

الأسم الكامل:

College of Science Department of Computer Science

High Diploma Qualification Exam

Date: 13 Aug. 2015

Time: 3 hrs.

Notes:

- Answer All Questions.
- Answer in English.
- It is not allowed to consult any information during the exam, depend on your own knowledge and on the clarifications given by assistants.

Q. Number	Mark (Numbering)	Mark (Written)
Q1		
Q2		
Q3		
Total		
Out of	100	

01	Answer with either <u>True</u> or <u>False</u> . (30 Marks)	Answer
Q1	Do not use T, \checkmark , F, or \times . Use only True and False to represent your answers.	Allswei
1.	In an infinite while loop, the while expression (the decision maker) is initially false, but	
	after the first iteration it is always true.	
2.	It is possible that the body of a while loop may not execute at all.	
3.	The union of sets A and B , denoted $A \cup B$, is the set containing all elements in either A or B .	
4.	Stack can be used to reverse data.	
5.	The suffix expression $A B * D + E F / - is equivalent to -(D + A * B) / (E - F)$	
6.	The arithmetic expression is valid if the difference between operations and operator	
	equal one.	
7.	An object may be defined within a function F1, in this case it is accessible by the	
	function F1 only.	
8.	Automatas M1 and M2 are said to be equivalent if and only if their minimal state automatas are identical.	
9.	A syntax analyzer is a program obtains a string of tokens from the lexical analyzer and	
9.	verifies whether or not the string can be generated by the CFG for the source language.	
10.	Array is an example of non-linear data structure.	
11.	Linear search is the simplest search algorithm with $O(n^2)$ where n is the number of	
11.	elements.	
12.	Architecture of the database can be viewed as four levels.	
13.	Union operation does not require the participating tables to be union-compatible.	
14.	A functional dependency of the form $x \to y$ is trivial if $y \subset x$.	
15.	Authorization is the process that determines whether the user has the authority to carry out certain tasks.	

16.	In symmetrical encryption, the key is published for people to encrypt their data with.	
17.	Transposition cipher replaces one character with another character.	
18.	Virtual address is the logical or program address that the process uses. Whenever the CPU generates an address, it is always in terms of virtual address space.	
19.	Any expert system should contain inference engine but not necessary need user interface.	
20.	PROLOG and LISP are commonly used programming languages in AI.	
21.	Artificial intelligence shows best on complex problems for which general principles don't help much.	
22.	UDP is a reliable protocol.	
23.	TCP uses variable transmission bit rate.	
24.	In OSI model, repeater works at physical layer.	
25.	In the blocked state, the processes waiting are found	
26.	The number of processes completed per unit time is known as throughput.	
27.	Swapping is a technique of temporarily removing inactive programs from the memory of computer system.	
28.	Digital signature is the ability of each party in a transaction to ascertain the identity of the other party.	
29.	Trojan horse floods a network server or Web server with requests for information or other data in order to crash the network.	

Q2	Choose the correct answer. (40 Marks)	A
	Use only A, B, C, and D to represent your correct choice.	Answer
1.	The Cartesian product of $A = \{1,2\}$ and $B = \{a, b\}$ is	
	A. $\{(1,2),(2,1),(a,b),(b,a)\}$ B. $\{(1,1),(2,2),(a,a),(b,b)\}$	
	C. $\{(1,a),(2,a),(1,b),(2,b)\}$ D. $\{(1,2),(1,a),(a,b),(2,b)\}$	
2.	The expression $(sqrt x)$ computes:	
_,		
	A. x^2 B. $x^{1/2}$ C. $\frac{x}{2}$ D. $\frac{2}{x}$	
3.	In C++, Which of the following is a relation operator:	
	A. >= $B. ==$ $C. !=$ $D. all of them$	
4.	In C++, Which of the following is a logical operator:	
	A. ! B. && C. D. all of them	
5.	Circular queue is used instead of queue to: A. reduce time of search. B. search from any location. C. increase the time of search. D. reduce the wasted of storage.	
	A. permit insertion of data in any location.B. permit traversing the data sequentially.C. permit deletion of data from any location.D. All of them	
7.	The main operation of stack is:	
	A. insert data in any location. B. delete data from the middle of stack.	
	C. copy any element in the stack. D. change the first element entered to stack only.	
8.	The underflow in queue occurs when:	
	A. front equal to rear B. rear equal zero C. Front equals zero D. none of the them	
9.	Assume you have the following declarations void f1 (int x[20]); and int a[20]; then	
	which of the following is a valid function call statement?	
	A. f1 (a[20]) B. f1 (int a[20]) C. f1 (int a) D. f1 (a)	
10.	The constructor	
	A. returns an integer value C. returns an array B. returns a float value D. does not return any value	

