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Computational Group Theory 

Definition 1: Computational Group theory (CGT) is the study of algorithms 

for groups. It aims to produce algorithms to answer questions about concrete 

groups, given for example by generators or as symmetries of a certain 

algebraic or combinatorial structures.  

Interest in this comes from (at least) three areas: 

1-Interest in developing algorithms. 

2- Concrete questions about concrete groups. 

3- Complexity theory. 

 

 

Computational Group Theory 

 

 

Computer Algebra System                                Group Theory  

             (GAP) 
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Section 1: Short Introduction To GAP 

Definition 2: GAP (Groups, Algorithms and Programming) is a computer 

algebra system for computational discrete algebra with particular emphasis 

on computational group theory. 

GAP is a system for discrete computational algebra, with particular 

emphasis on Computational Group Theory. GAP provides a programming 

language, a library of thousands of functions implementing algebraic 

algorithms written in the GAP language as well as large data libraries of 

algebraic objects, for example the small groups library which contains, 

among others. 

Structure of GAP 

GAP has a kernel written in C. It implements 

1-The GAP language, 

2-An interactive environment for developing and using GAP programs, 

3-Memory management. 

4-Fast versions of time critical operations for various data types. 

 

The GAP system will run on any machine with a UNIX-like or recent 

Windows or Mac OS X operating system and with a reasonable amount of 

RAM and disk space. The current version is GAP 4, but GAP 3 is also 

available. 

 

About Starting and Leaving GAP 

If the program is correctly installed then you usually start GAP by simply 

typing gap at the prompt of your operating system followed by 

the Return key, sometimes this is also called the Newline key. 

$ gap 
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GAP answers your request with its beautiful banner and then it shows its 

own prompt gap> asking you for further input.  

gap>  

The usual way to end a GAP session is to type quit; at the gap> prompt. Do 

not omit the semicolon! 

gap> quit; 

$  

On some systems you could type Ctrl-D to yield the same effect. In any 

situation GAP is ended by typing Ctrl-C twice within a second. Here as 

always, a combination like Ctrl-D means that you have to press the D key 

while you hold down the Ctrl key. 

A simple calculation with GAP is as easy as one can imagine. You type the 

problem just after the prompt, terminate it with a semicolon and then pass 

the problem to the program with the Return key. For example, to multiply 

the difference between 9 and 7 by the sum of 5 and 6, that is to calculate (9 - 

7) * (5 + 6), you type exactly this last sequence of symbols followed 

by ; and Return. 

gap> (9 - 7) * (5 + 6); 

22 

gap>  

Then GAP echoes the result 22 on the next line and shows with the prompt 

that it is ready for the next problem. Henceforth, we will no longer print this 

additional prompt. 

If you make a mistake while typing the line, but before typing the 

final Return, you can use the Delete key (or sometimes Backspace key) to 

delete the last typed character. You can also move the cursor back and 

forward in the line with Ctrl-B and Ctrl-F and insert or delete characters 

anywhere in the line. The line editing commands are fully described in 

section Reference: Line Editing. 

If you did omit the semicolon at the end of the line but have already 

typed Return, then GAP has read everything you typed, but does not know 

that the command is complete. The program is waiting for further input and 
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indicates this with a partial prompt >. This problem is solved by simply 

typing the missing semicolon on the next line of input. Then the result is 

printed and the normal prompt returns. 

gap> (9 - 7) * (5 + 6) 

> ; 

22 

So the input can consist of several lines, and GAP prints a partial 

prompt > in each input line except the first, until the command is completed 

with a semicolon. (GAP may already evaluate part of the input 

when Return is typed, so for long calculations it might take some time until 

the partial prompt appears). Whenever you see the partial prompt and you 

cannot decide what GAP is still waiting for, then you have to type 

semicolons until the normal prompt returns. In every situation the exact 

meaning of the prompt gap> is that the program is waiting for a new 

problem. 

But even if you mistyped the command more seriously, you do not have to 

type it all again. Suppose you mistyped or forgot the last closing parenthesis. 

Then your command is syntactically incorrect and GAP will notice it, 

incapable of computing the desired result. 

gap> (9 - 7) * (5 + 6; 

Syntax error: ) expected 

(9 - 7) * (5 + 6; 

                ^ 

Instead of the result an error message occurs indicating the place where an 

unexpected symbol occurred with an arrow sign ^under it. As a computer 

program cannot know what your intentions really were, this is only a hint. 

But in this case GAP is right by claiming that there should be a closing 

parenthesis before the semicolon. Now you can type Ctrl-P to recover the 

last line of input. It will be written after the prompt with the cursor in the 

first position. Type Ctrl-E to take the cursor to the end of the line, 

then Ctrl-B to move the cursor one character back. The cursor is now on the 

position of the semicolon. Enter the missing parenthesis by simply typing ). 

Now the line is correct and may be passed to GAP by hitting 

the Return key. Note that for this action it is not necessary to move the 

cursor past the last character of the input line. 
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Each line of commands you type is sent to GAP for evaluation by 

pressing Return regardless of the position of the cursor in that line. We will 

no longer mention the Return key from now on. 

Sometimes a syntax error will cause GAP to enter a break loop. This is 

indicated by the special prompt brk>. If another syntax error occurs 

while GAP is in a break loop, the prompt will change 

to brk_02>, brk_03> and so on. You can leave the current break loop and 

exit to the next outer one by either typing quit; or by hitting Ctrl-D. 

Eventually GAP will return to its normal state and show its normal 

prompt gap> again. 

Constants and Operators 

In an expression like (9 - 7) * (5 + 6) the constants 5, 6, 7, and 9 are being 

composed by the operators +, * and - to result in a new value. 

There are three kinds of operators in GAP, arithmetical operators, 

comparison operators, and logical operators. You have already seen that it is 

possible to form the sum, the difference, and the product of two integer 

values. There are some more operators applicable to integers in GAP. Of 

course integers may be divided by each other, possibly resulting in 

noninteger rational values. 

gap> 12345/25; 

2469/5 

Note that the numerator and denominator are divided by their greatest 

common divisor and that the result is uniquely represented as a division 

instruction. 

The next self-explanatory example demonstrates negative numbers. 

gap> -3; 17 - 23; 

-3 

-6 

The exponentiation operator is written as ^. This operation in particular 

might lead to very large numbers. This is no problem for GAP as it can 

handle numbers of (almost) any size. 
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gap> 3^132; 

9550049507968252368931907017744140119199351389743431298368538

41 

The mod operator allows you to compute one value modulo another. 

gap> 17 mod 3; 

2 

Note that there must be whitespace around the keyword mod in this example 

since 17mod3 or 17mod would be interpreted as identifiers. The whitespace 

around operators that do not consist of letters, e.g., the operators * and -, is 

not necessary. 

GAP knows a precedence between operators that may be overridden by 

parentheses. 

gap> (9 - 7) * 5 = 9 - 7  * 5; 

false 

Besides these arithmetical operators there are comparison operators in GAP. 

A comparison results in a boolean value which is another kind of constant. 

