options -

f and -n respectively (see 3.1), however this is a machine dependent feature

of GAP.

Typing Ctrl-key or Esc-key for characters not mentioned below always

inserts Ctrl-key resp. Esc-key at the current cursor position.

The first few commands allow you to move the cursor on the current line.

Ctrl-A

move the cursor to the beginning of the line.

https://www.gap-system.org/Manuals/doc/ref/chap3.html#X782751D5858A6EAF

20

Esc-B

move the cursor to the beginning of the previous word.

Ctrl-B

move the cursor backward one character.

Ctrl-F

move the cursor forward one character.

Esc-F

move the cursor to the end of the next word.

Ctrl-E

move the cursor to the end of the line.

The next commands delete or kill text. The last killed text can be reinserted,

possibly at a different position, with the "yank" command Ctrl-Y.

Ctrl-H or del

delete the character left of the cursor.

Ctrl-D

delete the character under the cursor.

Ctrl-K

kill up to the end of the line.

Esc-D

kill forward to the end of the next word.

Esc-del

21

kill backward to the beginning of the last word.

Ctrl-X

kill entire input line, and discard all pending input.

Ctrl-Y

insert (yank) a just killed text.

The next commands allow you to change the input.

Ctrl-T

exchange (twiddle) current and previous character.

Esc-U

uppercase next word.

Esc-L

lowercase next word.

Esc-C

capitalize next word.

The Tab character, which is in fact the control key Ctrl-I, looks at the

characters before the cursor, interprets them as the beginning of an identifier

and tries to complete this identifier. If there is more than one possible

completion, it completes to the longest common prefix of all those

completions. If the characters to the left of the cursor are already the longest

common prefix of all completions hitting Tab a second time will display all

possible completions.

tab

complete the identifier before the cursor.

22

The next commands allow you to fetch previous lines, e.g., to correct typos,

etc.

Ctrl-L

insert last input line before current character.

Ctrl-P

redisplay the last input line, another Ctrl-P will redisplay the line

before that, etc. If the cursor is not in the first column only the lines

starting with the string to the left of the cursor are taken.

Ctrl-N

Like Ctrl-P but goes the other way round through the history.

Esc-<

goes to the beginning of the history.

Esc->

goes to the end of the history.

Ctrl-O

accepts this line and perform a Ctrl-N.

Finally there are a few miscellaneous commands.

Ctrl-V

enter next character literally, i.e., enter it even if it is one of the

control keys.

Ctrl-U

execute the next line editing command 4 times.

Esc-num

23

execute the next line editing command num times.

Esc-Ctrl-L

redisplay input line.

The four arrow keys (cursor keys) can be used instead of Ctrl-B, Ctrl-

F, Ctrl-P, and Ctrl-N, respectively.

Display

Displays the object obj in a nice, formatted way which is easy to read (but

might be difficult for machines to understand). The actual format used for

this depends on the type of obj. Each method should print a newline

character as last character.

gap> Display([[1, 2, 3], [4, 5, 6]] * Z(5));

 2 4 1

 3 . 2

Function

function([arg-ident {, arg-ident}])

 [local loc-ident {, loc-ident} ;]

 statements

end

A function is in fact a literal and not a statement. Such a function literal can

be assigned to a variable or to a list element or a record component. The

following is an example of a function definition. It is a function to compute

values of the Fibonacci sequence.

gap> fib := function (n)

> local f1, f2, f3, i;

24

> f1 := 1; f2 := 1;

> for i in [3..n] do

> f3 := f1 + f2;

> f1 := f2;

> f2 := f3;

> od;

> return f2;

> end;;

gap> List([1..10], fib);

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

File Operations

1- Read

‣ Read(filename) (operation)

reads the input from the file with the filename filename, which must be

given as a string.

Read first opens the file filename. If the file does not exist, or if GAP cannot

open it, e.g., because of access restrictions, an error is signalled.

2- ReadAsFunction

‣ ReadAsFunction(filename) (operation)

reads the file with filename filename as a function and returns this function.

Example

Suppose that the file /tmp/example.g contains the following

local a;

a := 10;

return a*10;

25

Reading the file as a function will not affect a global variable a.

gap> a := 1;

1

gap> ReadAsFunction("/tmp/example.g")();

100

gap> a;

1

3- PrintTo and AppendTo

‣ PrintTo(filename[, obj1, ...]) (function)

‣ AppendTo(filename[, obj1, ...]) (function)

PrintTo works like Print , except that the arguments obj1, ... (if present) are

printed to the file with the name filename instead of the standard output.

