University of Baghdad College of Science **Department of Physics** Date: 13 /8 /2015

Qualifying Examination for Ph.D Students Year:2015-2016

Time: 3 Hours

الامتحان التنافسي للمتقدمين للدراسات العليا (الدكتوراه) لقسم الفيزياء - كلية العلوم جامعة بغداد للعام الدراسي ١٠١٦ - ٢٠١٦

الاختصاص: فيزياء المواد

اولا: الورقة العامة ٢٠ %

Multiple Choice Questions

1-	Multiple Choice Q	uestions:					
Q.1) T	Γhe Coriolis force for α	dynamics of a pa	article in a	a rotating coording	nate syster	n is given as:	
((a) $F = -m\dot{\omega} \times r$			(b) $F = -2m\omega \times \dot{r}$			
((c) $F = -m\omega \times (\omega \times r)$		(d) <i>F</i>	(d) $F = m\ddot{r}$			
Q.2)	Semiconductor nano cr	rystals are classi	fied as:				
(;	a)1D (b	o) 0D	(c) 3D		(d) 2D		
(The nature of binding ions is: (a) Ionic The characteristic imp the SI units of	(b) metallic ${ m edance} Z_o { m of} { m fr}$	ee space e	(c) covalent encountered by el	(d lectromag) Vander walls netic wave ha	
	(a) Henry	(b) Farad. Oh	m	(c) Ohm	(d)	Farad . Sec	
Q.5)	What is the quantum r box of length L when				to a one d	imensional	
		(b) 8				(d) 16	
Q.6)	Particles in degenerate (a) Energy.	te energy levels (b) Momentus		he same (c) Quantum nur	nbers.	(d) Velocity	

University of Baghdad College of Science **Department of Physics** Date: 13 /8 /2015

Qualifying Examination for Ph.D Students Year:2015-2016

Time: 3 Hours

الامتحان التنافسي للمتقدمين للدراسات العليا (الدكتوراه) لقسم الفيزياء - كلية العلوم جامعة بغداد للعام الدراسي ٥ ١ ٠ ١ - ٢ ٠ ١ ٢

الاختصاص: فيزياء المواد

اولاً: الورقة العامة ٢٠ %

1-Multiple Choice Questions:

Q.7) The absolute value of the real number x is defined by: (a) $|x| = \begin{cases} x, & \text{if } x < 0 \\ -x, & \text{if } x \ge 0 \end{cases}$ (b) $|x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$

(a)
$$|x| = \begin{cases} x, & \text{if } x < 0 \\ -x, & \text{if } x \ge 0 \end{cases}$$

$$(b)|x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$$

(c)
$$|x| = x$$
 for $-\infty < x < \infty$,

(c)
$$|x| = x$$
 for $-\infty < x < \infty$, (d) $|x| = -x$ for $-\infty < x < \infty$.

Q.8) The result of $(e^{x_1})^{x_2}$ is given by:

(a)
$$e^{x_1+x_2}$$
, (b) e^{x_1/x_2} , (c) $e^{x_1-x_2}$, and (d) $e^{x_1x_2}$.

Q.9) The Domain (D_0) and Range (R_g) of the function $y = \sqrt{x+4}$ are given by:

(a)
$$D_0: x \ge -4, R_a: y \ge 0$$

(a)
$$D_0: x \ge -4, R_g: y \ge 0$$
 (b) $D_0: -\infty < x < \infty, R_g: y = 0$

(c)
$$D_0: x = 0, R_g: y = -4$$

(c)
$$D_0: x = 0, R_g: y = -4.$$
 (d) $D_0: x \ge -4, R_g: y = 0.$

 $\hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2 x}{\partial x^2} + V$ Q.10) The energy operator in quantum mechanics,

(here given for one particle in one dimension) is called the

a) Lagrangian

b) Hamiltonian

c) Hermitian

d) Angular momentum

Q.11) The commutator $[L^2, L_y] = :$

- a) 0
- b) $i\hbar L_x$ c) $-i\hbar L_z$

Q.12) The probability of finding a particle in differential region dx is:

a)
$$\psi(x,t) dx$$

b)
$$\psi(x,t)/\psi^*(x,t) dx$$

a)
$$\psi(x,t) dx$$
 b) $\psi(x,t)/\psi^*(x,t) dx$ c) $\psi^*(x,t)\psi(x,t) dx$

University of Baghdad College of Science Department of Physics Date: 13 / 8 / 2015