The comparison operators =, <>, <, <=, > and >=, test for equality, 

inequality, less than, less than or equal, greater than and greater than or 

equal, respectively. 

gap> 10^5 < 10^4; 

false 

The boolean values true and false can be manipulated via logical operators, 

i. e., the unary operator not and the binary operators and and or. Of course 

boolean values can be compared, too. 

gap> not true; true and false; true or false; 

false 

false 

true 

gap> 10 > 0 and 10 < 100; 

true 
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Another important type of constants in GAP are permutations. They are 

written in cycle notation and they can be multiplied. 

gap> (1,2,3); 

(1,2,3) 

gap> (1,2,3) * (1,2); 

(2,3) 

The inverse of the permutation (1,2,3) is denoted by (1,2,3)^-1. Moreover 

the caret operator ^ is used to determine the image of a point under a 

permutation and to conjugate one permutation by another. 

gap> (1,2,3)^-1; 

(1,3,2) 

gap> 2^(1,2,3); 

3 

gap> (1,2,3)^(1,2); 

(1,3,2) 

Variables versus Objects 

A GAP command sequence_of_letters_and_digits := meaning, where the 

sequence on the left hand side is called the identifier of the variable and it 

serves as its name. The meaning on the right hand side can be a constant like 

an integer or a permutation, but it can also be almost any other GAP object. 

From now on, we will use the term object to denote something that can be 

assigned to a variable. 

There must be no whitespace between the : and the = in the assignment 

operator. Also do not confuse the assignment operator with the single 

equality sign = which in GAP is only used for the test of equality. 

gap> a:= (9 - 7) * (5 + 6); 

22 

gap> a; 

22 

gap> a * (a + 1); 

506 

gap> a = 10; 

false 

gap> a:= 10; 
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10 

gap> a * (a + 1); 

110 

After an assignment the assigned object is echoed on the next line. The 

printing of the object of a statement may be in every case prevented by 

typing a double semicolon. 

gap> w:= 2;;  

After the assignment the variable evaluates to that object if evaluated. Thus 

it is possible to refer to that object by the name of the variable in any 

situation. 

There are some further interesting variables one of which will be introduced 

now. 

Whenever GAP returns an object by printing it on the next line this object is 

assigned to the variable last. So if you computed 

gap> (9 - 7) * (5 + 6); 

22 

and forgot to assign the object to the variable a for further use, you can still 

do it by the following assignment. 

gap> a:= last; 

22 

 

About Functions 

A program written in the GAP language is called a function. Functions are 

special GAP objects. Most of them behave like mathematical functions. 

They are applied to objects and will return a new object depending on the 

input. The function Factorial(Reference: Factorial), for example, can be 

applied to an integer and will return the factorial of this integer. 

gap> Factorial(17); 

355687428096000 
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Applying a function to arguments means to write the arguments in 

parentheses following the function. Several arguments are separated by 

commas, as for the function Gcd (Reference: Gcd) which computes the 

greatest common divisor of two integers. 

gap> Gcd(1234, 5678); 

2 

There are other functions that do not return an object but only produce a side 

effect, for example changing one of their arguments. These functions are 

sometimes called procedures. The function Print (Reference: Print) is only 

called for the side effect of printing something on the screen. 

gap> Print(1234, "\n"); 

1234 

A comfortable way to define a function yourself is the maps-to operator -

> consisting of a minus sign and a greater sign with no whitespace between 

them. The function cubed which maps a number to its cube is defined on the 

following line. 

gap> cubed:= x -> x^3; 

function( x ) ... end 

After the function has been defined, it can now be applied. 

gap> cubed(5); 

125 

Lists and Sets 

A list is a collection of objects separated by commas and enclosed in 

brackets. Let us for example construct the list primes of the first ten prime 

numbers. 

gap> primes:= [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]; 

[ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 ] 

The next two primes are 31 and 37. They may be appended to the existing 

list by the function Append which takes the existing list as its first and 

another list as a second argument. The second argument is appended to the 
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list primes and no value is returned. Note that by appending another list the 

object primes is changed. 

gap> Append(primes, [31, 37]); 

gap> primes; 

[ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 ] 

You can as well add single new elements to existing lists by the 

function Add which takes the existing list as its first argument and a new 

element as its second argument. The new element is added to the 

list primes and again no value is returned but the list primes is changed. 

gap> Add(primes, 41); 

gap> primes; 

[ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41 ] 

Single elements of a list are referred to by their position in the list. To get the 

value of the seventh prime, that is the seventh entry in our list primes, you 

simply type 

gap> primes[7]; 

17 

This value can be handled like any other value, for example multiplied by 2 

or assigned to a variable. On the other hand this mechanism allows one to 

assign a value to a position in a list. So the next prime 43 may be inserted in 

the list directly after the last occupied position of primes. This last occupied 

position is returned by the function Length. 

gap> Length(primes); 

13 

gap> primes[14]:= 43; 

43 

gap> primes; 

[ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43 ] 

Note that this operation again has changed the object primes. The next 

position after the end of a list is not the only position capable of taking a 

new value. If you know that 71 is the 20th prime, you can enter it right now 

in the 20th position of primes. This will result in a list with holes which is 

however still a list and now has length 20. 
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gap> primes[20]:= 71; 

71 

gap> primes; 

[ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,,,,,, 71 ] 

gap> Length(primes); 

20 

Sets 

GAP knows several special kinds of lists. A set in GAP is a list that contains 

no holes (such a list is called dense) and whose elements are strictly sorted 

w.r.t. <; in particular, a set cannot contain duplicates. (More precisely, the 

elements of a set in GAP are required to lie in the same family, but roughly 

this means that they can be compared using the < operator.) 

The elements of the sets used in the examples of this section are strings. 

gap> fruits:= ["apple", "strawberry", "cherry", "plum"]; 

[ "apple", "strawberry", "cherry", "plum" ] 

gap> IsSSortedList(fruits); 

false 

gap> fruits:= Set(fruits); 

[ "apple", "cherry", "plum", "strawberry" ] 

 

For and While Loops 

Given a list pp of permutations we can form their product by means of 

a for loop instead of writing down the product explicitly. 

gap> pp:= [ (1,3,2,6,8)(4,5,9), (1,6)(2,7,8), (1,5,7)(2,3,8,6), 

>           (1,8,9)(2,3,5,6,4), (1,9,8,6,3,4,7,2)];; 

gap> prod:= ( );         

() 

gap> for p in pp do 

>       prod:= prod*p;     

>    od; 

gap> prod;         

(1,8,4,2,3,6,5,9) 
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First a new variable prod is initialized to the identity permutation ( ). Then 

the loop variable p takes as its value one permutation after the other from the 

list pp and is multiplied with the present value of prod resulting in a new 

value which is then assigned to prod. 

The for loop has the following syntax 

for var in list do statements od; 

The effect of the for loop is to execute the statements for every element of 

the list. A for loop is a statement and therefore terminated by a semicolon. 

The list of statements is enclosed by the keywords do and od (reverse do). 

A for loop returns no value. Therefore we had to ask explicitly for the value 

of prod in the preceding example. 

The for loop can loop over any kind of list, even a list with holes. In many 

programming languages the for loop has the form 

for var from first to last do statements od; 

In GAP this is merely a special case of the general for loop as defined above 

where the list in the loop body is a range : 

for var in [first..last] do statements od; 

You can for instance loop over a range to compute the factorial 15! of the 

number 15 in the following way. 

gap> ff:= 1; 

1 

gap> for i in [1..15] do 

>       ff:= ff * i; 

>    od; 

gap> ff; 

1307674368000 

The while loop has the following syntax 

while condition do statements od; 
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The while loop loops over the statements as long as the condition evaluates 

to true. Like the for loop the while loop is terminated by the 

keyword od followed by a semicolon. 

