The Rings(2)

Fouth Class

By

Dr. Alaa Abbas

CONTENTS:

- 1. Certain special ideals.
- 2. The radicals of ideals.(semiprime and primary ideals).
- 3. The ring homomorphism of the radicals.
- 4. The Jacobson radicals of a ring with some basic properties.
- 5. The prime radicals of a ring with some basic properties.
- 6. The divisibility theory in integral domain.
- 7. The prime and irreducible elements.
- 8. The unique factorization domain.
- 9. The Euclidean domain.
- 10. The polynomial rings.
- 11. The division algorithm theorem.
- 12. The remainder theorem with some application.
- 13. Extensions of fields.
- 14. Kronecker's theorem with applications.
- 15. The Boolean ring and Boolean algebra.

REFERENCES:

- 1) Burton D. M., "Introduction To Modern Abstract Algebra", 1967, London.
- 2) David M. Burton, WM. C. Brown Publishers "Abstract Algebra", 1988.

(3

Definition:

A *ring* is an ordered triple(R, +,·), where R is a nonempty set and +,· are two binary operation on R such that:

- 1) (R, +) is an abelian group.
- (R,.) is a semigroup and
- 3) The operation . is distributive over the operation+.

Example:

If Z, Q, R[#]denote the sets of integers, rational, and real numbers, then the systems

$$(Z, +, \cdot), (Q, +, \cdot), (R^{\#}, +, \cdot).$$

Are all examples of rings; here + and · are taken to be ordinary addition and multiplication.

Definition:

Let R be a commutative ring. An element $a \in R$ is called **zero divisor** if $a \neq 0$ and there exists $b \in R$, $b \neq 0$ with $a \cdot b = 0$.

Example:

$$Z_6 = {\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}}$$

Solution: $\overline{2}$. $\overline{3} = \overline{0}$, $\overline{3}$. $\overline{4} = \overline{0}$, $\overline{2}$, $\overline{3}$, $\overline{4}$ are zero divisors of Z_6 .

Example:

 $Z_5 = {\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}}$ Has no zero divisors.

Definition:

A commutative ring with identity is called an *integral domain* if it has no zero divisors.

Example:

 $(Z, +, \cdot), (Q, +, \cdot), (R, +, \cdot), (Z_p, +_{p_i} \cdot_p)$ Where p is prime are integral domains.

Definition:

A ring (R, +, .) is said to be *field* if $(R - \{0\}, .)$ forms a commutative ring (with identity 1).

Or

The field is commutative ring with identity in which each nonzero element has inverse under multiplication.

Definition:

Let $(R, +, \cdot)$ be a ring, and $\emptyset = S \subseteq R$, then $(S, +, \cdot)$ is called a *subring* if $(S, +, \cdot)$ is a ring itself.

Example:

 $(2Z, +, \cdot)$ subring of $(Z, +, \cdot)$

Rrmark:

Let $(R, +, \cdot)$ be a ring $\emptyset \neq S \subseteq R$, then $(S, +, \cdot)$ is subring if:

- $(1) \ a-b \in S \ \forall \ a,b \in S.$
- (2) $a.b \in S \quad \forall a, b \in S$.

Definition:

A subring *I* of the ring *R* is said to be two sided *ideal* of *R* if and only if $r \in R$ and $a \in I$ imply $ra \in I$ and $ar \in I$.

Definition:

Let I be a nonempty subset of ring R, then I is *ideal* of R if

- (1) $a b \in I \ \forall a, b \in I$.
- (2) $ar \in I$, $(ra \in I) \forall a \in I$, $r \in R$.

Remark:

Every ideal is subring.

Proof: Let I be an ideal, to show that I is subring

- $(1)I \neq \emptyset$
- (2) Let $a, b \in I \Rightarrow a.b \in I$, $a b \in I$

 $\therefore I$ is subring

But the converse is not true for example:

(Q, +, .) is a ring, $Z \subseteq Q$; Z is subring

$$3 \in Z, \frac{1}{2} \in Q$$
, $3.\frac{1}{2} = \frac{3}{2} \notin Z$

 $\therefore Z$ is not ideal

Remark(*):

Let *I* be an ideal of a ring with 1. If $1 \in I$, then I = R.

Proof: $I \subseteq R$, let $r \in R$, $1 \in I$ but I is ideal

 $\therefore 1.r \in I \Rightarrow r \in I \Rightarrow R \subseteq I$.

Thus I = R

Remark:

Let I be an ideal of a ring with 1 and I contains an invertible element, then I = R.

Proof: $a \in I$ but a is invertible then $\exists b \in R$ such that $a.b \in I \Rightarrow 1 \in I$

 $\therefore I = R$, by remark (*)

Definition:

A ring R is called *principle ideal ring* if every ideal in R is principle ideal.

Theorem:

(Z, +, .) is P. I. R.

Proof: (H.W)

Definition:

A proper ideal M of a ring R is called *maximal ideal* if where ever I is an ideal of Rwith $M \subset I$, then I = R.

Example:

In Z_6 the ideals are:

$$\{0\}$$
, Z_6 , $\{\overline{0}, \overline{3}\}, \{\overline{0}, \overline{2}, \overline{4}\}$

 $\{\overline{0}, \overline{3}\}$ is the maximal in $Z_{6.}$

 $\{\overline{0}, \overline{2}, \overline{4}\}$ is the maximal in \mathbb{Z}_{6} .

Theorem:

Let R be commutative ring with 1 and I be a proper ideal of R, I is amaximal ideal if and only if $\frac{R}{I}$ is a field.

Proof: (H.W)

Definition:

A proper ideal P of a ring R is called a *prime* ideal if for all a, b in R with a. $b \in P$ either $a \in P$ or $b \in P$.

Example:

- 1)4Zis an ideal in Z, but not a prime ideal in Z.
- $2){0}$ is a prime ideal in Z.but not maximal.
- 3){0}is not a prime ideal in Z_6 .

Theorem:

Let *R* be commutative ring with 1 and *P* be a proper ideal of *R*, *P* is a prime ideal if and only if $\frac{R}{D}$ is an integral domain.

Proof: (H.W)

Definition:

A commutative ring with identity is called local ring if it has unique maximal ideal.

Example:

 $Z_4 = {\overline{0}, \overline{1}, \overline{2}, \overline{3}}$ is a local ring.

Remark:

Every field is a local ring

Proof: (H.W)

Remark:

In the local ring the idempotent element is only 0 or 1.

Proof: let $a \neq 0$ and $a \neq 1$ be an idempotent element. Since a is an idempotent, then $a^2 = a$, then $a^2 - a = 0$, then a(a - 1) = 0, since $a \neq 0$ and a, a - 1 are zero divisors, thus a, a - 1 has no inverse, hence a, a - 1 must belong to the unique maximal ideal say M, then $a, a - 1 \in M$, then $a - (a - 1) \in M$, hence $1 \in M$. Thus either a = 0 or a = 1.

Definition:

Let I be an ideal of a ring R. Then the nil radical of I denoted by \sqrt{I} is the set:

$$\sqrt{I} = \{ r \in R : \exists n \in Z^+ \ni r^n \in I \}$$

<u>Remark(1):</u>

- 1. $\sqrt{I} \supseteq I$.
- 2. \sqrt{I} is an ideal of R.

