Department of Mathematics College of Science University of Baghdad Test of New Applicants for Graduate Studies Phd. of Mathematics 2017-2018

Note: Answer all the questions.

- Q1. For each of the following statement specify whether the statement is true or false.
 - 1. If $\sum_{n=1}^{\infty} a_n$ is convergent, then so is $\sum_{n=1}^{\infty} a_n^2$.
 - 2. The limit $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$ does not exist.
 - 3. The following compound statement is tautology $(p \land \sim q) \land (\sim p \lor q)$.
 - 4. If A is $n \times n$ matrix, then the rank of A is equal n if and only if $\det(A) \neq 0$.
 - 5. If A is an event of a sample space with $P(A) = p(\bar{A})$, then P(A) = 0.5.
 - 6. Every subgroup of cyclic group is cyclic.
 - 7. The field of rational numbers is complete.
 - 8. Every subring is an ideal.
 - 9. The Trapezoidal rule to approximate an integral function use an interpolation polynomial of degree two.
 - 10. If $f(z) = \frac{z}{\overline{z}}$ then $\lim_{z \to 0} f(z)$ does not exist.
 - 11. If $y_1(t)$ and $y_2(t)$ are two solutions of equation $\ddot{y} + p(t)\dot{y} + q(t)y = 0$, then the formula $y(t) = c_1y_1(t) + c_2y_2(t)$ gives all solutions to the given equation.
 - 12. The set of all rational numbers Q is closed set in R with Euclidean topology.
- Q2. a) Prove that no group of order 20 is simple?
 - b) Find the bound of the number of iterations needed to achieve a approximation with accuracy 10^{-3} to the solution of $x^3 x 1 = 0$ lying in the interval [1,4]?
- Q3. a) Prove that $S = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\}$ is not compact?
 - b) Use Cauchy Residue Theorem to evaluate the integral $\oint_C \frac{1}{1+z^2} dz$; C: |z| = 3?

- Q4. a) Show that if $X = \{a, b\}$ and $T = \{X, \varphi, \{a\}, \{b\}\}$, then (X, T) is topological space? b) Use the Wronskian to show that the following set of functions $\{e^x, e^{2x}, e^{3x}\}$ are linearly independent?
- Q5. a) Solve the initial value problem $\frac{d^2y}{dx^2} y = e^x$; y(0) = 0; $\dot{y}(0) = \frac{1}{2}$?
 - b) If $X_1, X_2, ..., X_n$ are independent random variables then prove that the moment generating function of their sum is $M_{X_1}(t)$. $M_{X_2}(t)$... $M_{X_n}(t)$?

Good luck