We can use our list primes to perform a very simple factorization. We begin 

by initializing a list factors to the empty list. In this list we want to collect 

the prime factors of the number 1333. Remember that a list has to exist 

before any values can be assigned to positions of the list. Then we will loop 

over the list primes and test for each prime whether it divides the number. If 

it does we will divide the number by that prime, add it to the list factors and 

continue. 

gap> n:= 1333;; 

gap> factors:= [];; 

gap> for p in primes do 

>       while n mod p = 0 do 

>          n:= n/p; 

>          Add(factors, p); 

>       od; 

>    od; 

gap> factors; 

[ 31, 43 ] 

gap> n; 

1 

As n now has the value 1 all prime factors of 1333 have been found 

and factors contains a complete factorization of 1333. This can of course be 

verified by multiplying 31 and 43. 

 Writing Functions 

Writing a function that prints hello, world. on the screen is a simple exercise 

in GAP. 

gap> sayhello:= function() 

> Print("hello, world.\n"); 

> end; 

function(  ) ... end 

This function when called will only execute the Print statement in the second 

line. This will print the string hello, world. on the screen followed by a 
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newline character \n that causes the GAP prompt to appear on the next line 

rather than immediately following the printed characters. 

The function definition has the following syntax. 

function( arguments ) statements end 

A function definition starts with the keyword function followed by the 

formal parameter list arguments enclosed in parenthesis ( ). The formal 

parameter list may be empty as in the example. Several parameters are 

separated by commas. Note that there must be no semicolon behind the 

closing parenthesis. The function definition is terminated by the 

keyword end. 

A GAP function is an expression like an integer, a sum or a list. Therefore it 

may be assigned to a variable. The terminating semicolon in the example 

does not belong to the function definition but terminates the assignment of 

the function to the name sayhello. Unlike in the case of integers, sums, and 

lists the value of the function sayhello is echoed in the abbreviated 

fashion function( ) ... end. This shows the most interesting part of a function: 

its formal parameter list (which is empty in this example). The complete 

value of sayhello is returned if you use the function Print (Reference: Print). 

gap> Print(sayhello, "\n"); 

function (  ) 

    Print( "hello, world.\n" ); 

    return; 

end 

Note the additional newline character "\n" in the Print (Reference: Print) 

statement. It is printed after the object sayhello to start a new line. The 

extra return statement is inserted by GAP to simplify the process of 

executing the function. 

The newly defined function sayhello is executed by calling sayhello() with 

an empty argument list. 

gap> sayhello(); 

hello, world. 
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However, this is not a typical example as no value is returned but only a 

string is printed. 

If Statements 

In the following example we define a function sign which determines the 

sign of an integer. 

gap> sign:= function(n) 

>        if n < 0 then 

>           return -1; 

>        elif n = 0 then 

>           return 0; 

>        else 

>           return 1; 

>        fi; 

>    end; 

function( n ) ... end 

gap> sign(0); sign(-99); sign(11); 

0 

-1 

1 

This example also introduces the if statement which is used to execute 

statements depending on a condition. The if statement has the following 

syntax. 

if condition then statements elif condition then statements else statements fi 

There may be several elif parts. The elif part as well as the else part of 

the if statement may be omitted. An if statement is no expression and can 

therefore not be assigned to a variable. Furthermore an if statement does not 

return a value. 

Fibonacci numbers are defined recursively by f(1) = f(2) = 1 and f(n) = f(n-

1) + f(n-2) for n ≥ 3. Since functions in GAP may call themselves, a 

function fib that computes Fibonacci numbers can be implemented basically 

by typing the above equations. (Note however that this is a very inefficient 

way to compute f(n).) 

gap> fib:= function(n) 



17 
 

>       if n in [1, 2] then 

>          return 1; 

>       else 

>          return fib(n-1) + fib(n-2); 

>       fi; 

>    end; 

function( n ) ... end 

gap> fib(15); 

610 

There should be additional tests for the argument n being a positive integer. 

This function fib might lead to strange results if called with other arguments. 

Try inserting the necessary tests into this example. 

Local Variables 

A function gcd that computes the greatest common divisor of two integers 

by Euclid's algorithm will need a variable in addition to the formal 

arguments. 

gap> gcd:= function(a, b) 

       local c; 

       while b <> 0 do 

          c:= b; 

         b:= a mod b; 

         a:= c; 

       od; 

       return c; 

    end; 

function( a, b ) ... end 

gap> gcd(30, 63); 

3 

 

Repeat 

repeat statements until bool-expr; 

The repeat loop executes the statement sequence statements until the 

condition bool-expr evaluates to true. 
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The repeat loop in the following example has the same purpose as 

the while loop in the preceding example, namely to sum up the squares 1^2, 

2^2, ... until the sum exceeds 200. 

gap> i := 0;; s := 0;; 

gap> repeat 

>    i := i + 1; s := s + i^2; 

>  until s > 200; 

gap> s; 

204 
 

Break 

break; 

The statement break; causes an immediate exit from the innermost loop 

enclosing it. 

gap> g := Group((1,2,3,4,5),(1,2)(3,4)(5,6)); 

Group([ (1,2,3,4,5), (1,2)(3,4)(5,6) ]) 

gap> for x in g do 

> if Order(x) = 3 then 

> break; 

> fi; od; 

gap> x; 

(1,5,2)(3,4,6) 

It is an error to use this statement other than inside a loop. 

gap> break; 

Syntax error: 'break' statement not enclosed in a loop 

 

Continue 

continue; 

The statement continue; causes the rest of the current iteration of the 

innermost loop enclosing it to be skipped. 
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gap> g := Group((1,2,3),(1,2)); 

Group([ (1,2,3), (1,2) ]) 

gap> for x in g do 

> if Order(x) = 3 then 

> continue; 

> fi; Print(x,"\n"); od; 

() 

(2,3) 

(1,3) 

(1,2) 

It is an error to use this statement other than inside a loop. 

gap> continue; 

Syntax error: 'continue' statement not enclosed in a loop 

 

Line Editing 

GAP allows one you to edit the current input line with a number of editing 

commands. Those commands are accessible either as control keys or 

as escape keys. You enter a control key by pressing the Ctrl key, and, while 

still holding the Ctrl key down, hitting another key key. You enter an escape 

key by hitting Esc and then hitting another key key. Below we denote 

control keys by Ctrl-key and escape keys by Esc-key. The case of key does 

not matter, i.e., Ctrl-A and Ctrl-a are equivalent. 

Normally, line editing will be enabled if the input is connected to a terminal. 

Line editing can be enabled or disabled using the command line options -

f and -n respectively (see 3.1), however this is a machine dependent feature 

of GAP. 

Typing Ctrl-key or Esc-key for characters not mentioned below always 

inserts Ctrl-key resp. Esc-key at the current cursor position. 

The first few commands allow you to move the cursor on the current line. 

Ctrl-A 

move the cursor to the beginning of the line. 

https://www.gap-system.org/Manuals/doc/ref/chap3.html#X782751D5858A6EAF
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Esc-B 

move the cursor to the beginning of the previous word. 

Ctrl-B 

move the cursor backward one character. 