Proof: (H.W)

Remark(2):

- 1. $\sqrt{I \cap J} = \sqrt{IJ} = \sqrt{I} \cap \sqrt{J}$.
- 2. $\sqrt{\sqrt{I}} = \sqrt{I}$.
- 3. $\sqrt{I+J} \supseteq \sqrt{I} + \sqrt{J}$.

Proof:1).Let $w \in \sqrt{I \cap J}$, then $\exists n \in Z^+ \ni w^n \in I \cap J$, then $w^n \in I$ and $w^n \in J$, hence $w \in \sqrt{I}$ and $w \in \sqrt{J}$. Thus $w \in \sqrt{I} \cap \sqrt{J}$.

Let $y \in \sqrt{I} \cap \sqrt{J}$, then $y \in \sqrt{I}$ and $y \in \sqrt{J}$, hence $y^n \in I$ and $y^n \in J$.

$$y^{n+m} = y^n \cdot y^m \in IJ$$
, then $y \in \sqrt{IJ}$.

$$y^{n+m}=y^n\cdot y^m\in I\cap J$$
, then $y\in \sqrt{I\cap J}$. Thus $\sqrt{I\cap J}=\sqrt{I}\cap \sqrt{J}$

- **2**).we have $\sqrt{\sqrt{I}} \supseteq \sqrt{I}$ from Remark (1), we want to show that $\sqrt{I} \supseteq \sqrt{\sqrt{I}}$ Let $x \in \sqrt{\sqrt{I}} \exists n \in Z^+ \ni x^n \in \sqrt{I}$, and then $\exists m \in Z^+ \ni (x^n)^m \in I$, hence $x^{nm} \in I$, which implies that $x \in \sqrt{I}$. Thus $\sqrt{I} \supseteq \sqrt{\sqrt{I}}$ and $\sqrt{\sqrt{I}} = \sqrt{I}$
- 3).Let $w \in \sqrt{I} + \sqrt{J}$, then w = x + y; $x \in \sqrt{I}$ and $y \in \sqrt{J}$, then $\exists n \in Z^+ \ni x^n \in I$ and $\exists m \in Z^+ \ni y^m \in J$.

$$(x+y)^{n+m} = x^{n+m} + ()x^{n+m-1}y + \dots + ()x^ny^m + ()x^{n-1}y^{m+1} + \dots + y^{n+m}.$$

Thus $(x + y)^{n+m}$ then $\in I + J$ then $x + y \in \sqrt{I + J}$.

Definition:

A proper ideal I of a ring R is called semiprime if $I = \sqrt{I}$.

Example: In $Z\sqrt{6Z} = 6Z$, so $\langle 6 \rangle$ is semiprime ideal in Z.

$$\sqrt{\langle 4 \rangle} = \sqrt{\langle 2^2 \rangle} = \langle 2 \rangle$$
, so $\langle 4 \rangle$ is not semiprime ideal in Z

$$\sqrt{10Z} = 10Z.$$

Theorem:

Every prime ideal is semiprime.

Proof: Let I be a prime ideal, $I \subseteq \sqrt{I}$ we have to show only that $\sqrt{I} \subseteq I$.

Let $w \in \sqrt{I} \exists n \in Z^+ \ni w^n \in I$, then $ww^{n-1} \in I$ but I be a prime ideal so either $w \in I$ or $w^{n-1} \in I$.

If $w^{n-1} \in I$, then $ww^{n-2} \in I$, which implies that $w^{n-2} \in I$ we continue in this way until we have $w \in I$.

Remark:

The converse is not true.

For example: $\sqrt{\langle 6 \rangle} = \langle 6 \rangle$ is semiprime but it is not prime since $2 \notin \langle 6 \rangle$, $3 \notin \langle 6 \rangle$ but $6 = 2.3 \in \langle 6 \rangle$

Theorem:

A proper ideal I of a ring R is semiprime if and only if $\frac{R}{I}$ has no nonzero nilpotent element.

Proof: \Rightarrow) Let I be a semiprime ideal and let a+I be a nilpotent element in $\frac{R}{N} \exists$ a positive integer such that $(a+I)^n = I$, hence $a^n + I = I \Leftrightarrow a^n \in I \Rightarrow a \in \sqrt{I} = I$. [since I is semiprime]. Thus $a \in I \Leftrightarrow a + I = I$

 \Leftarrow)we want to prove I is semiprime $I \subseteq \sqrt{I}$ we have to show only that $\sqrt{I} \subseteq I$.

Let $x \in \sqrt{I}$, then $x^n \in I \Leftrightarrow x^n + I = I$, then $(x + I)^n = I \Rightarrow x + I$ is a nilpotent element in $\frac{R}{N}$, hence $x + I = I \Rightarrow x \in I$. Thus $\sqrt{I} \subseteq I$ and then $\sqrt{I} = I$.

Definition:

A proper ideal I of a ring R is called *primary* if whenever $a \cdot b \in I$ and $a \notin I$ implies that $b^k \in I$ for some $k \in Z^+$.

<u>Example:</u> In Z. Let I = 8Z, $4.2 = 8 \in 8Z$, $4 \notin 8Z$ and $2^3 = 8 \in 8Z$, so 8Z is primary ideal.

<u>Remark:</u>

Every prime ideal is primary.

Q: Is the converse true?

8Z is primary ideal but not prime since $4.2 = 8 \in 8Z$ but $4 \notin 8Z$ and $2 \notin 8Z$

Theorem:

Let R be a commutative ring with 1 and I be a proper ideal of R, I is a primary ideal if and only if every zero divisor of $\frac{R}{I}$ is nilpotent

Proof: \Rightarrow) Let a+I be a zero divisor in $\frac{R}{N}$, so $a+I \neq I$ and $\exists b+I \neq I$ in $\frac{R}{I}$ such that (a+I)(b+I)=I, then $ba+I=I \leftrightarrow ba \in I$ but $b \notin I$ and I is primary, then $\exists k \in Z^+ \ni a^k \in I \leftrightarrow a^k + I = I$ thus $(a+I)^k = I$ and a+I is a nilpotent element.

If $y + I = I \rightarrow y \in I$, we are done. [I is primary]

If $y + I \neq I$, then y + I is a zero divisor, hence by assumption y + I is a nilpotent element in $\frac{R}{N} \exists n \in Z^+ \ni (y + I)^n = I = y^n + I = I \Leftrightarrow y^n \in I$.

Theorem:

Let $f: R \longrightarrow R'$ be a ring epimorphism.

- 1. If M is a maximal (prime ,primary , semiprime) ideal in R with $ker f \subseteq M$, then f(M) is maximal (prime , primary , semiprime) ideal in R'.
- 2. If M' is a maximal (prime, primary, semiprime) ideal in R', then $f^{-1}(M')$ is maximal (prime, primary, semiprime) ideal in R.

Proof:

1).Let $f: R \longrightarrow R'$ be an epimorphism and let M be a maximal ideal in R contain $ker\ f$ we will prove that f(M) is maximal ideal in R'.

