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Chapter One: General Introduction and Classical Mechanics I 

One-Dimensional Potential Energy Curve (Morse Curve) 

The minimum in the curve indicates a stable A-B molecule with an 

equilibrium distance Re and a dissociation energy De. De is the amount of 

energy necessary to dissociate the molecule into its component atoms A + 

B. Note that the dissociation energy is equal to binding or formation energy 

for a specific bond. 

 

 

Figure: Energy of diatomic molecule AB plotted against the internuclear distance. Re is 

the equilibrium distance between the nuclei and De is the dissociation 

energy. 

 

Two-Dimensional Contours and Three-Dimensional Hypersurfaces of 

Molecular Energy 

The example below shows an illustration for energy variation when a 

molecule (or more than one molecule) change their geometrical 

parameters (bond distances R, angles θ, dihedral angels ξ). Energy is then 

a function of these parameters. Note that the location of any particle 

(atom, nucleus, electron…etc) can be described via its x, y, and z 

coordinate.  

 

E=f(R, θ, ξ) 
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R=f(r1, r2, r3…………… r(3N) ,    where: N:  the total number of atoms 

ri: the distance between atom i and a 
geometrical index in the space. 

  

 

In addition to the energy, the derivation of energy is not less important 

than the energy itself. The derivation of energy leads to very important 

physical properties, as in the following examples (The examples are for 

your knowledge, i.e. not compulsory but optional):  

 First order derivative of energy (𝜕E) can give: 

Forces on nuclei; spin density; dipole moment. 

 Second order derivative of energy (𝜕2E) can give:  

polarizability; vibrational frequencies; infrared intensities, indirect 

spin-spin coupling constant, rotational spectra in magnetic field; 

nuclear spin-rotation tensor; electronic g-tensor; magnetazibility; 

nuclear magnetic shielding tensor; nuclear spin-rotation tensor. 

 Third order derivative of energy (𝜕3E) can give: 

Cubic force constants; first hyperpolarizability; polarizability 

derivative. 

 Fourth order derivative of energy (𝜕4E) can give: 

quartic force constants 

Also, knowing the equilibrium structure of a molecule, in addition to 

dealing with its exited states, can be achieved via geometry optimisation, 

a process performed under quantum chemical software packages. 

  Historically, many critical points of development can be found when 

reviewing the way that how a system was treated and how its physical 

properties (including energy calculation) was obtained. Maybe the main 

highlighted ones can be mentioned here as: 

Classical mechanics 

Quantum theory 

Quantum mechanics 
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Quantum mechanics became important during the twentieth century. 

Before that time, laws of classical mechanics, which introduced in the 

seventeenth century by Isaac Newton, were used. These laws of classical 

mechanics were very successful at explaining the motion of huge objects 

like planets or even objects such as pendulums and projectiles. However, 

classical mechanics failed when it was applied to very small particles, such 

as individual atoms, nuclei, and electrons, and very small energy transfer. 

Classical mechanics 

Classical mechanics describes the behaviour of particles in terms of two 

equations: 

A: One explains that total energy is constant in the absence of external 

forces. 

B: The other explains how particles response when forces acting on them. 

in the following, fundamentals of classical mechanics become more 

understandable via some treatments. 

(a) The trajectory in terms of the energy 

The velocity, ν, of a particle is the rate of change of its position: 

ν =
dr

dt
        _________(1.1) 

 

The velocity is a vector, with both direction and magnitude. The magnitude 

of the velocity is the speed. The linear momentum, p, of a particle of mass 

m is related to its velocity, ν, by 

p =  mν        _________(1.2) 

 

Like the velocity vector, the linear momentum vector points in the 

direction of travel of the particle (figure 1.3).  
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Figure : The linear momentum of a particle is a vector property and points in the 

direction of motion. 

In terms of the linear momentum, the total energy—the sum of the kinetic 

and potential energy of a particle is: 

 

E = Ek + V(x) =
p2

2m
+ V(x)        _________(1.3) 

 

This equation can be used to show that a particle will have a definite 

trajectory, or definite position and momentum at each instant. 