Ctrl-F 

move the cursor forward one character. 

Esc-F 

move the cursor to the end of the next word. 

Ctrl-E 

move the cursor to the end of the line. 

The next commands delete or kill text. The last killed text can be reinserted, 

possibly at a different position, with the "yank" command Ctrl-Y. 

Ctrl-H or del 

delete the character left of the cursor. 

Ctrl-D 

delete the character under the cursor. 

Ctrl-K 

kill up to the end of the line. 

Esc-D 

kill forward to the end of the next word. 

Esc-del 



21 
 

kill backward to the beginning of the last word. 

Ctrl-X 

kill entire input line, and discard all pending input. 

Ctrl-Y 

insert (yank) a just killed text. 

The next commands allow you to change the input. 

Ctrl-T 

exchange (twiddle) current and previous character. 

Esc-U 

uppercase next word. 

Esc-L 

lowercase next word. 

Esc-C 

capitalize next word. 

The Tab character, which is in fact the control key Ctrl-I, looks at the 

characters before the cursor, interprets them as the beginning of an identifier 

and tries to complete this identifier. If there is more than one possible 

completion, it completes to the longest common prefix of all those 

completions. If the characters to the left of the cursor are already the longest 

common prefix of all completions hitting Tab a second time will display all 

possible completions. 

tab 

complete the identifier before the cursor. 



22 
 

The next commands allow you to fetch previous lines, e.g., to correct typos, 

etc. 

Ctrl-L 

insert last input line before current character. 

Ctrl-P 

redisplay the last input line, another Ctrl-P will redisplay the line 

before that, etc. If the cursor is not in the first column only the lines 

starting with the string to the left of the cursor are taken. 

Ctrl-N 

Like Ctrl-P but goes the other way round through the history. 

Esc-< 

goes to the beginning of the history. 

Esc-> 

goes to the end of the history. 

Ctrl-O 

accepts this line and perform a Ctrl-N. 

Finally there are a few miscellaneous commands. 

Ctrl-V 

enter next character literally, i.e., enter it even if it is one of the 

control keys. 

Ctrl-U 

execute the next line editing command 4 times. 

Esc-num 
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execute the next line editing command num times. 

Esc-Ctrl-L 

redisplay input line. 

The four arrow keys (cursor keys) can be used instead of Ctrl-B, Ctrl-

F, Ctrl-P, and Ctrl-N, respectively. 

 

Display 

Displays the object obj in a nice, formatted way which is easy to read (but 

might be difficult for machines to understand). The actual format used for 

this depends on the type of obj. Each method should print a newline 

character as last character. 

gap> Display( [ [ 1, 2, 3 ], [ 4, 5, 6 ] ] * Z(5) ); 

 2 4 1 

 3 . 2 

 

 

Function 

function( [ arg-ident {, arg-ident} ] ) 

  [local loc-ident {, loc-ident} ; ] 

  statements 

end 

A function is in fact a literal and not a statement. Such a function literal can 

be assigned to a variable or to a list element or a record component. The 

following is an example of a function definition. It is a function to compute 

values of the Fibonacci sequence. 

gap> fib := function ( n ) 

>     local f1, f2, f3, i; 
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>     f1 := 1; f2 := 1; 

>     for i in [3..n] do 

>       f3 := f1 + f2; 

>       f1 := f2; 

>       f2 := f3; 

>     od; 

>     return f2; 

>   end;; 

gap> List( [1..10], fib ); 

[ 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ] 

 

File Operations 

1- Read 

‣ Read( filename ) ( operation ) 

reads the input from the file with the filename filename, which must be 

given as a string. 

Read first opens the file filename. If the file does not exist, or if GAP cannot 

open it, e.g., because of access restrictions, an error is signalled. 

 

2- ReadAsFunction 

‣ ReadAsFunction( filename ) ( operation ) 

reads the file with filename filename as a function and returns this function. 

Example 

Suppose that the file /tmp/example.g contains the following 

local a; 

 

a := 10; 

return a*10; 
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Reading the file as a function will not affect a global variable a. 

gap> a := 1; 

1 

gap> ReadAsFunction("/tmp/example.g")(); 

100 

gap> a; 

1 

3- PrintTo and AppendTo 

‣ PrintTo( filename[, obj1, ...] ) ( function ) 

‣ AppendTo( filename[, obj1, ...] ) ( function ) 

PrintTo works like Print , except that the arguments obj1, ... (if present) are 

printed to the file with the name filename instead of the standard output. 

This file must of course be writable by GAP. Otherwise an error is signalled. 

Note that PrintTo will overwrite the previous contents of this file if it already 

existed; in particular, PrintTo with just the filename argument empties that 

file. 

AppendTo works like PrintTo, except that the output does not overwrite the 

previous contents of the file, but is appended to the file. 

There is an upper limit of 15 on the number of output files that may be open 

simultaneously. 

4- LogTo 

‣ LogTo( filename ) ( operation ) 

‣ LogTo( ) ( operation ) 

Calling LogTo with a string filename causes the subsequent interaction to be 

logged to the file with the name filename, i.e., everything you see on your 

terminal will also appear in this file. LogTo may also be used to log to a 

stream.) This file must of course be writable by GAP, otherwise an error is 

signalled. Note that LogTo will overwrite the previous contents of this file if 

it already existed. 
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Called without arguments, LogTo stops logging to a file or stream. 

5- InputLogTo 

‣ InputLogTo( filename ) ( operation ) 

‣ InputLogTo( ) ( operation ) 

Calling InputLogTo with a string filename causes the subsequent input to be 

logged to the file with the name filename, i.e., everything you type on your 

terminal will also appear in this file. Note 

that InputLogTo and LogTo  cannot be used at the same time 

while InputLogTo and OutputLogTo can. Note that InputLogTo will 

overwrite the previous contents of this file if it already existed. 

Called without arguments, InputLogTo stops logging to a file or stream. 

6- OutputLogTo 

‣ OutputLogTo( filename ) ( operation ) 

‣ OutputLogTo( ) ( operation ) 

Calling OutputLogTo with a string filename causes the subsequent output to 

be logged to the file with the name filename, i.e., everything GAP prints on 

your terminal will also appear in this file. Note 

that OutputLogTo and LogTo cannot be used at the same time 

while InputLogTo and OutputLogTo can. Note that OutputLogTo will 

overwrite the previous contents of this file if it already existed. 

Called without arguments, OutputLogTo stops logging to a file or stream. 
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Section 2 : A Brief introduction to Group Theory 

Roughly speaking, a group  is a set of objects with a rule of combination. 

Given any two elements of the group, the rule yields another group element, 

which depends on the two elements chosen. Addition illustrates some of the 

properties which a group combination rule must have, including that it is 

associative and that there is an element that, like 0, doesn’t change any 

element when combined with it. 

Definition 2.1 A group is a non-empty set G together with a rule that assigns 

to each pair g, h of elements of G an element g*h such that: 

• g  * h  G. We say that G is closed under *. 

• g * (h *k) = (g *h) * k for all g, h, k  G. We say that * is associative. 

• There exists an identity element e ε G such e * g = g *e = g for all g  G. 

• Every element g ε G has an inverse g
−1 

 ε G  such that g *g
−1

 = g
−1

 * g = e. 

Note: we may set e={1}.  