Clearly f(M) is an ideal in R'

 $f(M) \neq R'$ [If f(M) = R', then $1' \in f(M) \rightarrow 1' = f(m)$; $m \in M$. But $f(1) = 1' \rightarrow f(m) = f(1) \rightarrow f(m-1) = 0 \rightarrow m-1 \in \ker f \subseteq M$ $\rightarrow m - (m-1) \in M \rightarrow 1 \in M$ contradiction since M be a maximal, $M \neq R$]

Let $f(M) \subseteq J \subseteq R', J$ is an ideal in R', then $\exists y \in J$ and $y \notin f(M)$.

But f is onto $\rightarrow \exists x \in R \ni f(x) = y$, $x \notin M$.

Thenby theorem (let M be aproper ideal of a ring R. If M is maximal ideal in R iff < M, x > = R, $x \notin M$) $< M, x > = R \rightarrow 1 = m + tx$; $m \in M$, $t \in R$, then f(1) = f(m + tx), then f(1) = f(m) + f(t)f(x) [f is homomorphism], then 1' = f(m) + f(t)y

 $f(m) \in f(M) \subsetneq J$ and $y \in f(M) \subsetneq J$, hence $1' \in J$, which implies that J = R'. Thus f(M) is maximal in R'.

2). Let M' be a maximal ideal in R', then clearly $f^{-1}(M')$ is an ideal in R. $f^{-1}(M') \neq R$.

[If $f^{-1}(M') = R$,then $f^{-1}(w) = 1$; $w \in M' \to f(1) \in M' \to 1' \in M'$]. Let $f^{-1}(M') \subsetneq J \subseteq R$, then

 $\exists x \in I \text{ and } x \notin f^{-1}(M') \text{ iff } f(x) \notin M'; \langle M', f(x) \rangle = R'.$

$$w + r'f(x) = 1'$$
; $w \in M'$, $r' \in R'...(*)$

Since f is onto, then $\exists r \in R$ and $k \in M$ s. t f(k) = w, f(1) = 1' f(r) = r'. Then (*) will be : f(k) + f(r)f(x) = f(1), then f(k) + f(rx) = f(1) [f is homomorphism] and f(k + rx) = f(1), then f(k + rx - 1) = 0, hence $k + rx - 1 \in kerf \subseteq f^{-1}(M') \subseteq J$ and f(k) = w then $k \in f^{-1}(M') \subseteq J$,

so $k + rx \in J$, then $(k + rx) - (k + rx - 1) \in J$, which implies that $1 \in J$ and J = R. Thus $f^{-1}(M')$ is maximal in R.

- 3) Let I be a prime ideal in R, clearly f(I) is an ideal in R'
- $f(I) \neq R'$ since if f(I) = R' and f is onto, then $\exists x \in I \text{ s. } t f(x) = ; 1'$. But $f(1) = 1' \rightarrow f(x) = f(1) \rightarrow f(x-1) = 0 \rightarrow x-1 \in \ker f \subseteq I$, but $x \in I$, then $x (x-1) \in I$ and $1 \in I$.

Now, let $f(a)f(b) \in f(I)$; $a,b \in R$, since f is homo., then $f(a.b) \in f(I)$, then $a.b \in I$.

but I is prime ideal, so either $a \in I$, which implies that $f(a) \in f(I)$ or $b \in I$, which implies that $f(b) \in f(I)$. Thus f(I) is a prime ideal in R'.

- **4)**. Let K be a prime ideal in R', we have to show $f^{-1}(K)$ is prime ideal in R. **1**. Clearly $f^{-1}(K)$ is an ideal in R since K be an ideal in R'.
- 2. $f^{-1}(K)$ ≠ R, if $f^{-1}(K) = R \to 1 \in f^{-1}(K)$, then $1 = f^{-1}(w)$; $w \in K \to f(1) \in K \to 1 \in K$ c! since K is proper ideal in R'
- **3.**Let $x, y \in f^{-1}(K)$ and $x \notin f^{-1}(M)$, then $f(x, y) \in K$, since f is homomorphism, then $f(x)f(y) \in K$ and $f(x) \notin K$, but K is a prime, so $f(y) \in K$ and $f(x) \notin K$. Thus $f^{-1}(K)$ is prime.
- **5**). If I is primary in R, we have to show that f(I) is primary in. R'.

Let f(a). $f(b) \in f(I)$ and suppose that $f(a) \notin f(I)$, we prove that $(f(b))^n \in f(I)$, for some $n \in Z^+$.

 $f(a,b) \in f(I)$ [f is homo.], hence $a,b \in I$, $a \notin I$ since $f(a) \notin f(I)$ and I is primary, then $b^n \in I$ for some $n \in Z^+$. Thus $f(b^n) \in f(I) \to (f(b))^n \in f(I)$ and f(I) is primary in. R'.

6) Suppose that K is primary ideal in R', we prove that $f^{-1}(K)$ is primary ideal in R.

$$f^{-1}(K) \neq R$$
, if $f^{-1}(K) = R$ [$1 \in f^{-1}(K) \implies f(1) \in K \implies 1_R \in K$ C!.
Let $x, y \in f^{-1}(K)$ and $x \notin f^{-1}(K)$

 $f(x,y) \in K$ and $f(x) \notin K$ then $f(x), f(y) \in K$, hence $\exists n \in Z^+ \ni (f(y))^n \in K$, then $f(y^n) \in K$, then $y^n \in f^{-1}(K)$. Thus $f^{-1}(K)$ is primary in R.

7) Suppose M is semiprime ideal in R. $M = \sqrt{M}$, we prove that f(M) is semiprime ideal in R'.

First, $f(M) \neq R'$ $[1_{R'} \in f(M) \rightarrow 1_{R'} = f(m), \exists n \in Z^+ \text{ such that } f(m) = f(1), \text{ then } f(m-1) = 0, \text{ then } (m-1) \in Kerf \subseteq M, \text{ then } 1 \in M \text{ C!}.$

We must show that $f(M) = \sqrt{f(M)}$, but we know that $f(M) \subseteq \sqrt{f(M)}$, so we only have to show $\sqrt{f(M)} \subseteq f(M)$. Let $w \in \sqrt{f(M)}$, then $\exists n \in \mathbb{Z}^+ \ni w^n \in f(M)$, then $w^n = f(m)$; $m \in M$.

Since f is onto, then $\exists x \in R \ni f(x) = w$, then $w^n = (f(x))^n = f(x^n) = f(m)$, then $(x^n - m) \in Kerf \subseteq M$, then $(x^n - m) \in M$ but $m \in M$, hence $x^n \in M$, then, $x \in \sqrt{M} = M \implies x \in M$ [since M is semiprime and $\sqrt{M} = M$], then $f(x) \in f(M) \implies w \in f(M)$, hence $\sqrt{f(M)} \subseteq f(M)$. Thus $f(M) = \sqrt{f(M)}$ and f(M) is semiprime ideal in R'

8) (H.W)

Definition:

The *Jacobson radical* of a ring R, denoted by J(R) is the set:

 $J(R) = \cap \{M: Mis \ maximal \ ideal \ in \ R\}$

Example: (1) In Z, $(2Z) \cap (3Z) \cap (7Z) \cap ... = \{0\}, J(Z)=0$

- (2) In \mathbb{Z}_6 , $\{\overline{0}, \overline{2}, \overline{4}\} \cap \{\overline{0}, \overline{3}\} = \{0\}, J(\mathbb{Z}_6) = 0$.
- (3) Z_4 , $M = {\bar{0}, \bar{2}, }$.