For example, consider a particle free to move in one direction (along the x-

axis) in a region where V = 0 (so the energy is independent of position). 

From the definition of the kinetic energy, 

Ek=

1

2
mv2        _________(1.4) 

 

 and                                      v = dx/dt 

From equations (1.2) and (1.3): 

 

dx

dt
= (

2Ek

m
)

1/2

        _________(1.5) 
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A solution of this differential equation is: 

 

x(t) = x(0) + (
2Ek

m
)

1/2

t        _________(1.6) 

 

The linear momentum is a constant: 

 

p(t) = mv(t) = m
dx

dt
= (2mEk)1/2 _________(1.7) 

 

Hence, if we know the initial position and momentum, we can predict all 

later positions and momenta exactly. 

The force, F, experienced by a particle free to move in one dimension is 

related to its potential energy, V, by: 

 

F =
dV

dx
        _________(1.8) 

 

This relation implies that the direction of the force is towards decreasing 

potential energy (figure 1.4). In three dimensions: 

 

F = −∇V        _________(1.9) 

 

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
        _________(1.10) 



Chapter ONE 1-General Introduction and Classical Mechanics I 
Dr. Muntadar Al-Yassiri 2020-2021 

Page | 7  
 

 

Figure: The force acting on a particle is determined by the slope of the potential 

energy at each point.  

 

Newton’s second law of motion states that the rate of change of 

momentum is equal to the force acting on the particle. In one dimension: 

F =
dp

dt
        _________(1.11) 

Because p = m(dx/dt) (equation 1.7) in one dimension, it is sometimes 

more convenient to write this equation as: 

F = m
d2x

dt2
        _________(1.12) 

 

If a particle of mass m is initially stationary and is subjected to a constant 

force F for a time τ, then its kinetic energy increases from zero to: 

Ek =
F2τ2

2m
        _________(1.13) 
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Rotational motion 

The rotational motion of a particle about a central point is described by its 

angular momentum, J. The angular momentum is a vector its magnitude 

gives the rate at which a particle circulates and its direction indicates the 

axis of rotation (figure. 1.5). 

 

Figure: The angular momentum of a particle is represented by a vector along the axis 

of rotation and perpendicular to the plane of rotation. The length of the 

vector denotes the magnitude of the angular momentum.  

 

The magnitude of the angular momentum, J, is given by the expression: 

 

J = Iω        _________(1.14) 

Where: ω is the angular velocity of the body, its rate of change of angular 

position (in radians per second), and I is the moment of inertia. 

 

Translational case Rotational case 
m I 
ν ω 
p J 

 

For a point particle of mass m moving in a circle of radius r, the moment of 

inertia about the axis of rotation is given by the expression:  
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I = mr2        _________(1.15) 

 

To accelerate a rotation, it is necessary to apply a torque, T, a twisting 

force. Newton’s equation is then: 

 

T =
dJ

dt
        _________(1.16) 

 

If a constant torque is applied for a time τ, the rotational energy of an 

initially stationary body is increased to: 

 

Ek =
T2τ2

2I
        _________(1.17) 

 

The implication of this equation is that an appropriate torque and period 

for which it is applied can excite the rotation to an arbitrary energy. 

 

The harmonic oscillator 

A harmonic oscillator consists of a particle that experiences a restoring 

force proportional to its displacement from its equilibrium position: 

 

F = −kx        _________(1.18) 

 

An example is a particle joined to a rigid support by a spring. The constant 

of proportionality k is called the force constant, and the stiffer the spring 

the greater the force constant. The negative sign in F signifies that the 

direction of the force is opposite to that of the displacement x (figure 1.6). 
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Figure: The force acting on a particle that undergoes harmonic motion. The force is 

directed toward zero displacement and is proportional to the 

displacement. The corresponding potential energy is parabolic 

(proportional to x2)  

 
 

The motion of a particle that undergoes harmonic motion is found by 

substituting the expression for the force, equation 1.18, into Newton’s 

equation, equation 1.12. The resulting equation is: 

−kx = m
d2x

dt2
        _________(1.19) 

A solution is: 
 

 

x(t) = A sin αt 

p(t) = mαA cos αt 

α = (
k

m
)