This file must of course be writable by GAP. Otherwise an error is signalled.

Note that PrintTo will overwrite the previous contents of this file if it already

existed; in particular, PrintTo with just the filename argument empties that

file.

AppendTo works like PrintTo, except that the output does not overwrite the

previous contents of the file, but is appended to the file.

There is an upper limit of 15 on the number of output files that may be open

simultaneously.

4- LogTo

‣ LogTo(filename) (operation)

‣ LogTo() (operation)

Calling LogTo with a string filename causes the subsequent interaction to be

logged to the file with the name filename, i.e., everything you see on your

terminal will also appear in this file. LogTo may also be used to log to a

stream.) This file must of course be writable by GAP, otherwise an error is

signalled. Note that LogTo will overwrite the previous contents of this file if

it already existed.

26

Called without arguments, LogTo stops logging to a file or stream.

5- InputLogTo

‣ InputLogTo(filename) (operation)

‣ InputLogTo() (operation)

Calling InputLogTo with a string filename causes the subsequent input to be

logged to the file with the name filename, i.e., everything you type on your

terminal will also appear in this file. Note

that InputLogTo and LogTo cannot be used at the same time

while InputLogTo and OutputLogTo can. Note that InputLogTo will

overwrite the previous contents of this file if it already existed.

Called without arguments, InputLogTo stops logging to a file or stream.

6- OutputLogTo

‣ OutputLogTo(filename) (operation)

‣ OutputLogTo() (operation)

Calling OutputLogTo with a string filename causes the subsequent output to

be logged to the file with the name filename, i.e., everything GAP prints on

your terminal will also appear in this file. Note

that OutputLogTo and LogTo cannot be used at the same time

while InputLogTo and OutputLogTo can. Note that OutputLogTo will

overwrite the previous contents of this file if it already existed.

Called without arguments, OutputLogTo stops logging to a file or stream.

27

Section 2 : A Brief introduction to Group Theory

Roughly speaking, a group is a set of objects with a rule of combination.

Given any two elements of the group, the rule yields another group element,

which depends on the two elements chosen. Addition illustrates some of the

properties which a group combination rule must have, including that it is

associative and that there is an element that, like 0, doesn’t change any

element when combined with it.

Definition 2.1 A group is a non-empty set G together with a rule that assigns

to each pair g, h of elements of G an element g*h such that:

• g * h  G. We say that G is closed under *.

• g * (h *k) = (g *h) * k for all g, h, k  G. We say that * is associative.

• There exists an identity element e ε G such e * g = g *e = g for all g  G.

• Every element g ε G has an inverse g
−1

 ε G such that g *g
−1

 = g
−1

 * g = e.

Note: we may set e={1}.

Definition 2.2 [1] Let S be a nonempty subset of a group G. If

S1: a;b ∊S →ab ∊ S, and

S2: a ∊ S →a
-1

 ∊S; Then S is a subgroup of G.

We write S ≤ G to indicate that S is a subgroup of G which is possibly equal

to G itself. We write S < G for a subgroup which is not equal to G. The

subsets {1} and G are subgroups of G.

Definition 2.3 Suppose G is a group and H ≤ G. For a ∊ G we define the

right coset of H by Ha = {ha| h ∊ H} (⊆ G). While lift coset H by aH =

{ah| h ∊ H} (⊆ G).

Definition 2.4 If G is a group then we define the centre of G as

 Z(G) = {g ∊ G | gx = xg , ∀x ∊ G}

28

The center of a group, G, is the set of elements that commute with every

element of G.

Definition 2.5 A finite group is one with only a finite number of elements.

The order of a finite group, written |G|, is the number of elements in G.

(Note that if X is a set, we also often write |X| to be the number of elements

in X.)

Definition 2.6. The order of an element g ∊ G is the smallest positive

integer n such that g
n
=e.

Definition 2.7 Let G be a group and X subset of G. Then the subgroup

generated by X which denoted by <X> is the intersection of all subgroups

of G containing X.

Definition 2.8 : Cyclic group is group generated by single element. Let a∊G

then the subgroup group of G generated by a is <a> = {a
n
: n ∊Z}.