Definition 2.2 [1] Let S be a nonempty subset of a group G. If 

S1: a;b ∊S →ab ∊ S, and 

S2: a ∊ S →a
-1

 ∊S; Then  S is a subgroup of G.  

We write S ≤ G to indicate that S is a subgroup of G which is possibly equal 

to G itself. We write S < G for a subgroup which is not equal to G. The 

subsets {1} and G are subgroups of G.  

Definition 2.3 Suppose G is a group and H ≤ G. For a ∊ G we define the 

right coset  of H by Ha = {ha| h ∊ H} (⊆ G). While  lift  coset H by aH = 

{ah| h ∊ H} (⊆ G).   

Definition 2.4 If G is a group then we define the centre of G as 

                                Z(G) = {g ∊ G | gx = xg , ∀x ∊ G} 
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The center of a group, G, is the set of elements that commute with every 

element of G.  

Definition 2.5  A finite group is one with only a finite number of elements. 

The order of a finite group, written |G|, is the number of elements in G. 

(Note that if X is a set, we also often write |X| to be the number of elements 

in X.) 

Definition 2.6. The order of  an element  g ∊ G is the smallest positive 

integer n such that g
n
=e. 

Definition 2.7 Let G be a group and X subset of G. Then the subgroup 

generated by X which denoted by <X> is the  intersection  of all subgroups 

of G containing X.  

Definition 2.8 : Cyclic group is group generated by single element. Let a∊G  

then the subgroup group of G generated by a is <a> = {a
n
: n ∊Z}.  

Definition 2.9: Involution elements of  group G is  an element of order 2 in 

G (i.e., an element g of a group such that g
2
=e, where e is the identity 

element). 

Definition 2.10 : The centralizer of an element z of a group G is the set of 

elements of  which commute with z,          CG(z)={ 𝓍 ∊G , 𝓍 z=z 𝓍 }. 

Likewise, the centralizer of a subgroup H of a group G is the set of elements 

of G which commute with every element of H, 

                               CG(H)={ 𝓍 ∊G , ∀ h∊ H ,𝓍 h=h 𝓍 }. 

https://en.wikipedia.org/wiki/Group_(mathematics)
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Commutative
https://mathworld.wolfram.com/Group.html
https://mathworld.wolfram.com/IdentityElement.html
https://mathworld.wolfram.com/IdentityElement.html
https://mathworld.wolfram.com/Group.html
https://mathworld.wolfram.com/Subgroup.html
https://mathworld.wolfram.com/Group.html
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Definition 2.11: Normal subgroups a subgroup N of G is normal, denoted  

N ⊲ G, if gNg
-1

 = N for all g ∊G. We should note that the identity element 

and G itself are normal subgroup of G. 

EXAMPLE 1.1.12:  

1- Generalized quaternion group Q4n with presentation        

<x,y|x
2n

=y
4
=1,x

n
=y

2
,    y

-1
xy=x

-1
> for n2. For n=2  is the well-known group  

which is the quaternion group Q8. 

2-The dihedral group D2nwith presentation      <x,y|x
n
=y

2
=1,xy=yx

-1
> for 

n1. 

3- Let (R,
.
) the group of nonzero real numbers under multiplication. Let 

H={1,-1} then H ⊲ R.  

Definition 2.13 : The symmetric group Sn is the group of bijections from 

any set of n objects, which we usually call simply {1,2,3…,n} to itself. An 

element of this group is called a permutation of {1,2,3…,n}. The group 

operation in Sn is composition of mappings. 

Definition 1.1.14:(Fix of permutation ) For  ∈ Sn we define fix() to be 

the  set of elements  in  Ω = {1, 2, . . . n} which fixed by   . So that x Ω  

be in the  fix() if and only if (x)=x. The set of elements of Ω which are 

fixed by  can be denoted Fix(). 

Remark 2.15: 1- Cyclic notation (α1, α2, ..., αr) where α1, α2, ..., αr are distinct 

elements of Ω = {1, 2, . . . n} and r ≤n. denotes the following permutation in Sn:  
α1  α2 

α2  α3 

. 

. 
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. 
αr-1  αr 

αr  α1 

And α → α ∀α ∈ Ω\{α1, α2, ..., αr}.  A r-cycle (α1, α2, ..., αr).  Also, r-Cycles (α1, α2, ..., 

αr) and , s-Cycles (β1, β2, ..., βs) are disjoint cycles if and only if  {α1, α2, ..., αr}{ β1, β2, 

..., βs}=. 

 

3-A 2-cycle is also called a transposition. For example, (1,2) or (5,6) in S5. 

 

2-Every permutation can be written as a product of disjoint cycles — cycles 

that all have no elements in common. Disjoint cycles commute. 

Definition 2.16:Let  be a finite set and  be a permutation. 

The cycle type of  is the data of how many cycles of each length are 

present in the cycle decomposition of .  

Example 2.17:- The conjugacy class of (1 2)(3 4) in S4 consists of all the 

elements of cycle-type (2, 2) and is 

{(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} 

Theorem 2.18: [1]For x  Sn, the conjugacy class x
Sn

 of x in Sn consists of 

all permutations in Sn which have the same cycle-shape as x. 

Example 2.19 The conjugacy classes of S3 are 

Class                            Cycle-shape 

{1}                                     (1) 

{(1 2), (1 3), (2 3)}             (3) 

{(1 2 3), (1 3 2)}                 (2) 

Definition 2.20  It is the group of even permutations of a finite set. The 

alternating group on a set of n elements is called the alternating group of 

degree n, or the alternating group on n letters and denoted by An or Alt(n). 

The group An is a normal subgroup of Sn. 

https://groupprops.subwiki.org/wiki/Cycle_decomposition_for_permutations
https://en.wikipedia.org/wiki/Group_(mathematics)
https://en.wikipedia.org/wiki/Even_permutation
https://en.wikipedia.org/wiki/Finite_set
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EXAMPLE 2 .21:G=S3, then G={1,(1, 2),(1 ,3),(2, 3),( 1, 2, 3),(1 , 3 ,2)}, 

then  

(1,2)(1,3)=(1,2,3) 

(1,2,3)(1,3,2)=( ), the identity element. 

We also see that A3={1,(1,2,3),(1,3,2)} is normal subgroup of S3. 

Definition 2 .22: S
g
 = {

g-1xg
 | x ∊ S} Call S

g
 a conjugate (in G) of S. 

Say R and S are conjugate in G if g∃ ∊ G such that S
g
 = R 

* Special case: 

S ={x}, R = {y}. 

Then R and S are conjugate (in G) ⇔g ∊ G such that g
-1

xg = y 

We say x and y are conjugate in G. 

Notation • x
g
 = g

-1
xg 

              • Conjugacy class of x in G: x
G
 = {

 g-1xg
  | g ∊ G} 

Remarks 2 .23 :G a group. S⊆G, g ∊ G. 

(1) |S| = |S
g
| because the map x ↦g

-1
xg is a map from S to S

g
 which is a 

bijection.  

(2) If S ≤ G, then S
g
 ≤ G 

(3) If x; yG and x and y are conjugate in G, then x and y have the same 

order. 

(4) 1
G
 = {1

g
 | g ∊ G} = {g

-1
1g | g ∊ G} = {1} 

(5) If x ∊ Z(G), then x
G
 = {x} 

x
G
 = {g

-1
xg |g ∊ G} = {g

-1
gx | g ∊ G} = {x} 

In particular if G is abelian then all conjugacy classes contain just one 

element. 
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Theorem 2.24: Every group is a union of conjugacy classes, and distinct 

conjugacy classes are disjoint. 