1
2

 

 

 

These solutions show that the position of the particle varies harmonically 

(that is, as sin αt) with a frequency ν = α /2π. They also show that the 

particle is stationary (p = 0) when the displacement, x, has its maximum 

value, A. 
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Ek =
p2

2m
=

(mαA cos αt)2

2m
=

1

2
mα2A2cos2αt _________(1.21) 

 

Then, because α = (k /m)1/2, this expression may be written: 

 

Ek =
1

2
kA2cos2αt _________(1.22) 

 

The force on the oscillator is F = −kx, so it follows from the relation F = 

−dV/dx that the potential energy of a harmonic oscillator is: 

 

V =
1

2
kx2 =

1

2
kA2sin2αt _________(1.23) 

 

The total energy is therefore: 

 

Etotal =
1

2
kA2cos2αt +

1

2
kA2sin2αt =

1

2
kA2 _________(1.24) 

Note that cos2 αt + sin2 αt = 1 

 

Quantum Theory 

The basic principles of classical mechanics are reviewed in the previous 

examples which showed that classical physics: 

(i) Predicts a trajectory for particles, with precisely specified 

locations and momenta at each instant. 
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(ii) Allows the translational, rotational, and vibrational modes of 

motion to be excited to any energy simply by controlling the 

forces that are applied. 

 

These conclusions agree with everyday experience, however, they do not 

extend to individual atoms and molecules. In the following, careful 

experiments will show that classical mechanics fails when applied to the 

transfers of very small energies and to objects of very small mass. 

 

Black-body radiation 

A hot object emits electromagnetic radiation. At high temperatures, the 

proportion of the radiation is in the visible region of the spectrum. When 

the temperature is raised, a higher proportion of short-wavelength blue 

light is generated. This behaviour is seen when a heated metal bar glowing 

red hot becomes white hot when heated further.  

 

A good approximation to a black body (which is an object capable of 

emitting and absorbing all wavelengths of radiation uniformly) is a pinhole 

in an empty container maintained at a constant temperature, because any 

radiation leaking out of the hole has been absorbed and re-emitted inside 

so many times as it reflected around inside the container that it has come 

to thermal equilibrium with the walls  

 

The approach adopted by nineteenth-century scientists to explain black-

body radiation was to calculate the energy density, dȄ, the total energy in 

a region of the electromagnetic field divided by the volume of the region 

(J.m−3), due to all the oscillators corresponding to wavelengths between λ 

and λ+dλ. 
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This energy density is proportional to the width, dλ, of this range, and is 

written: 

dȄ(λ, T )  =  ρ(λ, T)dλ _________(2.1) 

where ρ, the constant of proportionality between dȄand dλ, is called the 

density of states (J.m-4). The total energy density in a region is the integral 

over all wavelengths: 

Ȅ(T)  = ∫ ρ(λ, T)dλ
∞

0

 _________(2.2) 

increasing temperature increases the energy density. The total energy 

within a region of volume V is this energy density multiplied by the 

volume: 

E(T )  =  VȄ(T) _________(2.3) 
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Lord Rayleigh thought that the electromagnetic field as a collection of 

oscillators of all possible frequencies. He regarded the presence of 

radiation of frequency ν (and therefore of wavelength λ = c/ν) as signifying 

that the electromagnetic oscillator of that frequency had been excited 

(figure 2-2 (a)).  

The average energy of each oscillator, regardless of its frequency, is kT. On 

that basis, he and James Jeans arrived at the Rayleigh–Jeans law for the 

density of states: 

 

ρ(λ, T) =
8πkT

λ4
) _________(2.4) 

 

 

 

Although the Rayleigh–Jeans law is quite successful at long wavelengths 

(low frequencies), it fails badly at short wavelengths (high frequencies).  

The equation therefore predicts that oscillators of very short wavelength 

are strongly excited even at room temperature.  

 

Heat Capacities 

In 1819, Dulong and Petit were able to propose their law that ‘the atoms 

of all simple bodies have exactly the same heat capacity’ of about 25 J.K-

1mol-1. Dulong and Petit’s observations were done at room temperature, 

and it was unfortunate for them and for classical physics when 

measurements were extended to lower temperatures and to a wider range 

of materials. 

