

Qualifying Examination for Ph.D Students Year:2015-2016

Time: 3 Hours

الامتحان التنافسي للمتقدمين للدراسات العليا (الدكتوراه) لقسم الفيزياء - كلية العلوم جامعة بغداد للعام الدراسي ٥٠٠٠ - ٢٠١٦

		الرقيقة	الاختصاص:فيزياء الاغشية		
	<u>%۲۰ قاماء</u>	اولاً:الورقة ال			
1-Multiple Choi	ce Questions:				
Q.1) The Coriolis force	e for dynamics of a parti-	cle in a rotating coordin	ate system is given as:		
(a) $F = -m\dot{\omega} \times r$		(b) $F = -2m\omega \times \dot{r}$			
(c) $F = -m\omega \times (\omega \times r)$		(d) $F = m\ddot{r}$	d) $F = m\ddot{r}$		
Q.2) Semiconductor n	ano crystals are classifie	d as :			
(a)1D	(b) 0D (c) 3D	(d) 2D		
ions is: (a) Ionic	(b) metallic	(c) covalent	ed positive and negative (d) Vander walls		
Q.4) The characteristithe SI units of	c impedance Z_o of free				
(a) Henry	(b) Farad. Ohm	(c) Ohm	(d) $\frac{1}{Farad.Sec}$		
Q.5) What is the quar	ntum number n of a parti	cle of mass m confined	to a one dimensional		
box of length L	when its energy is $2h^2$	$/ mL^2$?			
(a) 4	(b) 8	(c) 2	(d) 16		
Q.6) Particles in deg	enerate energy levels all	have the same			
(a) Energy.	(b) Momentum.	(c) Quantum nur	mbers. (d) Velocity.		

Qualifying Examination for Ph.D Students Year:2015-2016

Time: 3 Hours

الامتحان التنافسي للمتقدمين للدراسات العليا (الدكتوراه) لقسم الفيزياء - كلية العلوم جامعة بغداد للعام الدراسي ٥١٠١-٢٠١٦

الاختصاص:فيزياء الاغشية الرقيقة

اولاً:الورقة العامة ٢٠ %

1-Multiple Choice Questions:

Q.7) The absolute value of the real number x is defined by:

(a)
$$|x| = \begin{cases} x, & \text{if } x < 0 \\ -x, & \text{if } x \ge 0 \end{cases}$$
 (b) $|x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$

$$(b)|x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$$

(c)
$$|x| = x$$
 for $-\infty < x < \infty$,

(c)
$$|x| = x$$
 for $-\infty < x < \infty$, (d) $|x| = -x$ for $-\infty < x < \infty$.

Q.8) The result of $(e^{x_1})^{x_2}$ is given by:

(a)
$$e^{x_1+x_2}$$
, (b) e^{x_1/x_2} , (c) $e^{x_1-x_2}$, and (d) $e^{x_1x_2}$.

Q.9) The Domain (D_0) and Range (R_g) of the function $y = \sqrt{x+4}$ are given by:

(a)
$$D_0: x \ge -4, R_g: y \ge 0$$

(a)
$$D_0: x \ge -4, R_g: y \ge 0$$
 (b) $D_0: -\infty < x < \infty, R_g: y = 0$

(c)
$$D_0: x=0, R_g: y=-4$$

(c)
$$D_0: x=0, R_g: y=-4.$$
 (d) $D_0: x \ge -4, R_g: y=0.$

 $\hat{H} = -\frac{\hbar^2}{2\pi} \frac{\partial^2 x}{\partial x^2} + V$ Q.10) The energy operator in quantum mechanics,

(here given for one particle in one dimension) is called the

a) Lagrangian

b) Hamiltonian

c) Hermitian

d) Angular momentum

Q.11) The commutator $[L^2, L_y] = :$

- a) 0
- b) $i\hbar L_x$
- c) $-i\hbar L_z$

Q.12) The probability of finding a particle in differential region dx is:

- a) $\psi(x,t) dx$
- b) $\psi(x,t)/\psi^*(x,t) dx$ c) $\psi^*(x,t)\psi(x,t) dx$

Qualifying Examination for Ph.D Students Year:2015-2016

Time: 3 Hours

2- Short Note Questions:

- **Q.1)** An ideal pendulum, its small-angle period is measured on the moon to be 0.4 second long. What must be the length of the pendulum arm? (Hint: assume that $m_{moon} = (1/6) m_{earth}$, exactly).
- Q.2) A disk of mass M is constrained to roll down an inclined plane without slipping. Solve the Lagrange equations for motion.
- Q.3) By plotting the temperature dependence of electrical resistivity, show how to differentiate between metal and semiconductor.
- Q.4) There is no perfect solid due to the defects and dislocations, name them.