Theorem 2.25: Let x  G. Then the size of the conjugacy class x
G
 is given  

| x
G
|=|G , CG(x)|=|G|/|CG(x)|  , In particular, |x

G
| divides |G|  

The Class Equation: Let x1,..., xn be representatives of the conjugacy classes 

of G. Then 

|G|=|Z(G)|+∑ |xi
G|xi Z(G) ,Where | xi

G
|=|G:CG(xi)|, and both | xi

G
| and |Z(G)| 

divide |G|.   

 Example 2.26: In the abelian group, all the conjugacy classes are 

singleton sets of size 1. This is because for any x,g, we have gxg
-1

=x 

 Example 2.27 : More generally, for any group , and any element in 

the center of , the conjugacy class of that element has size 1. 

 Example 2.28:The group S3 is the smallest non-Abelian group. This 

group has three conjugacy classes, the class of the identity element (size 

1), the class of the (transpositions (2-Cycles)) (size 3) and the class of the 

3-cycles (size 2). 

 

Now we give a basis definitions in regard with the group action. 

Definition 2 .29: Let G be a group, and let X be a nonempty set. Then a 

(left) 

action of G on X is a map  G × X↦X ,written (g, x) ↦g · x, such that 

g1 · (g2 · x) = (g1g2) · x and e · x = x   ,for all g1, g2 ∊ G and all x ∊X 

Definition 2.30:  Suppose G is a group which acts on a set S. If s ∊S,  

     let O(s) = {gs| g ∊ G}. 

The set O(s) is called the orbit of s. The stabilizer of s is the subset 

    Gs = {g ∊ G | gs = s}of G. 

https://groupprops.subwiki.org/wiki/Center
https://groupprops.subwiki.org/wiki/Symmetric_group:S3
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Transversal of s ={g ∊ G |  gs = t} for t ∊ O(s). 

Definition 2.31: A action of a group on a set is called transitive when the set 

is nonempty and there is exactly one orbit.  

Lemma 2.32: Let G act on a set S. If s ∊ S, then the stabilizer Gs of s is a 

subgroup of G. 

Proof. Note that Gs is nonempty since e ∊Gs. Furthermore, if g, h ∊ Gs then 

gs = hs = s, so (gh)s = g(hs) = gs = s, so gh ∊Gs. Finally, if g ∊Gs then g-1s 

= g
-1

(gs) = (g
-1

g)s = es = s. Thus g
-1

 ∊ Gs. Therefore Gs is a subgroup of G. 

 

(Orbit-Stabilizer Theorem) 2.33 :Let G be a finite group acting on a set S, 

and let x ∈ S. Then the number of elements in the orbit x
G
 is equal to [G : 

StabG(x)].  

 

 

 

 

 

 

 

 

 

 

 

Section 3: Algorithms 
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An algorithm is a set of instructions designed to perform a specific task. 

This can be a simple process, such as multiplying two numbers, or a 

complex operation, such as playing a compressed video file. Search engines 

use proprietary algorithms to display the most relevant results from their 

search index for specific queries. 

 

In computer programming, algorithms are often created as functions. These 

functions serve as small programs that can be referenced by a larger 

program. For example, an image viewing application may include a library 

of functions that each use a custom algorithm to render different image file 

formats. An image editing program may contain algorithms designed to 

process image data. Examples of image processing algorithms include 

cropping, resizing, sharpening, blurring, red-eye reduction, and color 

enhancement. 

Algorithm 3.1 The "plain vanilla" orbit algorithm.  

Input: A group G, given by a generating set g = {g1 , . . . , gm}, acting on a 

domain  . Also a point  . 

Output: return the orbit G. 

begin 

1: = []; 

2: for     do 

3: for i   {1, . . . ,m} do 

4: =gi ; 

5: if     then 

6: Append    to  ; 

7: fi; 

8: od; 

9: od; 

10: return ; 

end 
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Algorithm 3.2: Orbit algorithm with transversal computation 

 

Input: A group G, given by a generating set g = {g1 , . . . , gm}, acting on a 

domain  . Also a point  . 

Output: return the orbit G and a transversal T. 

begin 

1: = []; 

2: T= [1]; 

3: for     do 

4: for i   {1, . . . ,m} do 

5: =gi ; 

6: if     then 

7: Append    to  ; 

8: Append  T[].gi  to T ; 

9: fi; 

10: od; 

11: od; 

12: return ,T; 

end 
 

 

 

 

 

 

 

 

 

 

 

Algorithm 3.3: Orbit/Stabilizer algorithm 
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Input: A group G, given by a generating set g = {g1 , . . . , gm}, acting on a 

domain  . Also a point  . 

Output: return the orbit G and a transversal T. 

begin 

1: = []; 

2: T= [1]; 
3:S=<1>; 

4: for     do 

5: for i   {1, . . . ,m} do 

6: =gi ; 

7: if     then 

8: Append    to  ; 

9: Append  T[].gi  to T ; 

10:else 

11:S=< S,T[].gi . T[]-1 > 

12: fi; 

13: od; 

14: od; 

15: return ,T,S; 

end 
 

 

 

 

 

 

 

 

 

 

Definition 3.1: Let  = 
G
 (again considered as a list). A Schreier vector (or 

factored transversal) is a list S of length | | with the following properties: 
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• The entries of S are generators of G (or the identity element). (In fact the 

entries are pointers to generators, thus requiring only one pointer per entry 

instead of one group element.) 

• S[] =1 

• If S[] = g and 
gi
 = then   precedes  in the orbit. 

 

Schreier vectors can take the place of a transversal: 

 

Algorithm 3.4: If S is a Schreier vector for a point  ., the following 

algorithm computes for   
G  

a representative r such that 
r
= . 

 

begin 

1: =; 

2: r= 1; 

3:while ≠  do  

4: g:=S[ ]; 

5: r:=g.r; 

6: =gi(-1) ; 

14: od; 

15: return r; 

end 
 

 

 

 

 

 

 

 

 

 

Section 4: Examples 
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Ex1: Let G=S3 the Symmetric group of degree 3. Then find  

1- The Size of G . 

2-The elements of G. 

3-Conjugacy classes of G. 

4- let ={1,2,3}, the G act on  by usual manner. if =3 , then 

calculate  

a-The orbits 
G
. 

b-The transversal of 
G

. 

5- Find the Stabilizer(G, ). 

6-Find Fix((1,2)). 

 

Solution: 

1- Size of the G=S3 is 3!=6 

2-G={( ),(1,2),(1,3),(2,3),(1,2,3),(1,3,2)} 

(1,2)=(2,1) because in (1,2)  1---2 and in (2,1) 2---1 which is the same 

(1,2,3)=(3,1,2)=(2,3,1) because  

In (1,2,3) we have 1---2 , 2---3, 3---1 

In (3,1,2) we have 3---1 , 1---2, 2---3 

In (2,3,1) we have 2---3, 3---1,1---2 

3- Conjugacy classes of G  

( )
G
 ----{ ( )} 

(1,2)
G
---{(1,2),(1,3),(2,4)} 

(1,2,3)
G
---{(1,2,3),(1,3,2)} 
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4-  

a-The orbits 
G
={3

( )
,3

(1,2)
,3

(1,3)
,3

(2,3)
,3

(1,2,3)
,3

(1,3,2)
}=[3,3,1,2,1,2]={1,2,3} 

b- The transversal of 
G
={(1,3),(2,3),( )} 

5- Stabilizer(G,3)={( ),(1,2)}. 