 $\therefore J(\mathbb{Z}_4) = \{\overline{0}, \overline{2}, \}.$

Remark:

- 1. $J(R) \neq \emptyset$.
- 2. J(R) is an ideal in R.

Theorem:

Let I be an ideal in a ring R. Then $I \subseteq J(R)$ if and only if the coset 1 + I has invertible element in R.

Proof: \Rightarrow) Let $I \subseteq J(R)$ and assume that $\exists a \in I$ such that 1 + a has no inverse $\exists a$ maximal ideal M such that $1 + a \in M$, $a \in I \subseteq J(R) \subseteq M$, $a \in M, 1 + a - a \in M \Rightarrow 1 \in M$

Hence M = RC!. Thus 1 + I has inverse.

 \Leftarrow) suppose that each member of 1+I has inverse, but $I \nsubseteq J(R) = \cap M$; M is maximal ideal, then $I \nsubseteq M$.

Now, if $a \in I$, $a \notin J(R)$, then $\exists a \text{ maximal ideal } M \text{ s. } t \text{ } a \notin M$. Since M is maximal, then $\langle M, a \rangle = R$, since $1 \in R \Rightarrow 1 = m + ra$; $r \in R$, $m \in M \Rightarrow m = 1 - ra$, but $1 - ra \in 1 + I$, then $m \in 1 + I$, then m has inverse. Thus $1 = mm^{-1} \in M$ C! [Since M = R].

Corollary:

 $a \in J(R) \Leftrightarrow 1 + ra$ has inverse $\forall r \in R$.

Proof: Take $I = \langle a \rangle$ by above lemma, we have $a \in \langle a \rangle \subseteq J(R)$ if and only if $1 + \langle a \rangle$ has inverse. Thus 1 + ra has inverse.

Lemma:

The uniqueness idempotent element in I(R) is 0.

Proof: Let $a \in J(R)$, such that $a = a^2$, then $a - a^2 = 0$, then a(1 - a) = 0, a(1 + (-1)a) = 0 ··· (*). By the last corollary and since $a \in J(R)$, then 1 + (-1)a has inverse, so $\exists b \in R$ such that (1 + (-1)a)b = 1 by (*).

$$a.[(1+(-1)a)b] = 0.b$$
, so $a.1 = 0$. Thus $a = 0$.

Definition:

The ideal *I* is called nil ideal if each element in *I* is nilpotent.

Example:

In the ring Z₈

The ideals are $I_1 = {\overline{0}, \overline{4}}, I_2 = {\overline{0}, \overline{2}, \overline{4}, \overline{6}}$ are nil ideals.

 I_1 is a nil ideal since $\bar{4}^2 = \bar{0}$.

 I_2 is a nil ideal since $\overline{2}^3 = \overline{0}$, $\overline{4}^2 = \overline{0}$, $\overline{6}^3 = \overline{0}$

Lemma:

Every nil ideal contained in J(R).

Proof: Let I be a nil ideal and we prove that $I \subseteq J(R)$. Let $a \in I$, since I is nil ideal, then $\exists n \in Z^+ s$. t $a^n = 0$, let $r \in R$. Now:

$$(1+ra)(1-ra+r^2a^2-r^3a^3,...,(-1)^{n-1}(ra)^{n-1})=1-r^na^n=1.$$

[Since $a^n = 0$, then $r^n a^n = 0$]

By the last corollary $a \in J(R)$, then $a \in I$, which implies that $I \subseteq J(R)$.

Lemma:

$$J\left(\frac{R}{J(R)}\right) = 0.$$

Proof: Let J(R) = I, we prove that a + I = I i.e) 1 + ra has inverse in R. Let $a + I \in J\left(\frac{R}{J(R)}\right)$, then (1 + I) + (r + I)(a + I) has inverse in $\frac{R}{J(R)}$, so $\exists b + I \in I$

 $J\left(\frac{R}{J(R)}\right)$ such that [(1+I)+(r+I)(a+I)](b+I)=1+I, then (1+ra+I)(b+I)=1+I, then b(1+ra)+I=1+I, then $b(1+ra)-1\in I$, hence $1+r_1(b(1+ra)-1)$ has inverse. In special case take $r_1=1$, we have 1+(1)(b(1+ra)-1)has inverse in R, i.e) b(1+ra)has inverse in R. Thus $\exists w \in R$ s.t w. b(1+ra)=1, hence (1+ra)has inverse, so that $a \in J(R)=I$ and a+J(R)=J(R).

Definition:

The *prime radical* of a ring R, denoted by L(R) is the set:

$$L(R) = \cap \{P: P \text{ is prime ideal in } R\}$$

Example:

- (1) In Z: $L(Z) = \cap(P) = \{0\}$, L(Z) = 0, where P is prime.
- (2) Find $L(Z_8)$, $L(Z_6)$, $L(Z_{12})$.(H.W).
- (3) If R is an integral domain, then L(R) = 0

Remark:

- 1. $L(R) \neq \emptyset$.
- 2. L(R) is an ideal in R.
- 3. $L(R) \subseteq J(R)$

Theorem(*):

Let I be a proper ideal in a ringR, then

$$\sqrt{I} = \cap \{P: P \text{ is prime ideal in } R \text{ contain } I\}$$

Proof:

1)Let $r \notin \sqrt{I}$, then $r^n \notin I \forall n \in Z$, let $S = \{r, r^2, r^3, ..., r^n, ...\}$, then $I \cap S = \emptyset$, define $F = \{J: J \cap S = \emptyset ; J \text{ is proper ideal contain } I\}$, $F \neq \emptyset$ (since $I \in F$), let $\{C_{\alpha}\}_{\alpha \in \Lambda}$ be a chain of element from F i.e $C_{\alpha} \cap S = \emptyset$, C_{α} is a proper ideal contain $I , \forall \alpha$, we will prove that $\bigcup_{\alpha \in \Lambda} C_{\alpha} \in F$, Let $x, y \in \bigcup_{\alpha \in \Lambda} C_{\alpha} , \exists \gamma, \beta \in \Lambda$ $s.t \ x \in C_{\beta}, y \in C_{\gamma}$, since $\{C_{\alpha}\}_{\alpha \in \Lambda}$ is a chain of F, then either $x \in C_{\beta} \subseteq C_{\gamma} \ni y$ or $x \in C_{\gamma} \subseteq C_{\beta} \ni x$, then $x, y \in C_{\beta}$ or $x, y \in C_{\gamma}$, then $x = y \in C_{\beta}$ or $x = y \in C_{\gamma}$, hence $x = y \in \bigcup_{\alpha \in \Lambda} C_{\alpha}$.

