University of Baghdad College of Science Department of Physics

Date: 22 /6/ 2017

Qualifying Examination for Ph.D Students

Time: 3 Hours

Year: 2017-2018

الامتحان التنافسي للمتقدمين للدراسات العليا (الدكتوراه) لقسم الفيزياء / كلية العلوم/جامعة بغداد

للعام الدراسي 2017- 2018

الاختصاص: فيزياء الليزر والجزيئية (الورقة العامة)

1-Multiple Choice Questions (MCQ)

- Q.1) If a generalized coordinate has the dimensions of velocity, generalized Velocity has the dimensions of
 - (a) Displacement
- (b) Velocity
- (c) Acceleration
- (d) Force
- **Q.2)** Choose the correct statements:
 - (a) The angular momentum is conserved for system possessing rotational symmetry.
 - (b) If the Lagrangian of a system is invariant under translation along a direction, the corresponding linear momentum is conserved.
 - (c) If the lagrangian of a system is invariant under translation a long a direction, we cannot say anything about the corresponding linear momentum.
 - (d) For a conservation system, the Hamiltonian is equal to the sum of kinetic and potential energies.
- Q.3) A particle is moving on elliptical path under inverse square law force of the form $F(r) = (-K/r^2)$, the eccentricity of the orbit is
 - (a) A function of total energy.
 - (b) Independent of total energy.
 - (c) A function of angular momentum.
 - (d) Independent of angular momentum.
- Q.4) The binding energy of alkali metal is ----- than of alkali halide crystal
 - a- equal
 - b- Higher
 - c- More higher
 - d- Less
- Q.5) The space lattice in diamond structure is ----
 - a- Bcc
 - b- Hexagonal
 - c- Cubic
 - d- Fcc

University of Baghdad College of Science Department of Physics

Date: 22 /6/ 2017

Qualifying Examination for Ph.D Students Year: 2017-2018

Time: 3 Hours

Q.6) Bragg law satisfied only for wavelength -----

- a- $\lambda \ge 2d$
- b- $\lambda = 2d$
- c- $2\lambda \ge 2d$
- d- λ≤2d

Q.7) The absolute value of the real number x is defined by:

(a)
$$|x| = \begin{cases} x, & \text{if } x < 0 \\ -x, & \text{if } x > 0 \end{cases}$$

(a)
$$|x| = \begin{cases} x, & \text{if } x < 0 \\ -x, & \text{if } x \ge 0 \end{cases}$$
 (b) $|x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$

(c)
$$|x| = x$$
 for $-\infty < x < \infty$

(c)
$$|x| = x$$
 for $-\infty < x < \infty$ (d) $|x| = -x$ for $-\infty < x < \infty$.

Q.8) The result of $(e^{x_1})^{x_2}$ is given by:

- (a) $e^{x_1+x_2}$,
- (b) e^{x_1/x_2} ,
- (c) $e^{x_1-x_2}$,
- (d) $e^{x_1x_2}$.

Q.9) The Domain (D_0) and Range (R_o) of the function $y = \sqrt{x+4}$ are given by:

- (a) $D_0: x \ge -4, R_g: y \ge 0$ (b) $D_0: -\infty < x < \infty, R_g: y = 0$
- (c) $D_0: x = 0, R_g: y = -4.$ (d) $D_0: x \ge -4, R_g: y = 0.$

Q.10) The expectation value of the kinetic energy of the one dimensional harmonic oscillator in the ground state is

- Α: 0 ħω
- B: 1 ħω
- C: $1/2 \hbar \omega$

Q.11) In Angular momentum By Ladder Operators, $[L_x, L_y] =$

- A: $i\hbar L_z$
- B: 0
- C: 1

Q.12) In one dimensional harmonic oscillator, $a\psi_1 =$

- A: ψ_0
- B: ψ_1
- C: ψ_2

University of Baghdad College of Science Department of Physics Date: 22 /6/ 2017 tion and the state of the state

Qualifying Examination for Ph.D Students
Year: 2017-2018

Time: 3 Hours

الاختصاص: فيزياء الليزر والجزيئية (الورقة العامة)

2-Short Note Questions (MCQ)

- Q.1) If $F=(2xy+z^2) i + x^2 j + 2xz K$ newton, then show that it is conservation. Calculate the amount of work done by this force in moving a particle from (0,1,2) to (5,2,7) m.
- Q.2) A particle of mass (m) move on plane in the field of force given by polar Coordinate ($\mathbf{F} = -\mathbf{Krcos}\Theta \, \mathbf{\check{r}}$), where (\mathbf{K}) is constant and ($\mathbf{\check{r}}$) is the radial unit vector
 - (a) Will the angular momentum of the particle about the origin be conserved? Justify your statement.
 - (b) Obtain the differential equation of the orbit of the particle.
- Q.3) Explain the structure factor of Fcc lattice
- Q.4) What is Brilloiun zone
- **Q.5)** Evaluate $\int \frac{\cos x \, dx}{\sin x}$.
- **Q6.)**Find $\frac{dy}{dx}$ for $y = \cosh^2 5x \sinh^2 5x$.
- **Q.7)** In Angular momentum By Ladder Operators Prove that $[L^2, L] = 0$
- **Q.8)** Represent L^2 it in a matrix form if you given that

$$\langle \ell' m' | L^2 | \ell m \rangle = \hbar^2 \ell (\ell + 1)) \delta_{\ell' \ell} \delta_{m' m}$$