Definition 2.9: Involution elements of group G is an element of order 2 in

G (i.e., an element g of a group such that g
2
=e, where e is the identity

element).

Definition 2.10 : The centralizer of an element z of a group G is the set of

elements of which commute with z, CG(z)={ 𝓍 ∊G , 𝓍 z=z 𝓍 }.

Likewise, the centralizer of a subgroup H of a group G is the set of elements

of G which commute with every element of H,

 CG(H)={ 𝓍 ∊G , ∀ h∊ H ,𝓍 h=h 𝓍 }.

https://en.wikipedia.org/wiki/Group_(mathematics)
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Commutative
https://mathworld.wolfram.com/Group.html
https://mathworld.wolfram.com/IdentityElement.html
https://mathworld.wolfram.com/IdentityElement.html
https://mathworld.wolfram.com/Group.html
https://mathworld.wolfram.com/Subgroup.html
https://mathworld.wolfram.com/Group.html

29

Definition 2.11: Normal subgroups a subgroup N of G is normal, denoted

N ⊲ G, if gNg
-1

 = N for all g ∊G. We should note that the identity element

and G itself are normal subgroup of G.

EXAMPLE 1.1.12:

1- Generalized quaternion group Q4n with presentation

<x,y|x
2n

=y
4
=1,x

n
=y

2
, y

-1
xy=x

-1
> for n2. For n=2 is the well-known group

which is the quaternion group Q8.

2-The dihedral group D2nwith presentation <x,y|x
n
=y

2
=1,xy=yx

-1
> for

n1.

3- Let (R,
.
) the group of nonzero real numbers under multiplication. Let

H={1,-1} then H ⊲ R.

Definition 2.13 : The symmetric group Sn is the group of bijections from

any set of n objects, which we usually call simply {1,2,3…,n} to itself. An

element of this group is called a permutation of {1,2,3…,n}. The group

operation in Sn is composition of mappings.

Definition 1.1.14:(Fix of permutation) For  ∈ Sn we define fix() to be

the set of elements in Ω = {1, 2, . . . n} which fixed by  . So that x Ω

be in the fix() if and only if (x)=x. The set of elements of Ω which are

fixed by  can be denoted Fix().

Remark 2.15: 1- Cyclic notation (α1, α2, ..., αr) where α1, α2, ..., αr are distinct

elements of Ω = {1, 2, . . . n} and r ≤n. denotes the following permutation in Sn:
α1  α2

α2  α3

.

.

30

.
αr-1  αr

αr  α1

And α → α ∀α ∈ Ω\{α1, α2, ..., αr}. A r-cycle (α1, α2, ..., αr). Also, r-Cycles (α1, α2, ...,

αr) and , s-Cycles (β1, β2, ..., βs) are disjoint cycles if and only if {α1, α2, ..., αr}{ β1, β2,

..., βs}=.

3-A 2-cycle is also called a transposition. For example, (1,2) or (5,6) in S5.

2-Every permutation can be written as a product of disjoint cycles — cycles

that all have no elements in common. Disjoint cycles commute.

Definition 2.16:Let be a finite set and be a permutation.

The cycle type of is the data of how many cycles of each length are

present in the cycle decomposition of .

Example 2.17:- The conjugacy class of (1 2)(3 4) in S4 consists of all the

elements of cycle-type (2, 2) and is

{(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}

Theorem 2.18: [1]For x  Sn, the conjugacy class x
Sn

 of x in Sn consists of

all permutations in Sn which have the same cycle-shape as x.

Example 2.19 The conjugacy classes of S3 are

Class Cycle-shape

{1} (1)

{(1 2), (1 3), (2 3)} (3)

{(1 2 3), (1 3 2)} (2)

Definition 2.20 It is the group of even permutations of a finite set. The

alternating group on a set of n elements is called the alternating group of

degree n, or the alternating group on n letters and denoted by An or Alt(n).

The group An is a normal subgroup of Sn.

https://groupprops.subwiki.org/wiki/Cycle_decomposition_for_permutations
https://en.wikipedia.org/wiki/Group_(mathematics)
https://en.wikipedia.org/wiki/Even_permutation
https://en.wikipedia.org/wiki/Finite_set

31

EXAMPLE 2 .21:G=S3, then G={1,(1, 2),(1 ,3),(2, 3),(1, 2, 3),(1 , 3 ,2)},

then

(1,2)(1,3)=(1,2,3)

(1,2,3)(1,3,2)=(), the identity element.