6-Fix((1,2))={1,2,3}\{1,2}={3} 

Ex2: In Ex1 use Gap to calculate all the requests. 

G:=SymmetricGroup(3); 

Sym( [ 1 .. 3 ] ) 

 

1- 

Size(G); 

6 

 

2-  

Elements(G); 

[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

3- 

ConjugacyClasses(G); 

[ ()^G, (1,2)^G, (1,2,3)^G ] 

 

4- 

a- 

 Orbit(G,3); 

[ 1, 3, 2 ] 

 

 

 

 

 

 

b- 
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T:=[ ]; 

for i in [1,2,3] do 

Add(T,RepresentativeAction(G,3,i)); 

od; 

T; 

[ (1,3), (2,3), () ] 

 

5- 

Elements(Stabilizer(G,3)); 

[ (), (1,2) ] 

 

6- 

Difference([1,2,3],MovedPoints((1,2))); 

[ 3 ] 

 

 

Ex3: Let G=A4 the Alternating group of degree 4. Then find  

1- The Size of G . 

2-The elements of G. 

3- let ={1,2,3,4}, the G act on  by usual manner. if =2 , then 

calculate : 

a-The orbits 
G
. 

b-The transversal of 
G

. 

4- Find the Stabilizer(G, ). 

5-Find Fix((1,2,3)). 

 

 

Solution: 

1-The size of A4 is 4!/2=12. 
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2-The element of A4 are the even   permutations  of Sn 

A4={( ),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3), (1,2,3), (1,2,4), (1,3,2), (1,3,4), 

(1,4,2), (1,4,3)} 

3- 

a-
G
=[2,1,4,3,3,4,1,2,1,2]={1,2,3,4} 

b- The transversal of 
G
={( ),(1,2)(3,4),(1,4)(2,3),(1,3)(2,4)}; 

4- Stabilizer(G, )={( ), (1,3,4), (1,4,3)} 

5- Fix((1,2,3))={1,2,3,4}\{1,2,3}={4} 

Ex4: In Ex3 use Gap to calculate all the requests. 

G:= AlternatingGroup(4); 

 

 Alt( [ 1 .. 4 ] ) 

 

1- 

Size(G); 

12 

 

2-  

Elements(G); 

 [ (), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2), (1,3,4), (1,3)(2,4), 

(1,4,2), (1,4,3), (1,4)(2,3) ] 

 

3- 

a- 

 Orbit(G,2); 

[ 1, 2, 3,4 ] 

 

 

 

 

b- 

 

T:=[ ]; 

https://en.wikipedia.org/wiki/Even_permutation
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for i in [1,2,3,4] do 

Add(T,RepresentativeAction(G,2,i)); 

od; 

T; 

[ (1,3,2), (1,2,3), (1,2,4), () ] 

 

4- 

Elements(Stabilizer(G,2)); 

[ (), (1,3,4), (1,4,3) ] 

 

5- Difference([1,2,3,4],MovedPoints((1,2,3))); 

[ 4 ] 

 

 

Ex5: Let G be a group with the following elements 

 [ (), (1,2,4,7,6,11,5,3,10,9,8), (1,3,7,8,5,4,9,11,2,10,6),  

(1,4,6,5,10,8,2,7,11,3,9), (1,5,2,3,4,10,7,9,6,8,11), (1,6,10,2,11,9,4,5,8,7,3), 

 (1,7,5,9,2,6,3,8,4,11,10), (1,8,9,10,3,5,11,6,7,4,2), (1,9,3,11,7,2,8,10,5,6,4),  

(1,10,11,4,8,3,6,2,9,5,7), (1,11,8,6,9,7,10,4,3,2,5) ] 

 Then Calculate the following: 

1- The Size of G . 

2- let ={1,2,3,4,5,6,7,8,9,10,11}, the G act on  by usual manner. if =4 

, then calculate : 

a-The orbits 
G
. 

b-The transversal of 
G

. 

3- Find the Stabilizer(G, ). 

4-Find Fix((1,11,8,6,9,7,10,4,3,2,5)). 
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Solution: 

1-Size(G) or |G|=11. 

2- 

a- 

4
G
=[4,7,9,6,10,5,11,2,1,8,3]={1,2,3,4,5,6,7,8,9,10,11} 

b- 

The transversal of 
G
=G. 

3- Stabilizer(G, 4)={( )}. 

4-  Fix((1,11,8,6,9,7,10,4,3,2,5))={1,2,3,4,5,6,7,8,9,10,11}\ 

{ 1,11,8,6,9,7,10,4,3,2,5}=. 

 

Ex6: In Ex5 use Gap to calculate all the requests  

G:=Subgroup(SymmetricGroup(11),[ (), (1,2,4,7,6,11,5,3,10,9,8), 

(1,3,7,8,5,4,9,11,2,10,6), (1,4,6,5,10,8,2,7,11,3,9), (1,5,2,3,4,10,7,9,6,8,11), 

(1,6,10,2,11,9,4,5,8,7,3), (1,7,5,9,2,6,3,8,4,11,10), (1,8,9,10,3,5,11,6,7,4,2), 

(1,9,3,11,7,2,8,10,5,6,4), (1,10,11,4,8,3,6,2,9,5,7), (1,11,8,6,9,7,10,4,3,2,5) ] 

); 

permutation group with 11 generators 

 

1- 

Size(G); 

11 

 

2- 

a- 

 Orbit(G,4); 

[ 1, 2, 3,4,5,6,7,8,9,10,11 ] 

b- 
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T:=[ ]; 

 

for i in [1,2,3,4,5,6,7,8,9,10,11] do 

Add(T,RepresentativeAction(G,4,i)); 

od; 

T; 

[ (), (1,2,4,7,6,11,5,3,10,9,8), (1,3,7,8,5,4,9,11,2,10,6),  

(1,4,6,5,10,8,2,7,11,3,9), (1,5,2,3,4,10,7,9,6,8,11), (1,6,10,2,11,9,4,5,8,7,3), 

 (1,7,5,9,2,6,3,8,4,11,10), (1,8,9,10,3,5,11,6,7,4,2), (1,9,3,11,7,2,8,10,5,6,4),  

(1,10,11,4,8,3,6,2,9,5,7), (1,11,8,6,9,7,10,4,3,2,5) ] 

 

4- 

Elements(Stabilizer(G,4)); 

[ () ] 

 

5- 

Difference([1,2,3,4,5,6,7,8,9,10,11],MovedPoints((1,11,8,6,9,7,10,4,3,2,5))

); 

[  ] 

 

 

Ex7: Let G be a group with the following elements 

 [ (), (5,6), (3,4), (3,4)(5,6), (1,2), (1,2)(5,6), (1,2)(3,4), (1,2)(3,4)(5,6), 

(1,3)(2,4), (1,3)(2,4)(5,6), (1,3,2,4), (1,3,2,4)(5,6), (1,4,2,3), (1,4,2,3)(5,6), 

(1,4)(2,3), (1,4)(2,3)(5,6) ] 

 

1- The Size of G . 