Dulong and Petit’s law was easy to explain in terms of classical physics by 

assuming that each atom acts as a classical oscillator in three dimensions. 

The calculation predicted that the molar heat capacity, CV,m, of a 

monatomic solid should be equal to 3R = 24.94 J.K-1mol-1, where R is the 

gas constant (R=NAk, NA is Avogadro’s constant). That the heat capacities 

were smaller than predicted. 
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Einstein recognized the similarity between this problem and black-body 

radiation, for if each atomic oscillator required a certain minimum energy 

before it would actively oscillate and hence contribute to the heat capacity, 

then at low temperatures some would be inactive and the heat capacity 

would be smaller than expected. He applied Planck’s suggestion for 

electromagnetic oscillators to the material, atomic oscillators of the solid, 

and deduced the following expression: 

 

Cv,m(T) = 3RfE(T)   , fE(T) = {
θE

T
.

eθE/2T

1 − eθE/T
}

2

   _________(2.7) 

 

where the Einstein temperature, θE, is related to the frequency of atomic 

oscillators by θE = hν/k.  

In fact, the fit between plotted and experimental curves of CV,m(T)/R is not 

particularly good at very low temperatures (figure 2.3), but that can be 

traced to Einstein’s assumption that all the atoms oscillated with the same 

frequency. When this restriction was removed by Debye, he obtained: 

 

Cv,m(T) = 3RfD(T)   ,

fD(T) = 3 (
T

θD

)
3

∫
x4ex

(ex − 1)2
dx

θD/T

0

 _________(2.8) 

 

where the Debye temperature, θD, is related to the maximum frequency 

of the oscillations that can be supported by the solid. This expression gives 

a very good fit with observation. 
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Figure: The Einstein and Debye molar heat capacities. The symbol θ denotes the 

Einstein and Debye temperatures, respectively. 

 

The importance of Einstein’s contribution is that it complemented Planck’s. 

Planck had shown that the energy of radiation is quantized; Einstein 

showed that matter is quantized too. Quantization appears to be universal. 

Atomic and molecular spectra 

The most compelling and direct evidence for the quantization of energy 

comes from spectroscopy, the detection and analysis of the 

electromagnetic radiation absorbed, emitted, or scattered by a substance. 

The record of light intensity transmitted or scattered by a molecule as a 

function of frequency (ν), wavelength (λ), or wavenumber (ν̃ = ν/c) is called 

its spectrum.  

A typical atomic spectrum and a typical molecular spectrum both is that 

radiation is emitted or absorbed at a series of discrete frequencies. This 

observation can be understood if the energy of the atoms or molecules is 

also confined to discrete values, for then, energy can be discarded or 

absorbed only in discrete amounts. Then, if the energy of an atom 

decreases by ΔE, the energy is carried away as radiation of frequency ν, 

and an emission ‘line’, a sharply defined peak, appears in the spectrum. We 

say that a molecule undergoes a spectroscopic transition, a change of 

state, when the Bohr frequency condition. 
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Figure: A region of the spectrum of radiation emitted by excited iron atoms consists of 

radiation at a series of discrete wavelengths (or frequencies). 
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Wave-Particle Duality 

As established that the energies of the electromagnetic field and of 

oscillating atoms are quantized. In the following, two experimental 

evidence that led to the revision of two basic concepts concerning natural 

phenomena will be given. 

One experiment shows that electromagnetic radiation, (which classical 

physics treats as wave-like), also displays the characteristics of particles. 

Another experiment shows that electrons (which classical physics treats as 

particles), also display the characteristics of waves. So, particles taking on 

the characteristics of waves, and waves the characteristics of particles. 

 

The particle character of electromagnetic radiation 

The observation that electromagnetic radiation of frequency ν can possess 

only the energies 0, hν, 2hν, ... suggests that it can be thought of as 

consisting of 0, 1, 2,... particles, each particle having an energy hν . Then, if 

one of these particles is present, the energy is hν, if two are present the 

energy is 2hν, and so on.  