We also see that A3={1,(1,2,3),(1,3,2)} is normal subgroup of S3.

Definition 2 .22: S
g
 = {

g-1xg
 | x ∊ S} Call S

g
 a conjugate (in G) of S.

Say R and S are conjugate in G if g∃ ∊ G such that S
g
 = R

* Special case:

S ={x}, R = {y}.

Then R and S are conjugate (in G) ⇔g ∊ G such that g
-1

xg = y

We say x and y are conjugate in G.

Notation • x
g
 = g

-1
xg

 • Conjugacy class of x in G: x
G
 = {

 g-1xg
 | g ∊ G}

Remarks 2 .23 :G a group. S⊆G, g ∊ G.

(1) |S| = |S
g
| because the map x ↦g

-1
xg is a map from S to S

g
 which is a

bijection.

(2) If S ≤ G, then S
g
 ≤ G

(3) If x; yG and x and y are conjugate in G, then x and y have the same

order.

(4) 1
G
 = {1

g
 | g ∊ G} = {g

-1
1g | g ∊ G} = {1}

(5) If x ∊ Z(G), then x
G
 = {x}

x
G
 = {g

-1
xg |g ∊ G} = {g

-1
gx | g ∊ G} = {x}

In particular if G is abelian then all conjugacy classes contain just one

element.

32

Theorem 2.24: Every group is a union of conjugacy classes, and distinct

conjugacy classes are disjoint.

Theorem 2.25: Let x  G. Then the size of the conjugacy class x
G
 is given

| x
G
|=|G , CG(x)|=|G|/|CG(x)| , In particular, |x

G
| divides |G|

The Class Equation: Let x1,..., xn be representatives of the conjugacy classes

of G. Then

|G|=|Z(G)|+∑ |xi
G|xi Z(G) ,Where | xi

G
|=|G:CG(xi)|, and both | xi

G
| and |Z(G)|

divide |G|.

 Example 2.26: In the abelian group, all the conjugacy classes are

singleton sets of size 1. This is because for any x,g, we have gxg
-1

=x

 Example 2.27 : More generally, for any group , and any element in

the center of , the conjugacy class of that element has size 1.

 Example 2.28:The group S3 is the smallest non-Abelian group. This

group has three conjugacy classes, the class of the identity element (size

1), the class of the (transpositions (2-Cycles)) (size 3) and the class of the

3-cycles (size 2).

Now we give a basis definitions in regard with the group action.

Definition 2 .29: Let G be a group, and let X be a nonempty set. Then a

(left)

action of G on X is a map G × X↦X ,written (g, x) ↦g · x, such that

g1 · (g2 · x) = (g1g2) · x and e · x = x ,for all g1, g2 ∊ G and all x ∊X

Definition 2.30: Suppose G is a group which acts on a set S. If s ∊S,

 let O(s) = {gs| g ∊ G}.

The set O(s) is called the orbit of s. The stabilizer of s is the subset

 Gs = {g ∊ G | gs = s}of G.

https://groupprops.subwiki.org/wiki/Center
https://groupprops.subwiki.org/wiki/Symmetric_group:S3

33

Transversal of s ={g ∊ G | gs = t} for t ∊ O(s).

Definition 2.31: A action of a group on a set is called transitive when the set

is nonempty and there is exactly one orbit.

Lemma 2.32: Let G act on a set S. If s ∊ S, then the stabilizer Gs of s is a

subgroup of G.

Proof. Note that Gs is nonempty since e ∊Gs. Furthermore, if g, h ∊ Gs then

gs = hs = s, so (gh)s = g(hs) = gs = s, so gh ∊Gs. Finally, if g ∊Gs then g-1s

= g
-1

(gs) = (g
-1

g)s = es = s. Thus g
-1

 ∊ Gs. Therefore Gs is a subgroup of G.

(Orbit-Stabilizer Theorem) 2.33 :Let G be a finite group acting on a set S,

and let x ∈ S. Then the number of elements in the orbit x
G
 is equal to [G :

StabG(x)].

Section 3: Algorithms

34

An algorithm is a set of instructions designed to perform a specific task.