- **Q.5**) Evaluate $\int \frac{\cos x \, dx}{\sin x}$.
- **Q.6**) Find $\frac{dy}{dx}$ for $y = \cosh^2 5x \sinh^2 5x$.
- Q.7) Prove that : $H = \hbar w \left({}^{+}a \, a + \frac{1}{2} \right)$, where H is the Hamiltonian of the one dimensional harmonic oscillator, ${}^{+}a$ is the rising operator and a is the lowering operator.
- **Q.8**) Hydrogen atom in the state $\psi(\vec{r},t) = \sqrt{\frac{3}{4}} \psi_{100}(\vec{r}) e^{-iE_1t/\hbar} + \sqrt{\frac{1}{4}} \psi_{211}(\vec{r}) e^{-iE_2/\hbar}$

What is the probability of measurements which give $E = E_2$?

Qualifying Examination for Ph.D Students Year:2015-2016

Time: 3 Hours

ثانياً:الورقة الخاصة ٨٠%

Multiple Choice Q.1) In forward bias,	ce Questions: the width of poter	ntial barrier in a p-	n junction diode			
(a) Decreases (b)	remains constant	(c) increases	(d)first increases, then decreases			
Q.2) Which capacitance dominates in the reverse bias region?						
a) Conversion	(b) diffusion	(c)depletion	(d)none of the above			
Q.3) Fermi energy le	vel for intrinsic ser	miconductors lies				
(a) close to conduct(b) close to valence(c) at the middle of(d) none	e band					
Q.4) Flow of electron	ns is affective by the	ne following				
(a)thermal vib	rations (b) impu	rity atoms (c)cr	rystal defects (d)all			
Q.5) In n-type semiconductors, number of holes number of electrons						
(a) cannot def	ine (b) greater th	nan (c)equal	(d)less than			
Q.6) Which of the fo	ollowing statement	s is incorrect?	a			
(b) The dominant carriers (c) At room temp	charge carriers wi erature, pure semicemiconductor mat	thin a doped semio conductors make e	intrinsic conduction conductor are called majority charge excellent conductors nounts of donor impurities produces			
Q.7) What is a typic	al conduction volta	age for silicon dio	de?			
(a) 0.25 V (b) 0.50 V (c) 0.70 V (d) 1.10 V						

Qualifying Examination for Ph.D Students Year:2015-2016

Time: 3 Hours

Q.8) What diode operates of	only with	majority	carriers?
-----------------------------	-----------	----------	-----------

- (a) Laser
- (b) Schottky
- (c) Tunnel
- (d) Step-recovery

Q.9) A strip of copper and another of germanium cooled from room temperature to 80 K. The resistance of

- (a) Each of these increases
- (b) Each of these decreases
- (c) Copper strip increases and that of germanium decreases
- (d) Copper strip decreases and that of germanium increases

Q.10) In a p-n junction, the depletion layer consists of

- (a) Electrons
- (b) Protons
- (c) Mobile ions
- (d)Immobile ions

Q.11) Light emitting diode yields

- (a) Electron
- (b) X-ray
- (c) Photon
- (d)Hole

Q.12) The depletion layer in the p-n junction region is caused by

- (a) Drift of holes
- (b) Drift of electrons
- (c) Diffusion of charge carriers
- (d) Migration of impurity ions

Qualifying Examination for Ph.D Students Year:2015-2016

Time: 3 Hours

2-Short Note Questions

- Q.1) Explain types of conductivity (with equations)
- Q.2) Describe the types of optical transitions
- Q.3) Determine I-V characteristic and energy band diagram of p-n junction (with equations)
- Q.4) Hole mobility in Ge at room temperature is 1900 cm²/V.s. Find the diffusion coefficient?
- Q.5) Write in brief the difference between photonic and thermal detectors
- Q.6) Explain the principle mechanism of Tunnel diode
- Q.7) What is the physical meaning of Fermi Dirac distribution at T=0K and T>0K
- Q.8) What is the meaning of:
 - a) Degenerate and non degenerate semiconductors
 - b) Ohmic contact
 - c) Fermi level and Fermi energy