2- let ={1,2,3,4,5,6}, the G act on  by usual manner. if =3 , then 

calculate : 

a-The orbits 
G
. 
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b-The transversal of 
G

. 

3- Find the Stabilizer(G, ). 

4-Find Fix((5,6)). 

 

Solution: 

1-Size(G) or |G|=16. 

2- 

a- 

3
G
={1,2,3,4} 

b- 

The transversal of 
G
=[ (1,3)(2,4), (1,3,2,4), (), (3,4) ]. 

3- Stabilizer(G, 3)={ (), (5,6), (1,2), (1,2)(5,6) }. 

4-  Fix((5,6))={1,2,3,4} 

 

Ex8: In Ex7 use Gap to calculate all the requests  

G:=Subgroup(SymmetricGroup(6),[ [ (), (5,6), (3,4), (3,4)(5,6), (1,2), 

(1,2)(5,6), (1,2)(3,4), (1,2)(3,4)(5,6), (1,3)(2,4), (1,3)(2,4)(5,6), (1,3,2,4), 

(1,3,2,4)(5,6), (1,4,2,3), (1,4,2,3)(5,6), (1,4)(2,3), (1,4)(2,3)(5,6) ] 

); 

permutation group with 6 generators 

 

1- 

Size(G); 

16 

 

2- 

a- 

 Orbit(G,3); 



46 
 

[ 1, 2, 3,4 ] 

b- 

 

T:=[ ]; 

 

for i in [1,2,3,4] do 

Add(T,RepresentativeAction(G,3,i)); 

od; 

T; 

[ (1,3)(2,4), (1,3,2,4), (), (3,4) ] 

4- 

Elements(Stabilizer(G,3)); 

[ (), (5,6), (1,2), (1,2)(5,6) ] 

5- Difference([1,2,3,4,5,6],MovedPoints((5,6))); 

[1,2,3,4 ] 

 

 

Ex9: Let G be a group with the following elements 

[ (), (4,5,6), (4,6,5), (1,2,3), (1,2,3)(4,5,6), (1,2,3)(4,6,5), (1,3,2), 

(1,3,2)(4,5,6), (1,3,2)(4,6,5) ] 

Then Calculate the following: 

1- The Size of G . 

2- let ={1,2,3,4,5,6}, the G act on  by usual manner. if =6 , then 

calculate : 

a-The orbits 
G
. 

b-The transversal of 
G

. 

3- Find the Stabilizer(G, ). 

4-Find Fix((1,2,3)). 

Solution: 
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1-Size(G) or |G|=9. 

2- 

a- 

6
G
={4,5,6} 

b- 

The transversal of 
G
= [ (4,5,6), (4,6,5), () ]. 

3- Stabilizer(G, 6)={ (), (1,2,3), (1,3,2) }. 

4-  Fix((1,2,3))={4,5,6} 

 

Ex10: In Ex9 use Gap to calculate all the requests  

G:=Subgroup(SymmetricGroup(6), [ (), (4,5,6), (4,6,5), (1,2,3), 

(1,2,3)(4,5,6), (1,2,3)(4,6,5), (1,3,2), (1,3,2)(4,5,6), (1,3,2)(4,6,5) ]); 

permutation group with 6 generators 

 

1- 

Size(G); 

9 

 

2- 

a- 

 Orbit(G,3); 

[ 4,5,6 ] 

 

b- 

 

T:=[ ]; 

 

for i in [4,5,6] do 

Add(T,RepresentativeAction(G,6,i)); 

od; 

T; 
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[ (4,5,6), (4,6,5), () ] 

4- 

Elements(Stabilizer(G,6)); 

[(), (1,2,3), (1,3,2)] 

 

5- Difference([1,2,3,4,5,6],MovedPoints((1,2,3))); 

[4,5,6 ] 

 

 

Ex11: Let G be a group with the following elements 

[ (), (1,2,3,4,5), (1,3,5,2,4), (1,4,2,5,3), (1,5,4,3,2) ] 

Then Calculate the following: 

1- The Size of G . 

2- let ={1,2,3,4,5}, the G act on  by usual manner. if =1 , then 

calculate : 

a-The orbits 
G
. 

b-The transversal of 
G

. 

3- Find the Stabilizer(G, ). 

4-Find Fix(()). 

Solution: 

1-Size(G) or |G|=5. 

2- 

a- 

1
G
={1,2,3,4,5} 

b- 
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The transversal of 
G
= G. 

3- Stabilizer(G, 1)={ ()}. 

4-  Fix(())={1,2,3,4,5} 

 

Ex12: In Ex11 use Gap to calculate all the requests  

G:=Subgroup(SymmetricGroup(5), [ (), (1,2,3,4,5), (1,3,5,2,4), 

(1,4,2,5,3), (1,5,4,3,2) ]); 

permutation group with 5 generators 

 

1- 

Size(G); 

5 

 

2- 

a- 

 Orbit(G,1); 

[ 1,2,3,4,5 ] 

b- 

 

T:=[ ]; 

 

for i in [1,2,3,4,5] do 

Add(T,RepresentativeAction(G,1,i)); 

od; 

T; 

[ (), (1,2,3,4,5), (1,3,5,2,4), (1,4,2,5,3), (1,5,4,3,2) ] 

4- 

Elements(Stabilizer(G,1)); 

[()] 

 

5- Difference([1,2,3,4,5],MovedPoints(())); 

[1,2,3,4,5 ] 

Ex13: Let G be a group with the following elements 
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[ (), (1,2,3,4,5,6), (1,3,5)(2,4,6), (1,4)(2,5)(3,6), (1,5,3)(2,6,4), (1,6,5,4,3,2) ] 

Then Calculate the following: 

1- The Size of G . 

2- let ={1,2,3,4,5,6}, the G act on  by usual manner. if =4 , then 

calculate : 

a-The orbits 
G
. 

b-The transversal of 
G

. 

3- Find the Stabilizer(G, ). 

4-Find Fix(()). 

Solution: 

1-Size(G) or |G|=6. 

2- 

a- 

4
G
={1,2,3,4,5,6} 

b- 

The transversal of 
G
= G. 

3- Stabilizer(G, 4)={ ()}. 

4-  Fix(())={1,2,3,4,5,6} 

 

Ex14: In Ex13 use Gap to calculate all the requests  

G:=Subgroup(SymmetricGroup(5), [ (), (1,2,3,4,5,6), (1,3,5)(2,4,6), 

(1,4)(2,5)(3,6), (1,5,3)(2,6,4), (1,6,5,4,3,2) ]); 

permutation group with 6 generators 
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1- 

Size(G); 

6 

 

2- 

a- 

 Orbit(G,4); 

[ 1,2,3,4,5,6 ] 

b- 

 

T:=[ ]; 

 

for i in [1,2,3,4,5,6] do 

Add(T,RepresentativeAction(G,4,i)); 

od; 

T; 

[(), (1,2,3,4,5,6), (1,3,5)(2,4,6), (1,4)(2,5)(3,6), (1,5,3)(2,6,4), (1,6,5,4,3,2) ] 

4- 

Elements(Stabilizer(G,4)); 

[()] 

 

5- Difference([1,2,3,4,5,6],MovedPoints(())); 

[1,2,3,4,5,6 ] 
 