This can be a simple process, such as multiplying two numbers, or a

complex operation, such as playing a compressed video file. Search engines

use proprietary algorithms to display the most relevant results from their

search index for specific queries.

In computer programming, algorithms are often created as functions. These

functions serve as small programs that can be referenced by a larger

program. For example, an image viewing application may include a library

of functions that each use a custom algorithm to render different image file

formats. An image editing program may contain algorithms designed to

process image data. Examples of image processing algorithms include

cropping, resizing, sharpening, blurring, red-eye reduction, and color

enhancement.

Algorithm 3.1 The "plain vanilla" orbit algorithm.

Input: A group G, given by a generating set g = {g1 , . . . , gm}, acting on a

domain . Also a point  .

Output: return the orbit G.

begin

1: = [];

2: for    do

3: for i  {1, . . . ,m} do

4: =gi ;

5: if    then

6: Append  to  ;

7: fi;

8: od;

9: od;

10: return ;

end

35

Algorithm 3.2: Orbit algorithm with transversal computation

Input: A group G, given by a generating set g = {g1 , . . . , gm}, acting on a

domain . Also a point  .

Output: return the orbit G and a transversal T.

begin

1: = [];

2: T= [1];

3: for    do

4: for i  {1, . . . ,m} do

5: =gi ;

6: if    then

7: Append  to  ;

8: Append T[].gi to T ;

9: fi;

10: od;

11: od;

12: return ,T;

end

Algorithm 3.3: Orbit/Stabilizer algorithm

36

Input: A group G, given by a generating set g = {g1 , . . . , gm}, acting on a

domain . Also a point  .

Output: return the orbit G and a transversal T.

begin

1: = [];

2: T= [1];
3:S=<1>;

4: for    do

5: for i  {1, . . . ,m} do

6: =gi ;

7: if    then

8: Append  to  ;

9: Append T[].gi to T ;

10:else

11:S=< S,T[].gi . T[]-1 >

12: fi;

13: od;

14: od;

15: return ,T,S;

end

Definition 3.1: Let = 
G
 (again considered as a list). A Schreier vector (or

factored transversal) is a list S of length | | with the following properties:

37

• The entries of S are generators of G (or the identity element). (In fact the

entries are pointers to generators, thus requiring only one pointer per entry

instead of one group element.)

• S[] =1

• If S[] = g and 
gi
 = then  precedes  in the orbit.

Schreier vectors can take the place of a transversal:

Algorithm 3.4: If S is a Schreier vector for a point  ., the following

algorithm computes for   
G

a representative r such that 
r
= .

begin

1: =;

2: r= 1;

3:while ≠  do

4: g:=S[];

5: r:=g.r;

6: =gi(-1) ;

14: od;

15: return r;

end

Section 4: Examples

38

Ex1: Let G=S3 the Symmetric group of degree 3. Then find

1- The Size of G .

2-The elements of G.

3-Conjugacy classes of G.

4- let ={1,2,3}, the G act on  by usual manner. if =3 , then

calculate

a-The orbits 
G
.

b-The transversal of 
G

.

5- Find the Stabilizer(G, ).

6-Find Fix((1,2)).

Solution:

1- Size of the G=S3 is 3!=6

2-G={(),(1,2),(1,3),(2,3),(1,2,3),(1,3,2)}

(1,2)=(2,1) because in (1,2) 1---2 and in (2,1) 2---1 which is the same

(1,2,3)=(3,1,2)=(2,3,1) because

In (1,2,3) we have 1---2 , 2---3, 3---1

In (3,1,2) we have 3---1 , 1---2, 2---3

In (2,3,1) we have 2---3, 3---1,1---2

3- Conjugacy classes of G

()
G
 ----{ ()}

(1,2)
G
---{(1,2),(1,3),(2,4)}

(1,2,3)
G
---{(1,2,3),(1,3,2)}

39

4-

a-The orbits 
G
={3

()
,3

(1,2)
,3

(1,3)
,3

(2,3)
,3

(1,2,3)
,3

(1,3,2)
}=[3,3,1,2,1,2]={1,2,3}

b- The transversal of 
G
={(1,3),(2,3),()}

5- Stabilizer(G,3)={(),(1,2)}.