 

These particles of electromagnetic radiation are now called photons. The 

observation of discrete spectra from atoms and molecules can be pictured 

as the atom or molecule generating a photon of energy hν when it discards 

an energy of magnitude ΔE, with ΔE=hν.  

So far, the existence of photons is only a suggestion. Experimental 

evidence for their existence comes from the measurement of the energies 

of electrons produced in the photoelectric effect. As in the following: 

 

The photo electric effect is the ejection of electrons from metals when they 

are exposed to ultraviolet radiation. The experimental characteristics of 

the photoelectric effect are as follows. 
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 No electrons are ejected, regardless of the intensity of the radiation, 

unless its frequency exceeds a threshold value characteristic of the 

metal. 

 The kinetic energy of the ejected electrons increases linearly with the 

frequency of the incident radiation but is independent of the intensity 

of the radiation. 

 At low light intensities, electrons are ejected immediately if the 

frequency is above the threshold. 

 

These observations strongly suggest that the photoelectric effect depends 

on the ejection of an electron when it is involved in a collision with a 

particle-like projectile that carries enough energy to eject the electron 

from the metal.  

  
Figure: The relation between the frequency and the kinetic energy of the ejected 

electrons in photoelectric effect experiment.  

 

If we suppose that the projectile is a photon of energy hν, where ν is the 

frequency of the radiation, then the conservation of energy requires that 

the kinetic energy of the ejected electron (½ mev2) should obey 

 
1

2
mev2 = hν − Φ _________(2.9) 

 

(i) 
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In this expression Φ is a characteristic of the metal called its work function, 

the energy required to remove an electron from the metal to infinity, the 

analogue of the ionization energy of an individual atom or molecule. 

 

A practical application of equation (2.9) is that it provides a technique for 

the determination of Planck’s constant, for the slopes of the are all equal 

to h. 

 

The wave character of particles 

Although contrary to the wave theory of light that the light consists of 

particles, no significant efforts, however, had taken the view that matter is 

wave-like. The possibility that the matter is wave-like has been established 

since 1925 when crucial experiment was performed by Clinton Davisson 

and Lester Germer, who observed the diffraction of electrons by a crystal. 

Diffraction is the interference caused by an object in the path of waves. 

Depending on whether the interference is constructive or destructive, the 

result is a region of enhanced or diminished intensity of the wave. The 

polycrystalline sample works as a diffraction grating via the ordered planes 

of atoms. 

 

Figure: Davisson-Germer experiment which performed on a nickel crystal. The 

electrons of the scattered electron beam show a diffraction which follow 

a similar behaviour of waves.  
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At almost the same time, G.P. Thomson, showed that a beam of electrons 

was diffracted when passed through a thin gold foil.  

The Davisson–Germer experiment shows clearly that particles have wave-

like properties, and the diffraction of neutrons is a well-established 

technique for investigating the structures and dynamics of condensed 

phases.  

 

Figure: An illustration of the de Broglie relation between momentum and wavelength. 

A particle with high momentum has a wavefunction with a short 

wavelength, and vice versa. 
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Selected Topics in Quantum Theory  

Bohr Model of the Atom 

Before the discovery of quantum mechanics, Bohr applied the concept of 

quantization to the problem of the structure of the hydrogen atom. He 

accepted the Rutherford model of the nuclear atom and asserted that:  

 An electron remains in a stationary state, an orbit around the central 

nucleus, until it undergoes a transition. 

 A transition between stationary states differing in energy by ΔE is 

accompanied by the emission or absorption of radiation with a 

frequency ν determined by the condition ΔE = hν. The latter assertion 

is the Bohr frequency condition. 

 The permitted stationary states may be found by balancing the 

Coulombic attractive force between the electron and nucleus against 

the centrifugal effect of the angular momentum of the electron in its 

orbit. 

Finally, Bohr brought in Planck's constant (specifically, as ћ=h/2π and 

introduced a quantization postulate: 

 The only orbital angular momenta permitted are integral multiples of 

ћ. 

