ersity of Baghdad College of Science **Department of Chemistry** Examiner: Dr. Anwar T. M.

Graduate Studies for MSc **Competitive Examination Subject: Physical Chemistry**

Q1: Choose the correct answer (put circle) for the following: (12 M)

- 1. According to reaction rate law, the rate is a proportional with integer power of b) products. the concentrations of: a) reactants.
- 2. The reaction rate constant unit is usually: a) $mol^{1-n} \cdot L^{n-1} \cdot time^{-1}$ b) $mol^{n-1} \cdot L^{1-n} \cdot time^{-1}$, when n is reaction order.
- 3. The differential equation for a first order reaction (A \Rightarrow B) is: a) $\frac{d[A]}{dt} = k[A]$

b) $-\frac{d[A]}{dA} = k[A]$

4. In the integral rate equation for second order reaction ($kt = \frac{1}{|A|} - \frac{1}{|A_0|}$), the half – life

 $(t_{1/2})$ is given by: a) $t_{1/2} = \frac{1}{k[A_0]}$ b) $t_{1/2} = \frac{1}{k[A_1]}$

- 5. If the half life of a first order reaction (A → B) was 10 minutes, the percent of A remains after one hour will be: a) 1.56% b) 3.36%
- 6. In the reversible reaction ($A + B \stackrel{k_1}{\rightleftharpoons} C$) at equilibrium, the differential rate equation is:

a) $\frac{d[C]}{dt} = k_1[A][B] - k_2[C]$ b) $-\frac{d[C]}{dt} = k_1[A][B] - k_2[C]$

7. If the slope of the line in a first order reaction ($A \rightarrow B$) is (-2.7) according to equation ($log[A] = -\frac{kt}{2.303} + log[A_0]$) , the rate constant (k) is: a) 6.22 time⁻¹ b) 1.17 time⁻¹

8. For the kinetic reaction (A + 2B \rightarrow C) , the rate is: a) $\frac{d[C]}{dt} = k [A][B]^2$ b) $\frac{-d[C]}{dt} = k [A]^{n_1} [B]^{n_2}$, when n_1 , n_2 are experimental value.

- The coulomb is the quantity of electricity carried by: a) a current of (1 amp) in (1 sec). b) a voltage of (1 volt) in (1 sec).
- 10. The quantity of electricity necessary to deposit (1 mole) of Cu from Cu(II) solution, is: b) 2(96500) coulombs. a) 96500 coulombs
- 11. The number of electrons in one faraday is: a) 6.02×10²³ electron b) 1.602×10¹⁹ electron
- 12.In conductance cell, the relation between conductivity (L) and resistance (R) of any electrolytic conductor is given by: a) L = Kcell . R b) $L = K_{cell} / R$
- 13. The molar conductivity (ρ by mho. cm². mol⁻¹) is defined for solution its concentration (M by mol. L-1) and its conductivity (L by simens. cm-1) as follow: a) $\rho = 1000 \, L/M$ b) $\rho = L/M$
- 14.The conductivity (L) of an electrolytic substance (its resistivity (r)) is: b) $L = K_{cell}/r$, when K_{cell} is cell constant. a) L = 1/r

(1-2)

Graduate Studies for MSc. **Competitive Examination** Subject: Physical Chemistry

- 15. The relation between the conductivities (L) of solution and its components is:
 - a) L_{solution} = L_{solute} L_{solvent}
- b) L_{solute} = L_{solution} L_{solvent}
- 16.Photon energy calculates from the equation:
- a) E = hv b) $E = m c^2$ 17.Lambert-beer's low represents the equation formula: a) $\log I_0/I = \epsilon$.C.L b) $\log I/I_0 = \epsilon$.C.L
- 18. Conversion factor between the energy (by MeV) and mass (by amu) is: a) 931.5 MeV.amu⁻¹ b) 913.5 MeV.amu⁻¹
- 19. For an ideal gas: a) $(\frac{\partial U}{\partial v})_T = 0$
 - b) $\left(\frac{\partial U}{\partial T}\right)_P = 0$
- 20.The gas constant is: a) 8.314 J.mol⁻¹.K⁻¹
- b) 0.082 atm.mol⁻¹.K⁻¹
- 21. The process of changing a solid to a gas state is called: a) vaporization
 - b) sublimation

- 22.Exothermic process means a value of: a) $\Delta H = +$
- 23. The internal energy (U) define by equation: a) U = H PVb) U = H - RT
- 24. The mass density of nitrogen gas (its MW 28 g.mol⁻¹) at STP is approximately: a) 1.251 g.L⁻¹
- b) 1.25 g. ml⁻¹
- Q2: Answer on the following questions: (8 Marks)
 - If V = f(P,T), write the total differential equation for the V.
 - 2) For the following Arrhenius equation k = A, $e^{-Ea/RT}$. Draw diagram to calculate (E_a) and (A).
 - 3) Draw schematic figure shows energy levels of molecular orbitals and the different electronic transitions.
 - 4) Write down equation of de Broglie, then shows (by equations only) how can you calculate the linear momentums of photon and electron.