Now, let $r \in R$ and $x \in \bigcup_{\alpha \in \Lambda} C_{\alpha}$, then $\exists \beta \in \Lambda s. t x \in C_{\beta}$, then $rx \in C_{\beta}$.since $\bigcup_{\alpha \in \Lambda} C_{\alpha}$ is an ideal in F.

2) $\bigcup_{\alpha \in \Lambda} C_{\alpha} \neq R$ since if $\bigcup_{\alpha \in \Lambda} C_{\alpha} = R$, then $1 \bigcup_{\alpha \in \Lambda} \in C_{\alpha}$, hence $\exists C_{\gamma} s.t 1 \in C_{\gamma} C!$ [since $C_{\alpha} \forall \alpha \text{ is proper ideal of } R$], since $I \subseteq C_{\alpha} \forall \alpha$. Thus $I \subseteq \bigcup_{\alpha \in \Lambda} C_{\alpha}$.

3)($\bigcup_{\alpha \in \Lambda} C_{\alpha}$) \cap $S = \bigcup_{\alpha \in \Lambda} (C_{\alpha} \cap S) = \bigcup (\emptyset) = \emptyset$. Thus $\bigcup_{\alpha \in \Lambda} C_{\alpha} \in F$. By Zorn's Lemma F has a maximal element P.

Claim: P is prime P in R.

Suppose that P is not prime, let $x, y \in P$ and $x \notin P$, $y \notin P$.

$$P \subseteq \langle P, \chi \rangle$$

$$P \subseteq \langle P, y \rangle$$

Since P is maximal in F, then $\langle P, x \rangle$, $\langle P, y \rangle$ must intersect S.

i.e $\langle P, x \rangle \cap S \neq \emptyset, \langle P, y \rangle \cap S \neq \emptyset.$

Then $\exists m, k \in Z^+ s.t \ r^m \in \langle P, x \rangle, \ r^k \in \langle P, y \rangle,$ then $r^{m+k} = r^m.r^k \in \langle P, x \rangle. \langle P, y \rangle \subseteq \langle P, x, y \rangle = P.$

Thus $r^{m+k} \in P$ C! (since $P \cap S = \emptyset$), then P is prime ideal and $P \in F$, hence $\forall n \in Z^+$, $r^n \notin P$ so $r \notin P$, then $r \notin P$ for any prime ideal contain I.

 $r \notin \cap \{P: P \text{ is prime ideal contain } I\}$, then $\exists P ; P$. is prime ideal contain I. Thus $r^n \notin P \ \forall n \in Z^+$ [since P is prime ideal] i.e $(r.r = r^2 \notin P, r^2.r = r^3 \notin P, ...)$ and $r^n \notin I \ \forall n \in Z^+, I \subseteq P$.

If we put $I = \{0\}$ we have:

Corollary:

$$\sqrt{\langle 0 \rangle} = \cap \{P: P \text{ is prime ideal in } R \} = L(R)$$

Since all prime ideals in *R* contain 0 we don't write $0 \subseteq P$.

- 1) L(R) = The set of all nilpotent element of R.
- 2) $\sqrt{\langle 0 \rangle} = \{ r \in \mathbb{R} : r^n = 0 \}$ The set of all nilpotent element.

Theorem:

An ideal I of a ring R is semiprime ideal iff I is an intersection of prime ideal of R.

$$\underline{Example:}\sqrt{\langle 6 \rangle} = \langle 6 \rangle$$

Remark:

$$L\left(\frac{R}{L(R)}\right) = 0.$$

Proof: Let $x + L(R) \in L\left(\frac{R}{L(R)}\right)$, then by () $\exists n \in Z \text{ s.t } \left(x + L(R)\right)^n = L(R)$, then $x^n + L(R) = L(R)$, then $x^n \in L(R)$, then by () $\exists n \in Z \text{ s.t } (x^n)^m = 0$, hence $x^{nm} = 0$. Thus $x \in L(R)$ if f(x) = L(R).

Theorem:

Let $f: R \longrightarrow R'$ be an epimorphism such that $ker f \subseteq J(R)$. Then:

- 1. f(J(R)) = J(R').
- 2. $f^{-1}(J(R')) = J(R)$.

Proof:

1). Let $f: R \longrightarrow R$ be an epimorphism.

To prove that f(J(R)) = J(R') we must prove that $f(J(R)) \subseteq J(R')$ and $J(R') \subseteq f(J(R))$.

Let $w \in f(J(R))$, w = f(x); $x \in J(R)$. To prove $w \in J(R')$ we have to show that 1' + r'w has inverse where $r' \in R'$.

Since f is onto, $\exists t \in R \text{ s. } t f(t) = r' \text{ and } f(1) = 1'$

 $1' + r'w = f(1) + f(t) \cdot f(x) = f(1 + tx) [f \text{ is homo.}].$

Since $x \in J(R)$, then 1 + kx has inverse in $R : k \in R$.

In special case. 1 + tx has inverse, i.e. $\exists a \in R \ s.t \ (1 + tx).a=1 \Rightarrow$

 $f(1 + tx) \cdot a = f(1) \Rightarrow [f(1) + f(t) \cdot f(x)] \cdot f(a) = f(1)[f \text{ is homo.}] \Rightarrow$ $(1' + r'w) \cdot f(a) = 1' \in R' \text{ i. e } f(a) \text{is an inverse to } 1' + r'w \text{ .}$

Hence $w \in J(R')$ [theorem]. Thus $f(J(R)) \subseteq J(R') \cdots (1)$.

Now, to prove $J(R') \subseteq f(J(R))$.

Let $y \in J(R)$, since f is onto, $\exists x \in R \text{ s.t } f(x) = y$, it is enough to show that $x \in J(R)$ i. e. 1 + rx has inverse.

Since $y \in J(R') \Rightarrow 1' + r'y$ has inverse in R' [theorem].

 $\exists z \in R' \ s.t \ z.(1' + r'y) = 1', 1' \in R', z \in R', r' \in R'.$

Since f is onto, $\exists r \in R$ s.t f(r) = r', $\exists t \in R$ s.t f(t) = z, f(1) = 1'. $(1' + r'y) \cdot z = 1' \Rightarrow [f(1) + f(r) \cdot f(x)] \cdot f(t) = f(1) \Rightarrow f((1 + rx) \cdot t) = f(1) \Rightarrow f((1 + rx) \cdot t - 1) = 0 \Rightarrow (1 + rx) \cdot t - 1 \in ker f \subseteq J(R)$. Hence $1 + s[(1 + rx) \cdot t - 1]$ has an inverse $\forall s \in R$. In special case s = 1.

 $1 + (1 + rx) \cdot t - 1$ has an inverse in $R \Rightarrow (1 + rx) \cdot t$ has an inverse in R.

i.e. $\exists w \in R \text{ s.t } w.t(1+rx) = 1$, i.e., 1+rx has an inverse (t w) in $R \text{ iff } x \in J(R)$, hence $J(R') \subseteq f(J(R)) \cdots (2)$.

Thus from (1), (2) f(J(R)) = J(R)

2) Now we want to show that $f^{-1}(J(R)) = J(R)$.