6-Fix((1,2))={1,2,3}\{1,2}={3}

Ex2: In Ex1 use Gap to calculate all the requests.

G:=SymmetricGroup(3);

Sym([1 .. 3])

1-

Size(G);

6

2-

Elements(G);

[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

3-

ConjugacyClasses(G);

[()^G, (1,2)^G, (1,2,3)^G]

4-

a-

 Orbit(G,3);

[1, 3, 2]

b-

40

T:=[];

for i in [1,2,3] do

Add(T,RepresentativeAction(G,3,i));

od;

T;

[(1,3), (2,3), ()]

5-

Elements(Stabilizer(G,3));

[(), (1,2)]

6-

Difference([1,2,3],MovedPoints((1,2)));

[3]

Ex3: Let G=A4 the Alternating group of degree 4. Then find

1- The Size of G .

2-The elements of G.

3- let ={1,2,3,4}, the G act on  by usual manner. if =2 , then

calculate :

a-The orbits 
G
.

b-The transversal of 
G

.

4- Find the Stabilizer(G, ).

5-Find Fix((1,2,3)).

Solution:

1-The size of A4 is 4!/2=12.

41

2-The element of A4 are the even permutations of Sn

A4={(),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3), (1,2,3), (1,2,4), (1,3,2), (1,3,4),

(1,4,2), (1,4,3)}

3-

a-
G
=[2,1,4,3,3,4,1,2,1,2]={1,2,3,4}

b- The transversal of 
G
={(),(1,2)(3,4),(1,4)(2,3),(1,3)(2,4)};

4- Stabilizer(G, )={(), (1,3,4), (1,4,3)}

5- Fix((1,2,3))={1,2,3,4}\{1,2,3}={4}

Ex4: In Ex3 use Gap to calculate all the requests.

G:= AlternatingGroup(4);

 Alt([1 .. 4])

1-

Size(G);

12

2-

Elements(G);

 [(), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2), (1,3,4), (1,3)(2,4),

(1,4,2), (1,4,3), (1,4)(2,3)]

3-

a-

 Orbit(G,2);

[1, 2, 3,4]

b-

T:=[];

https://en.wikipedia.org/wiki/Even_permutation

42

for i in [1,2,3,4] do

Add(T,RepresentativeAction(G,2,i));

od;

T;

[(1,3,2), (1,2,3), (1,2,4), ()]

4-

Elements(Stabilizer(G,2));

[(), (1,3,4), (1,4,3)]

5- Difference([1,2,3,4],MovedPoints((1,2,3)));

[4]

Ex5: Let G be a group with the following elements

 [(), (1,2,4,7,6,11,5,3,10,9,8), (1,3,7,8,5,4,9,11,2,10,6),

(1,4,6,5,10,8,2,7,11,3,9), (1,5,2,3,4,10,7,9,6,8,11), (1,6,10,2,11,9,4,5,8,7,3),

 (1,7,5,9,2,6,3,8,4,11,10), (1,8,9,10,3,5,11,6,7,4,2), (1,9,3,11,7,2,8,10,5,6,4),

(1,10,11,4,8,3,6,2,9,5,7), (1,11,8,6,9,7,10,4,3,2,5)]

 Then Calculate the following:

1- The Size of G .

2- let ={1,2,3,4,5,6,7,8,9,10,11}, the G act on  by usual manner. if =4

, then calculate :

a-The orbits 
G
.

b-The transversal of 
G

.

3- Find the Stabilizer(G, ).

4-Find Fix((1,11,8,6,9,7,10,4,3,2,5)).

43

Solution:

1-Size(G) or |G|=11.

2-

a-

4
G
=[4,7,9,6,10,5,11,2,1,8,3]={1,2,3,4,5,6,7,8,9,10,11}

b-

The transversal of 
G
=G.

3- Stabilizer(G, 4)={()}.

4- Fix((1,11,8,6,9,7,10,4,3,2,5))={1,2,3,4,5,6,7,8,9,10,11}\

{ 1,11,8,6,9,7,10,4,3,2,5}=.