When Bohr carried through the calculation on the basis of this model, he 

deduced that the energies of the electron in its permitted orbits (figure 

3.1(a)) are: 

E = −
hcR

n2
      ,       n = 1,2,3, … . _________(3.1) 

Where  
R = Rydberg Constant = 109737 cm−1  
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This expression is in excellent agreement with experiment (and in exact 

agreement with the solutions of the Schrödinger equation, which came 

later). In particular, It reproduces the positions of all the series in the 

spectrum of atomic hydrogen. 

The refinement of Bohr's initially promising model proceeded in two steps. 

The first took into account the fact that the orbital motion occurred about 

the centre of mass of the system rather than about the nucleus itself. This 

refinement merely involved replacing the mass of the electron in the Bohr 

formula by the reduced mass (μ) of the proton and the electron. 

The second improvement was introduced Arnold Sommerfeld in 1915. In 

the generalization of the Bohr theory, known as the Bohr-Sommerfeld 

atom, the orbits are allowed to be elliptical (figure 3-1(b)). The eccentricity 

(the degree of ellipticity) of the elliptical orbits is determined by a 

quantum number k, the azimuthal quantum number. The energy of an 

orbit is independent of its eccentricity. 

Note that the Bohr radius a0, is the radius of the lowest energy orbit in the 

now outdated Bohr model of the hydrogen atom. It is defined as: 

a0 =
4πε0ћ2

mee2
   , a0 = 0.529177249 Å  _________(3.2)  

According to the quantum-mechanical picture of the atom, the most 

probable radius at which an electron will be found in the ground state (the 

1s orbital) of the hydrogen atom is equal to a0. The Bohr radius is a 

convenient unit of distance when discussing the structures of atoms and 

molecules. 

Based on Plank’s postulations of quantization, Sommerfeld put some steps 

to treat some physical systems. These rules can be list as follows: 

1. Describing classical equations of the motion of the system under 

investigation. 



Chapter THREE     Selected Topics in Quantum Theory  
Dr. Muntadar Al-Yassiri 

Page | 24  
 

2.  Defining the action integral (∮) as a step towards obtaining quantization 

properties of the system. 

∮ Pkd qk = nkh   , nk = a quantum number _________(3.3) 

3. Solving the action integral of the system for complete and repetitive 

motions only by the aid of geometrical coordinates information of the 

system. 

Using the above steps, Sommerfeld was able to solve the energetic and 

kinetic problems of some systems as in the following: 

Particle in a Box 

System description: 

 The system consists of a particle (m) moving in a region of space. The 

potential energy of the particle is zero (Epot(or V) = 0) in any 

direction of x, y and z coordinate, but equals to infinite at the edges 

(walls) of the region. 

 The box may be one-dimensional, in which the particle is free to move 

between 0 and a along the x axis. 

 a, b and c are the points located at the ends of x, y and z coordinate of 

the box, respectively. 

  During the motion of the particle in the box, it is impossible to 

proceed (or pass) the walls of the box but rather the particle reflects 

its movement (using opposite direction and opposite momentum 

(takes negative sign). 

 The motion, the collision and the reflection of the particle for this 

system, is called elastic collision. 
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Mathematical Solution: 

∮ pxdx = ∫ pxdx

a

0

+ [− ∫ pxdx

0

a

] = nxh  _________(3.4) 

= 2apx = nxh  _________(3.8) 

∴ px =
nxh

2a
  , 

Etotal =  
px

2

2m
+

py
2

2m
+

pz
2

2m
 _________(3.11) 

From equations 3.9 and 3.11 we can obtain: 

Etotal =  
nx 

2 h2

8 m a2
+

ny 
2 h2

8 m b2
+

nz 
2 h2

8 m c2
 _________(3.13) 

When a = b = c: 

Etotal =  
n2h2

8 m a2
 _________(3.14) 

An example for this kind of systems is an electron moves in a conjugated 

system. 

This allows us to calculate energy difference of electron excitation, i.e, the 

energy difference (ΔE) between two electronic quantum numbers. 
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Rigid Rotator 

System description: 

 The simplest rigid rotator consists of two point-masses (a and b) which 

are held apart at a fixed distance perfectly rigid and weightless bond. 