Let $x \in f^{-1}(J(R)) \Rightarrow f(x) \in J(R) = f(J(R))$, then $f(x) \in f(J(R))$, then $\exists y \in J(R) \text{ s. } t f(x) = f(y) \Rightarrow f(x - y) = 0 \Rightarrow x - y \in \ker f \subseteq J(R)$, $x - y + y = x \in J(R)$ [since $y, x - y \in J(R)$].

Hence $f^{-1}(J(R)) \subseteq J(R) \cdots (1)$.

Now, let $w \in J(R) \Rightarrow f(w) \in f(J(R)) = J(R) \Rightarrow f(w) \in J(R)$

$$\Rightarrow w \in f^{-1}\big(J(R)\big).$$

Hence $J(R) \subseteq f^{-1}(J(R)) \cdots (2)$.

From (1), (2) $\Rightarrow f^{-1}(J(R)) = J(R)$.

Theorem:

Let $f: R \longrightarrow R'$ be an epimorphism such that $ker f \subseteq L(R)$. Then:

- 1. f(L(R)) = L(R').
- 2. $f^{-1}(L(R')) = L(R)$.

Proof:

1). Let $f : R \longrightarrow R'$ be an epimorphism.

To prove that f(L(R)) = L(R') we must prove that $f(L(R)) \subseteq L(R')$ and $L(R') \subseteq f(L(R))$.

$$L(R) = \{ x \in R : x^n = 0 , \text{ for some } n \in Z^+ \} = \sqrt{\langle 0 \rangle}.$$

Let $x \in f(L(R)) \Rightarrow \exists a \in L(R) \text{ s. } t x = f(a) \Rightarrow a^n = 0, n \in Z^+.$

$$0' = f(0) = f(a^n) = (f(a))^n = x^n \Rightarrow x^n = 0' \Rightarrow x \in L(R').$$

Hence $f(L(R)) \subseteq L(R')$.

Let
$$y \in L(R') \Rightarrow y^n = 0'$$
 $n \in Z^+$, since f is onto $\Rightarrow \exists b \in R \ s. \ t \ f(b) = y$.
 $0' = y^n = (f(b))^n = f(b^n)$, since f is homo. $\Rightarrow b^n \in Kerf \subseteq L(R)$
 $\Rightarrow b^n \in L(R) \Rightarrow \exists m \in Z^+ \ s. \ t \ (b^n)^m = 0 \Rightarrow b^{mn} = 0 \Rightarrow b \in L(R)$.
 $y = f(b) \in f(L(R)) \Rightarrow L(R') \subseteq f(L(R))$. Thus $f(L(R)) = L(R')$.

2) Now we want to show that $f^{-1}(L(R)) = L(R)$.

Let
$$x \in f^{-1}(L(R)) \Rightarrow f(x) \in L(R') = f(L(R))$$
, then $f(x) \in f(L(R))$, then $\exists y \in L(R) \text{ s. } t f(x) = f(y) \Rightarrow f(x - y) = 0 \text{ [} f \text{ is homo.]}$

$$\Rightarrow x - y \in ker f \subseteq L(R), \Rightarrow x - y + y = x \in L(R) [since y, x - y \in L(R)].$$

Hence
$$f^{-1}(L(R)) \subseteq L(R) \cdots (1)$$
.

Now, let
$$w \in L(R) \Rightarrow f(w) \in f(L(R)) = L(R) \Rightarrow f(w) \in L(R)$$

$$\Rightarrow w \in f^{-1}(L(R)).$$

Hence
$$L(R) \subseteq f^{-1}(L(R)) \cdots (2)$$
.

From (1), (2)
$$\Rightarrow f^{-1}(L(R)) = L(R)$$
.

Division Algorithm For Integral Domain:

<u>Definition:</u>

Let R be a ring and let $0 \neq a \in R$, $b \in R$ we say that "a divided b" $(a \setminus b)$ if \exists a number c s.t b = a.c.

Remark:

If a divided b we mean that a is a factor b or b multipolar a.

Remark:

 $a \setminus b$ if and only if $\langle b \rangle \subseteq \langle a \rangle$.

 $Proof: \Rightarrow$) Suppose $a \setminus b \Rightarrow b = a.c$, $c \in R$, $b \in \langle b \rangle$, $\Rightarrow b \in \langle a \rangle \Rightarrow \langle b \rangle \subseteq \langle a \rangle$.

 \Leftarrow)Suppose $\langle b \rangle \subseteq \langle a \rangle$ since $b \in \langle b \rangle \Rightarrow b \in \langle a \rangle \Rightarrow b = a.r, r \in R$.

Thus a/b.

Theorem:

Let R be a ring, then

- 1) $1 \setminus a, a \setminus a, a \setminus 0 \quad \forall a \in R$.
- 2) $a \setminus 1$ iff a has inverse.
- 3) If $a \setminus b$, $b \setminus c \Rightarrow a \setminus c$.
- 4) If $a \setminus b$, then $a.c \setminus b.c \ \forall c \in R$.
- 5) $\forall a, b, c \in R \text{ if } c \setminus a, c \setminus b, \text{ then } c \setminus ax + by \quad \forall x, y \in R.$

Proof(1):

Since a = 1. $a \Rightarrow 1 \setminus a$ and since a = a. $1 \Rightarrow a \setminus a$.

 $0 = a.0 \implies a \setminus 0.$

Proof(2):

 \Rightarrow) Since $a \setminus 1 \Rightarrow 1 = a$. b where $b \in R$ which mean that b is an inverse of a.

 \Leftarrow) a has inverse $\Rightarrow 1 = a.c$, $c \in R \Rightarrow a \setminus 1$.

Proof(3):

Since $a \setminus b$, $b \setminus c \Rightarrow \exists u_1$, $u_2 \in R$ s.t $b = a.u_1$, $c = a.u_2$.

 $c = a. u_1. u_2 = a. (u_1. u_2)$. Thus $a \setminus c$.

Proof(4):

Since $a \setminus b \Rightarrow b = a.r$, $r \in R \Rightarrow c.b = c.a.r \Rightarrow c.a \setminus c.b$.

Proof(5):

Since $c \setminus a$, $c \setminus b \Rightarrow \exists r_1$, $r_2 \in R$ s.t $a = c.r_1$, $b = c.r_2$.

$$a.x = c.r_1.x$$
, $by = c.r_2y$.

$$a.x + by = c.r_1.x + c.r_2y = c(r_1.x + r_2y)$$
.

Thus $c \setminus ax + by$.

Definition:

Let R be a ring and let $a, b \in R$, we say that a, b are associated element if a = bu, where u is invertible element in R.

Eexample:

In Z: 2, -2.

$$-2 = (-1).2.$$

(-1) has an inverse in Z.

Remark(1):

Define a relation \sim on R as follows: $a \sim b$ if f(a, b) are associated elements, is an equivalent relation.