Ex6: In Ex5 use Gap to calculate all the requests

G:=Subgroup(SymmetricGroup(11),[(), (1,2,4,7,6,11,5,3,10,9,8),

(1,3,7,8,5,4,9,11,2,10,6), (1,4,6,5,10,8,2,7,11,3,9), (1,5,2,3,4,10,7,9,6,8,11),

(1,6,10,2,11,9,4,5,8,7,3), (1,7,5,9,2,6,3,8,4,11,10), (1,8,9,10,3,5,11,6,7,4,2),

(1,9,3,11,7,2,8,10,5,6,4), (1,10,11,4,8,3,6,2,9,5,7), (1,11,8,6,9,7,10,4,3,2,5)]

);

permutation group with 11 generators

1-

Size(G);

11

2-

a-

 Orbit(G,4);

[1, 2, 3,4,5,6,7,8,9,10,11]

b-

44

T:=[];

for i in [1,2,3,4,5,6,7,8,9,10,11] do

Add(T,RepresentativeAction(G,4,i));

od;

T;

[(), (1,2,4,7,6,11,5,3,10,9,8), (1,3,7,8,5,4,9,11,2,10,6),

(1,4,6,5,10,8,2,7,11,3,9), (1,5,2,3,4,10,7,9,6,8,11), (1,6,10,2,11,9,4,5,8,7,3),

 (1,7,5,9,2,6,3,8,4,11,10), (1,8,9,10,3,5,11,6,7,4,2), (1,9,3,11,7,2,8,10,5,6,4),

(1,10,11,4,8,3,6,2,9,5,7), (1,11,8,6,9,7,10,4,3,2,5)]

4-

Elements(Stabilizer(G,4));

[()]

5-

Difference([1,2,3,4,5,6,7,8,9,10,11],MovedPoints((1,11,8,6,9,7,10,4,3,2,5))

);

[]

Ex7: Let G be a group with the following elements

 [(), (5,6), (3,4), (3,4)(5,6), (1,2), (1,2)(5,6), (1,2)(3,4), (1,2)(3,4)(5,6),

(1,3)(2,4), (1,3)(2,4)(5,6), (1,3,2,4), (1,3,2,4)(5,6), (1,4,2,3), (1,4,2,3)(5,6),

(1,4)(2,3), (1,4)(2,3)(5,6)]

1- The Size of G .

2- let ={1,2,3,4,5,6}, the G act on  by usual manner. if =3 , then

calculate :

a-The orbits 
G
.

45

b-The transversal of 
G

.

3- Find the Stabilizer(G, ).

4-Find Fix((5,6)).

Solution:

1-Size(G) or |G|=16.

2-

a-

3
G
={1,2,3,4}

b-

The transversal of 
G
=[(1,3)(2,4), (1,3,2,4), (), (3,4)].

3- Stabilizer(G, 3)={ (), (5,6), (1,2), (1,2)(5,6) }.

4- Fix((5,6))={1,2,3,4}

Ex8: In Ex7 use Gap to calculate all the requests

G:=Subgroup(SymmetricGroup(6),[[(), (5,6), (3,4), (3,4)(5,6), (1,2),

(1,2)(5,6), (1,2)(3,4), (1,2)(3,4)(5,6), (1,3)(2,4), (1,3)(2,4)(5,6), (1,3,2,4),

(1,3,2,4)(5,6), (1,4,2,3), (1,4,2,3)(5,6), (1,4)(2,3), (1,4)(2,3)(5,6)]

);

permutation group with 6 generators

1-

Size(G);

16

2-

a-

 Orbit(G,3);

46

[1, 2, 3,4]

b-

T:=[];

for i in [1,2,3,4] do

Add(T,RepresentativeAction(G,3,i));

od;

T;

[(1,3)(2,4), (1,3,2,4), (), (3,4)]

4-

Elements(Stabilizer(G,3));

[(), (5,6), (1,2), (1,2)(5,6)]

5- Difference([1,2,3,4,5,6],MovedPoints((5,6)));

[1,2,3,4]

Ex9: Let G be a group with the following elements

[(), (4,5,6), (4,6,5), (1,2,3), (1,2,3)(4,5,6), (1,2,3)(4,6,5), (1,3,2),

(1,3,2)(4,5,6), (1,3,2)(4,6,5)]

Then Calculate the following:

1- The Size of G .

2- let ={1,2,3,4,5,6}, the G act on  by usual manner. if =6 , then

calculate :

a-The orbits 
G
.

b-The transversal of 
G

.

3- Find the Stabilizer(G, ).

4-Find Fix((1,2,3)).