This ideal is approached quite closely by a diatomic molecule in its 

ground vibrational state. 

 The system is mathematically equivalent to a particle of mass μ 

moving on a surface. If the rotator is not acted on by any external 

forces, we can take the potential energy (V) to be equal to zero on the 

surface. 

 

Mathematical Solution: 

a) Some simplifications 

J = I ω        _________(1.14) 

ω =
J

I
  ;    ω2 =

J2

I2
 _________(1.14) 

Ek =
1

2
 I ω2    →  Ek =

J2

2 I
      _________(1.17) 

 Here J is the angular moment, I is the moment of inertia, ω the angular 

velocity, and μ the reduced mass of the system, ri the distance 

between a and b (bond length), ra and rb are the distance from the 

centre of mass to particle a and b, respectively. 

b) Sommerfield’s treatment: 

 

∮ Jφdφ
2π

0

= k h  _________(3.4) 
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k is the rotational quantum number, k = 0,1,2,3, …. 

∮ Jφdφ
2π

0

= Jφ φ |
2π
0

= k h  _________(3.5) 

 Jφ =
k h

2π
= k ћ  _________(3.6) 

∴  Jφ quantised since it depends on a quantum number k. 

Etotal =  Ekinetic = Erotation   _________(3.10) 

Etotal =  
Jφ

2

2I
   _________(3.11) 

Etotal =  
(

k h
2π

)
2

2I
   →   Etotal =

k2 h2

4π2
×

1

2I
    _________(3.11) 

Etotal =
k2 ћ2

2 I
 _________(3.11) 

∴ Etotal ~
1

I
 ,    →    Etotal ~ k2 
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One-Dimensional Harmonic Oscillator 

Mathematical Solution: 

a) Some simplifications 

x(t) = A sin αt 

p(t) = mαA cos αt 

α = (
k

m
)

1
2

 

 

ν =
1

2π
× √

k

m
 

k = 4π2ν2m 

α = √
4π2ν2m

m
  →  α = 2πν 

Note that, since:  

p(t) = mv(t) 

Therefore; 

v(t) = (2πν)A cos(2πν)t 

b) Sommerfield’s treatment: 

 

∮ pxdx
t=1/v

t=0

= n h   →  ∮ mv dx
t=1/v

t=0

= n h_________(3.4) 
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n is the vibrational quantum number of harmonic oscillator, n =

0,1,2,3, … ∞ 

 dx =
dx

dt
 dt →  dx = v dt_________(3.4) 

∮ mv2 dt
t=1/v

t=0

= n h _________(3.4) 

∮ m((2πν)A cos(2πν)t)
2

 dt
t=

1
v

t=0

= n h 

cos2(X) =
1

2
(1 + cos(2X)) ;  X =  αt = 2πνt  

2mπ2ν2A2  (
1

ν
− 0) + 2mπ2ν2A2 (sin (2πν ×

1

ν
) − sin(2πν × 0)) = n h 

2mπ2ν2A2
1

ν
− 0 + 2mπ2ν2A2(sin(2π) − sin(0)) = n h 

2mπ2νA2 + 2mπ2ν2A2(0 − 0) = n h 

2mπ2νA2 = n h → A = √
n h

2mπ2ν
 

-=-=-=-=-=-=-=-=-=-=-=--=-=- 

Etotal =  Ekinetic(total)  +  Epotential(total) 

Etotal =  
p2

2 m
 +

1

2
kx2 

Etotal =  
(m (2πν)A cos(2πν)t)2

2 m
 +

1

2
(4π2ν2m) × (A sin(2πν)t)2 
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Etotal =  
(m (4π2ν2)A2 cos2(2πν)t)

2
 +

1

2
(4π2ν2m) × (A2 sin2(2πν)t) 

Etotal =  2mπ2ν2A2(cos2(2πνt)  + sin2(2πνt)) 

Etotal =  2mπ2ν2A2   →    Etotal =  2mπ2ν2 (√
n h

2mπ2ν
)

2

 

Etotal =  2mπ2ν2A2   →    Etotal =  2mπ2ν2
n h

2mπ2ν
   →    Etotal = n hν 

 