Proof:

- i. $a \sim a \ \forall a \in R$.
- ii. If $a \sim b$ then $b \sim a$. $a \sim b \Rightarrow a = bu, \ u \text{ is invertible element in } R. \Rightarrow au^{-1} = b \Rightarrow b \sim a.$
- iii. If $a \sim b$ and $b \sim c$ then $a \sim c$. $a \sim b \Rightarrow a = bu_1$; u_1 is invertible element in R. $b \sim c \Rightarrow b = cu_2$; u_2 is invertible element in R. $a = cu_2 u_1 = c(u_2 u_1) \Rightarrow a \sim c$. Thus \sim is an equivalent relation.

<u>Remark(2):</u>

Consider the Gaussian numbers denoted by Z(i).

$$Z(i) = \{a + ib : a, b \in Z, i^2 = -1\} \subseteq \mathbb{C}$$

- 1. $(Z(i), +, \cdot)$ is a ring but not field.?
- 2. Z(i) is an integral domain?

Here the only invertible elements are ± 1 , $\pm i$. Suppose $a+ib \in Z(i)$ has a multiplicative inverse c+id. Then

$$(a+ib).(c+id) = 1$$
, so $(a-ib).(c-id) = 1$, then
$$(a+ib).(c+id).(a-ib).(c-id) = 1$$
$$(a^2+b^2)(c^2+d^2) = 1 , a,b,c,d \in Z$$
$$\Rightarrow (a^2+b^2) = 1 , a^2 = 0 , b^2 = 1 \Rightarrow a = 0 , b = \pm 1 .$$

Or $a^2=1$, $b^2=0 \Rightarrow a=\pm 1$, b=0 . Thus the invertible elements are ± 1 , $\pm i$.

The only associated elements of a + ib are:

$$a + ib$$
, $-a - ib$, $-b + ia$, $-b - ia$.

Theorem:

Let a, b be a non-zero element of a ring R. Then the following statements are equivalent:

- 1) *a*, *b* are associates.
- 2) Both $a \setminus b$ and $b \setminus a$.
- 3) $\langle a \rangle = \langle b \rangle$.

Proof:

1) \Rightarrow 2) Suppose that a, b are associated elements \Rightarrow 3 an invertible element $u \in R$ s.t $a = bu \Rightarrow b \setminus a \Rightarrow u^{-1}a = b \Rightarrow a \setminus b$.

2)
$$\Rightarrow$$
3) : $a \setminus b \Rightarrow \langle b \rangle \subseteq \langle a \rangle$.

$$\therefore b \setminus a \Rightarrow \langle a \rangle \subseteq \langle b \rangle.$$

$$\Rightarrow \langle a \rangle = \langle b \rangle.$$

3)
$$\Rightarrow$$
2) : $\langle a \rangle = \langle b \rangle \Rightarrow \langle a \rangle \subseteq \langle b \rangle$ iff $b \setminus a$ and $\langle b \rangle \subseteq \langle a \rangle$ iff $a \setminus b$

2)
$$\Rightarrow$$
1) $\because a \setminus b \Rightarrow b = u_1 a \Rightarrow u_1 = ba^{-1}$ and $\because b \setminus a \Rightarrow a = u_2 b \Rightarrow u_2 = ab^{-1}$.

 $u_1u_2=ba^{-1}ab^{-1}=bb^{-1}=1\Rightarrow u_1$, u_2 are invertible element. $\Rightarrow a$, b are associated elements

Definition:

Let a_1 , a_2 , ..., a_n be a non-zero element of a ring R. An element $d \in R$ is a greatest common divisor of a_1 , a_2 , ..., a_n if satisfy the following:

- 1) $d \setminus a_i \quad \forall i = 1,2,\dots,n$.
- 2) If $c \setminus a_i \ \forall i = 1,2,\dots,n$ implies that $c \setminus d$. $d = g. c. d(a_1, a_2, \dots, a_n).$

Eexample:

$$g.c.d(30,40) = 10.$$

Theorem:

Let a_1 , a_2 , ..., a_n be a non-zero element of a ring R, then a_1 , a_2 , ..., a_n have g.c.d of the form $d=r_1a_1+r_2a_2+\cdots+r_na_nr_i\in R$ if f the ideal $\langle a_1,a_2,\cdots,a_n\rangle$ is principal.

$Proof: \Rightarrow$)

Suppose that $d = r_1 a_1 + r_2 a_2 + \cdots + r_n a_n \Rightarrow d \in \langle a_1, a_2, \cdots, a_n \rangle$

$$\Rightarrow \langle d \rangle \subseteq \langle a_1, a_2, \dots, a_n \rangle.$$

Now, let $x \in \langle a_1, a_2, \dots, a_n \rangle$.

$$\Rightarrow$$
 $x = t_1 a_1 + t_2 a_2 + \dots + t_n a_n$; $t_i \in R$ $\dots (*)$

But $d \setminus a_i \quad \forall i = 1,2,\dots,n \quad \Rightarrow a_i = ds_i \; ; \; s_i \in R \quad \forall i = 1,2,\dots,n \; .$

Put a_i in (*).

$$\Rightarrow x = t_1 ds_1 + t_2 ds_2 + \dots + t_n ds_n = d(t_1 s_1 + t_2 s_2 + \dots + t_n s_n) = d.w.$$

 $\therefore x \in \langle d \rangle \Longrightarrow \langle a_1, a_2, \dots, a_n \rangle = \langle d \rangle$. Thus is principal.

 \Leftarrow) Now, suppose that $\langle d \rangle = \langle a_1, a_2, \dots, a_n \rangle$. To show that d is a greatest common divisor of a_1, a_2, \dots, a_n .

 $a_i \in \langle d \rangle \ \forall \ i=1,2,\cdots,n \ \Rightarrow \exists \ b_i \in R \ s.t \ a_i = db_i \Rightarrow d \setminus a_i \ \forall \ i=1,2,\cdots$, n. Now, suppose that $\exists \ c \in R \ s.t \ c \setminus a_i \ \forall \ i \Rightarrow \exists \ s_i \in R \ s.t \ a_i = s_i \ c \Rightarrow$

$$d = r_1 a_1 + r_2 a_2 + \dots + r_n a_n$$

$$= r_1 s_1 c + r_2 s_2 c + \dots + r_n s_n c$$

$$d = (r_1 s_1 + r_2 s_2 + \dots + r_n s_n) \cdot c \Rightarrow c \setminus d$$

$$\therefore d \text{ is } g \cdot c \cdot d(a_1, a_2, \dots, a_n)$$

Corollary:

Any finite set of non-zero elements a_1 , a_2 , ..., a_n of P.I.D has g.c.d.

In fact $g.c.d(a_1,a_2,\cdots,a_n)=r_1a_1+r_2a_2+\cdots+r_na_n$ for suitable choice $r_1,r_1,\cdots,r_n\in R$.

Definition:

Let R be a ring and let a_1 , a_2 ,..., a_n be a non-zero element of R. If $R = \langle d \rangle = \langle a_1, a_2, ..., a_n \rangle$, then $g.c.d(a_1, a_2, ..., a_n) = 1$ and $a_1, a_2, ...$, a_n are called relatively prime elements.

Theorem:

Let a, b, c be elements of a P. I. D R, if $c \setminus ab$ with a, c relatively prime, then $c \setminus b$.