	I				
11.	In C++, member y of	3		D ()	
12.	A. x.y In C++, Objects are var	B. x (y)	C. y.x	D. y(x)	
12.			C	defined data time. Deall of	41 ₂ a
	A. array	B. class	<u> </u>	defined data type D. all of	tnem
13.	How many parameters	s we should assign to	o draw an ellipse?		
	A. 1	B. 2	C. 3	D. 4	
14.	A relational DB consi	sts of a collection of	:		
	A. tables	B. fields	C. records	D. keys	
15.	In case of entity integr	rity, the primary key	may be:		
	A. Not Null	B. Null	C. Null & not	Null D. none of then	1
16.	A legal expression in A. Select null from e	_	,	B. Select name from emplo	W00*
	C. Select num from en				yee,
17.	A data manipulation A. SELECT	command the comb B. PROJEC		rom one or more tables is D. PRODUCT	called:
18.				t $(x_0 = 1, y_0 = 3, z_0 = 2)$	to get:
	A. (1, 2, 1)	B. (0, 3, 1)	C. (1, 3, 1)	D. (0, 2, 1)	
	A 2D point $(x = 2,$	y = 2) is passed to	hrough scaling (S	$S_x = 3$, $S_y = 2$) around the	point
19.	$(x_0 = 3, y_0 = 4)$, to g	et the new coordinat	tes:		
	A. (0, 0)	B. (1, 1)	C. (2, 0)	D. non of them	
20.	In a relation,				
	A. ordering of rows i			e identical	
21	C. A and B are true		D. None of them.		
21.	DES generates sixteer A. 32-bit	B. 48-bit	lengtn: C. 54	-bit D. 42-l	sit
22.				nto other programs or into	
	1 ,	1	car copy of fiself i	into other programs of into	Certain
	system areas on the di				
23.	A. Dormant phase Travelling salesmar	B. Propagation ph problem with			equals:
25.	$\mathbf{A} \cdot \mathbf{n}^2$	•	C. 2n	D. <i>n</i> !	Aquais.
24.	Which of the followin				
4.				D. all of them	
		D. A"	C. Hill climbing	D. an or mem	
25.	Which image embodie	es an infinite number		D. mool moorly	
25. 26.		es an infinite number B. 8-bit	C. 24-bit	D. real world	

	A. collision	B. broadcast C	. bridge D. virtu	al	
27.	Bridge in networks i	s used to:			
	A. separate LANs	B. control	network speed		
	C. improve network	k speed D. connect	t LANs		
28.	MAC address is:				
	A. 8 bit	B. 16 bit	C. 32 bit	D. 48 bit	
29.	A program in execut	ion is called:			
	A. program	B. state	C. process	D. module	
30.	To select processes f	From secondary storage,	we need:		
	A. short term sched	luler B. r	nedium term scheduler		
	C. long term schedu	uler D. p	process scheduler		
31.	Not a fundamental p	rocess state is:			
	A. ready	B. terminated	C. cooperated	D. waited	
32.	Interval between sub	omission time and job co	ompletion is:		
	A. waiting time	B. turnaround time	C. throughput	D. response time	
33.	OS enables coo	operating processes	to communicate with	n each other via:	
	A. IPC	B. FCFS	C. SJF	D. none of them	
34.	Network topology ca	an be:			
	A. mesh	B. hybrid	C. bus	D. all of them	
35.	Degree of a vertex in	a graph is number of:			
	A. incident edges to	it	B. number of neighbor ve	rtex to it	
	C. number of conne	ected vertex to it	D. all of them		
36.	Hill-climbing search	algorithm may stuck at	:		
	A. near optimum	B. global optimus	m C. local optimum	D. none of them	
37.	MAC address is at:				
	A. transport layer	B. network layer	C. data link layer	D. physical layer	
38.	Twisted pair cables l	nave:			
	A. STP B.	large bitrate C	C. no interference	D. low loss in signal	
39.	The protocol working	ng at the Transport laye	er to provide connectionles	s service between hosts	
	is:				
	A. IP	B. ARP	C. TCP D. UDP		

40. WiFi and Bluetooth:

A. use same frequency range
B. wireless technologies
C. multiple devices may communicate with each other
D. all of them

- Q3. Answer each of the following (30 Marks)
 - 1. State the difference between multiprogramming and multiprocessing

2. What is the output of the following program segment:

3. What is the output of the following C++ program?

```
#include <iostream>
#include <cmath>
using namespace std;
int main()
}
int counter;
for (counter = 1; counter <= 100; counter++)
if (pow(floor(sqrt(counter + 0.0)), 2) == counter)</pre>
```

```
\begin{array}{c} cout << counter << cout << endl^{\varsigma} \\ return \ 0^{\varsigma} \\ \rbrace \end{array}
```

4. Write a program code that can print out the following:

Output	Code
1	
1 2	
1 2 3	
1 2 3 4	
1 2 3	
1 2	
1	

5. Write a program code that can compute and print the result of: $1 + 2! + 3 + 4! + 5 + \cdots + 2n!$