Qualifying Examination for Ph.D Students Year: 2015-2016

Time: 3 Hours

2- Short Note Questions:

- **Q.1)** An ideal pendulum, its small-angle period is measured on the moon to be 0.4 second long. What must be the length of the pendulum arm? (Hint: assume that $m_{moon} = (1/6) m_{earth}$, exactly).
- Q.2) A disk of mass M is constrained to roll down an inclined plane without slipping. Solve the Lagrange equations for motion.
- Q.3) By plotting the temperature dependence of electrical resistivity, show how to differentiate between metal and semiconductor.
- Q.4) There is no perfect solid due to the defects and dislocations, name them.
- **Q.5**) Evaluate $\int \frac{\cos x \, dx}{\sin x}$.
- **Q.6**) Find $\frac{dy}{dx}$ for $y = \cosh^2 5x \sinh^2 5x$.
- Q.7) Prove that : $H = \hbar w \left({}^{+}a \, a + \frac{1}{2} \right)$, where H is the Hamiltonian of the one dimensional harmonic oscillator, ${}^{+}a$ is the rising operator and a is the lowering operator.
- **Q.8**) Hydrogen atom in the state $\psi(\vec{r},t) = \sqrt{\frac{3}{4}} \psi_{100}(\vec{r}) e^{-iE_1t/\hbar} + \sqrt{\frac{1}{4}} \psi_{211}(\vec{r}) e^{-iE_2/\hbar}$

What is the probability of measurements which give $E = E_2$?

University of Baghdad College of Science Department of Physics Date: 13 / 8 / 2015

Qualifying Examination for Ph.D Students
Year:2015-2016

Time: 3 Hours

الاختصاص: فيزياء المواد

2 Multiple Choice Question:

- Q.1) The distance between the adjacent nuclei or corresponding to the (maximum, minimum) potential energy is called the bond length.
- Q.2) The (metallic, ionic) bond arises from electrostatic attraction between the oppositely charged ions
- Q.3) The (hydrogen, covalent) bond is formed by hydrogen between two strongly electronegative atoms or groups of atoms (oxygen, nitrogen)
- Q.4) Most metallic solids (crystallize, not crystalline) in the most densely packed structures such as FCC structure.
- Q.5) (Crystals, glasses) are built up from an irregular three- dimensional network of polyhedral
- Q.6) In a polymer chain the atoms of the backbone chain are connected by (covalent, van der waals) bonds.
- Q.7) The crystalline stat of polymers differs from typical crystalline solids in that it is not associated with any (regularity, irregularity) of external form.
- Q.8) Phase transformation, involve the (changes, stability) occurring between phases.
- Q.9) An amorphous material such as glass or a high polymer is cooled from its (sold, molten) state, crystallization does not occur.
- Q.10) Solid solution in alloy systems may be (two, one) kinds substitutional and interstitial.
- **Q.11)** The solid eutectic consists of intimate (mixture, powder) of fine crystals arranged in the form of lamellae or rodlike or spherical particles.
- Q.12) the mass transport phenomena within a solid and between solid solid, solid-liquid and solid –gas are controlled by (diffusion, migration).

University of Baghdad College of Science Department of Physics Date: 13 / 8 / 2015

Qualifying Examination for Ph.D Students Year:2015-2016

Time: 3 Hours

الاختصاص: فيزياء المواد

2 Short Note Questions

- Q.1) Explain the addition polymerization
- **Q.2**) Plot
 - a- Variation of potential energy with interatomic distance (for two atoms)
 - b- Tetragonal , Monoclinic
 - c- Cooling curves for solid solution alloys
- Q.3) Explain the mechanism of diffusion in solids
- Q.4) Explain homogenous nucleation
- Q.5) The difference between continuous phase and dispersed phase
- Q.6) Stats the types of composites
- Q.7) Define 1-dimensional 2-dim and 3-dimensional nanocomposites
- Q.8) The difference between AFM and SEM