Solution:

47

1-Size(G) or |G|=9.

2-

a-

6
G
={4,5,6}

b-

The transversal of 
G
= [(4,5,6), (4,6,5), ()].

3- Stabilizer(G, 6)={ (), (1,2,3), (1,3,2) }.

4- Fix((1,2,3))={4,5,6}

Ex10: In Ex9 use Gap to calculate all the requests

G:=Subgroup(SymmetricGroup(6), [(), (4,5,6), (4,6,5), (1,2,3),

(1,2,3)(4,5,6), (1,2,3)(4,6,5), (1,3,2), (1,3,2)(4,5,6), (1,3,2)(4,6,5)]);

permutation group with 6 generators

1-

Size(G);

9

2-

a-

 Orbit(G,3);

[4,5,6]

b-

T:=[];

for i in [4,5,6] do

Add(T,RepresentativeAction(G,6,i));

od;

T;

48

[(4,5,6), (4,6,5), ()]

4-

Elements(Stabilizer(G,6));

[(), (1,2,3), (1,3,2)]

5- Difference([1,2,3,4,5,6],MovedPoints((1,2,3)));

[4,5,6]

Ex11: Let G be a group with the following elements

[(), (1,2,3,4,5), (1,3,5,2,4), (1,4,2,5,3), (1,5,4,3,2)]

Then Calculate the following:

1- The Size of G .

2- let ={1,2,3,4,5}, the G act on  by usual manner. if =1 , then

calculate :

a-The orbits 
G
.

b-The transversal of 
G

.

3- Find the Stabilizer(G, ).

4-Find Fix(()).

Solution:

1-Size(G) or |G|=5.

2-

a-

1
G
={1,2,3,4,5}

b-

49

The transversal of 
G
= G.

3- Stabilizer(G, 1)={ ()}.

4- Fix(())={1,2,3,4,5}

Ex12: In Ex11 use Gap to calculate all the requests

G:=Subgroup(SymmetricGroup(5), [(), (1,2,3,4,5), (1,3,5,2,4),

(1,4,2,5,3), (1,5,4,3,2)]);

permutation group with 5 generators

1-

Size(G);

5

2-

a-

 Orbit(G,1);

[1,2,3,4,5]

b-

T:=[];

for i in [1,2,3,4,5] do

Add(T,RepresentativeAction(G,1,i));

od;

T;

[(), (1,2,3,4,5), (1,3,5,2,4), (1,4,2,5,3), (1,5,4,3,2)]

4-

Elements(Stabilizer(G,1));

[()]

5- Difference([1,2,3,4,5],MovedPoints(()));

[1,2,3,4,5]

Ex13: Let G be a group with the following elements

50

[(), (1,2,3,4,5,6), (1,3,5)(2,4,6), (1,4)(2,5)(3,6), (1,5,3)(2,6,4), (1,6,5,4,3,2)]

Then Calculate the following:

1- The Size of G .

2- let ={1,2,3,4,5,6}, the G act on  by usual manner. if =4 , then

calculate :

a-The orbits 
G
.

b-The transversal of 
G

.

3- Find the Stabilizer(G, ).

4-Find Fix(()).

Solution:

1-Size(G) or |G|=6.

2-

a-

4
G
={1,2,3,4,5,6}

b-

The transversal of 
G
= G.

3- Stabilizer(G, 4)={ ()}.

4- Fix(())={1,2,3,4,5,6}

Ex14: In Ex13 use Gap to calculate all the requests

G:=Subgroup(SymmetricGroup(5), [(), (1,2,3,4,5,6), (1,3,5)(2,4,6),

(1,4)(2,5)(3,6), (1,5,3)(2,6,4), (1,6,5,4,3,2)]);

permutation group with 6 generators

51

1-

Size(G);

6

2-

a-

 Orbit(G,4);

[1,2,3,4,5,6]

b-

T:=[];

for i in [1,2,3,4,5,6] do

Add(T,RepresentativeAction(G,4,i));

od;

T;

[(), (1,2,3,4,5,6), (1,3,5)(2,4,6), (1,4)(2,5)(3,6), (1,5,3)(2,6,4), (1,6,5,4,3,2)]

4-

Elements(Stabilizer(G,4));

[()]

5- Difference([1,2,3,4,5,6],MovedPoints(()));

[1,2,3,4,5,6]