University of Baghdad College of Science Department of Physics Date: 22 /6/ 2017

Qualifying Examination for Ph.D Students

Year: 2017-2018 Time: 3 Hours

		صة)	زر والجزيئية (الورقة الخا	لاختصاص: فيزياء الليا
1-Multiple Choice	ce Questions (MC	<u>Q)</u>		
Q.1) Intense light	in laser action is:			
(a) Reduced gai	n.			
(b) Reduces the	population inversion	on.		
(c) Increase the	population inversion	on.		
(d) Increase gair	1.			
Q.2) Which laser	is considered "eye	e safe"?		
(a) Laser bar-code	e scanners (b) The eximer laser	(c) Communication	ns lasers
(a) The governme (c) They are very Q.4) When the gr wavelength of 67 (a) 2.97 J mol ⁻¹ (f)17.9 kJ mol ⁻¹	ent has mandated it inexpensive een one is dead, I I 0 nm. What is the (b)179 kJ (g) 2.97 kJ mo	have a red laser poin energy of this light? (c) 1.79 kJ m (h) 179 J mol	y can be pulsed with a ster that emits light words (d) 3.8 kJ mol ⁻¹ (i) 179 kJ mol ⁻¹	vith a (e) 17.9 J
(a) Visible	(b) Ultraviolet	ht with what wavele (c) Infrared	ngtn	
Q.6) What type o (a) Red semicor (b) Blue semicor (c) Excimer lase (d) YAG laser	nductor laser onductor	skin cancer if not u	sed properly?	
Q.7) Metals can _	the light	beams.		
(a) Reflect	` '	(c) Transmit	(d) Any	
Q.8) Fluorescence	e occurs within . (b) 10 ⁻⁵ ms.		(1) 405	
(a) 10 ⁻⁵ s	. (b) 10 ⁻⁵ ms.	(c) $10^{-3} \mu s$.	(d) 10^{-5} ns.	

University of Baghdad **College of Science**

Department of Physics Date: 22 /6/ 2017

Qualifying Examination for Ph.D Students

Time: 3 Hours

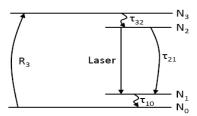
Year: 2017-2018

- **Q.9)** What is the correct way to display spectra?
- (a) In absorbance. (b) In transmission. (c) Either absorbance or transmission (d) As raw data.
- Q.10) If you shine green laser ($\lambda = 520$ nm) on a material, what is the most likely response of the molecules in that material to this wavelength of light?
 - (a) Electronic transition
- (b) Nuclear spin flip
- (c) Bond stretch

- (d) Bending vibration
- (e) Bond rotation
- (f) Bond dissociation

- (g) Ionization
- (h) Photon emission
- Q.11) What occurs when a molecule absorbs infrared radiation?
- (a) It warms up
- (b) It flies around
- (c) It spins faster
- (d) It vibrates faster
- Q.12) Which of the following is NOT a correct aspect of the Born-Oppenheimer approximation
- (a) The electrons in a molecule move much faster than the nuclei.
- (b) Excited electronic states have the same equilibrium inter nuclear distance as the ground electronic state
- (c) The electronic and vibration motions of a molecule are approximately separable.
- (d) Electronic energy curves serve as potential energy functions for nuclear vibration motion
- (e) The typical amplitude of nuclear vibration is much smaller than that characterizing the motion of electrons.

University of Baghdad College of Science Department of Physics Date: 22 /6/ 2017

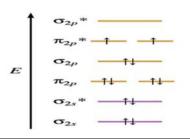

Qualifying Examination for Ph.D Students

Year: 2017-2018 Time: 3 Hours

الاختصاص: فيزياء الليزر والجزيئية (الورقة الخاصة)

2-Short Note Questions (MCQ)

- **Q.1)** What portion of the electromagnetic spectrum induces the nuclear spin flip that occurs to generate an NMR spectrum?
- Q.2) How many sigma (σ) and pi (π) bonds are present in the entire molecule C2H4?:sigma bonds...... pi bonds. between nuclei highest?
- Q.3) Answer each of the following:
 - (a) Spectral Region for Molecular Electronic Transitions
- (b) Spectral Region for Molecular Vibrational Transitions
- (c) Spectral Region for Molecular Rotational Transitions
- **Q.4)** Line broadening reduces the effective gain because allatoms are capable of interacting with the radiation field.
- Q.5) In the fig. below describe the parameters in the lasing cycle of the 4-Level System:



- Q.6) There are many efficiencies in common use in laser physics write it and explain.
- Q.7) What is the essential components of a laser system. Explain it
- **Q.8)** The fig. in the right describes one molecule:

What is the molecule with this molecular orbital diagram?

What is the bond order?

Is it paramagnetic or diamagnetic?

University of Baghdad College of Science Department of Physics Date: 22/6/2017

Qualifying Examination for Ph.D Students

Year: 2017-2018 Time: 3 Hours