Proof:

Since a, c are relatively prime elements

$$\Rightarrow g.c.d(a,c) = 1 \Rightarrow 1 = ra + sc ; r,s \in R$$

Since
$$c \setminus ab \Rightarrow ab = tc$$
; $t \in R \Rightarrow b = bra + bsc$
 $b = rtc + bsc = (rt + bs)c$. Thus $c \setminus b$.

Definition:

Let R be a ring and let a_1 , a_2 ,..., a_n be non-zero elements of R, then $d \in R$ is a least common multiple of a_1 , a_2 ,..., a_n if $a_i \setminus d \ \forall \ i = 1,2,...$, n. If $\exists \ c \in R \ s.t \ a_i \setminus c$, then $d \setminus c$

$$d = l.c.m(a_1, a_2, \dots, a_n).$$

Theorem:

Let a_1 , a_2 ,..., a_n be a non-zero element of R, then a_1 , a_2 ,..., a_n have least common multiple iff the ideal $\cap \langle a_i \rangle$ is principale

$\underline{Proof}:\Rightarrow)$

Let $c=l.c.m(a_1,a_2,\cdots,a_n)$, we must prove that $\cap \langle a_i \rangle = \langle c \rangle$. Let $w \in \langle c \rangle \Rightarrow w = rc$; $r \in R$

But c is $l.c.m(a_1, a_2, \dots, a_n) \Rightarrow a_i \setminus c \quad \forall i = 1,2,\dots, n$

$$\Rightarrow c = t_i \ a_i$$
 ; $t_i \in R$ $\forall i = 1,2,\dots, n$

 $w = rt_i \ a_i \qquad \forall \ i = 1,2,\cdots, n \Longrightarrow w = rt_1 \ a_1 \Longrightarrow w \in \langle a_1 \rangle.$

$$w = rt_2 \ a_2 \Rightarrow w \in \langle a_2 \rangle \ , \dots, \ w = rt_n \ a_n \Rightarrow w \in \langle a_n \rangle.$$

 $w \in \langle a_i \rangle \forall i \Rightarrow w \in \cap \langle a_i \rangle \Rightarrow \langle c \rangle \subseteq \cap \langle a_i \rangle.$

Let $k \in \bigcap_{i=1}^{n} \langle a_i \rangle \Rightarrow k \in \langle a_i \rangle \forall i \Rightarrow k = s_i a_i$; $s_i \in R \ \forall i = 1,2,\dots,n$.

 $\Rightarrow a_i \setminus k \quad \forall i \text{ but } c = l.c.m(a_1, a_2, \dots, a_n),$

 $\therefore \ c \setminus k \implies k = rc \quad ; \quad r \in R \implies k \in \langle c \rangle.$

 $\bigcap_{i=1}^{n} \langle a_i \rangle \subseteq \langle c \rangle , : \langle c \rangle = \bigcap_{i=1}^{n} \langle a_i \rangle.$

 \iff Let $\langle c \rangle = \cap_{i=1}^n \langle a_i \rangle$, we prove that $c = l.c.m(a_1, a_2, \cdots, a_n)$.

$$c \in \langle c \rangle \Rightarrow c \in \cap_{i=1}^{n} \langle a_i \rangle \Rightarrow c \in \langle a_i \rangle \forall i \Rightarrow c = t_i a_i \forall i \ t_i \in R.$$

$$\Rightarrow a_i \setminus c \dots (1).$$

We suppose that $\exists \ c \in R$ s.t $a_i \setminus c$ $\forall i$, we must prove that $c \setminus c$.

$$a_i \setminus c \Rightarrow c = r_i \ a_i \forall i \ r_i \in R \Rightarrow c \in \langle a_i \rangle \forall i.$$

$$\Rightarrow c \in \cap_{i=1}^n \langle a_i \rangle \Rightarrow c \in \langle c \rangle.$$

$$c' = w.c \implies c \setminus c' \cdots (2)$$
.

From (1), (2) $\Rightarrow c$ is $l.c.m(a_1, a_2, \dots, a_n)$.

Corollary:

If *R* is *P*. *I*. *D*, then every finite set of non-zero elements have *l*. *c*. *m*..

Proof:

Let a_1 , a_2 ,..., a_n be non-zero elements, then $\bigcap_{i=1}^n \langle a_i \rangle$ is an ideal $\exists c \in R$ s.t $\langle c \rangle = \bigcap_{i=1}^n \langle a_i \rangle$ since R is P.I.D. Thus by the last theorem $c = l.c.m(a_1, a_2, ..., a_n)$.

Definition:

Let R be a ring with 1. The element $a \in R$ is called prime element if $a \neq 0$, a has no inverse and $a \setminus c$. b, then either $a \setminus c$ or $a \setminus b$.

Definition:

Let R be a ring with 1,then the element $b \in R$ is called irreducible element if $b \neq 0$, b has no inverse and if b = a. c, then either a has an inverse or c has an inverse.

Theorem:

1) If p is prime element in R and p is associated with p, then p is prime element.

2) If q is irreducible element in R and q, q are associated, then q is irreducible element.

Proof:

- 1) Since p, p are associated, then p = up where u has an inverse.
 - a) $p \neq 0$ since if $p = 0 \Rightarrow 0 = up \Rightarrow p = 0$ C! [since p is prime element].
 - b) p has no inverse since if p has an inverse.
 - $(p)^{-1} \cdot p = (p)^{-1} \cdot up \Rightarrow 1 = [(p)^{-1} \cdot u] \cdot p \Rightarrow p \text{ is invertible C!}$ [since p is primeelement].
 - c) If $p \setminus c.b \Rightarrow c.b = t.p$, $t \in R \Rightarrow c.b = t.u.p \Rightarrow c.b = (t.u).p \Rightarrow p \setminus c.b$ but p is prime element, then either $p \setminus c$. or $p \setminus b$ if $p \setminus b \Rightarrow b = r.p \Rightarrow b = (r.u). \Rightarrow p \setminus b$. Similarly, if $p \setminus c \Rightarrow p$ is primeelement.
- 2) Since q, q are associated, then q = uq where u has an inverse $\Rightarrow u^{-1}$. q = q ... (*).
 - a) $q \neq 0$ since if $q = 0 \Rightarrow 0 = uq \Rightarrow q = 0$ C! [since q is prime element].
 - b) q has no inverse since if q has inverse $\Rightarrow (q)^{-1} \cdot q = (q)^{-1} \cdot uq \Rightarrow 1 = [(q)^{-1} \cdot u] \cdot q \Rightarrow q$ has inverse q is prime element.
 - c) If $q = c.b \Rightarrow u.q = c.b \Rightarrow q = (u^{-1}.b).c$ since q is irreducible element, then either c has an inverse or $u^{-1}.b$ has an inverse. If $u^{-1}.b$ has an inverse $\Rightarrow \exists w \in R \ s.t \ w(u^{-1}.b) = 1$ $\Rightarrow (wu^{-1})b = 1$
 - \Rightarrow bhas an inverse. Thus \hat{q} is irreducible element.

Theorem:

Let *R* be an I.D, then every prime element in *R* is irreducible element.

Proof:

Let p be a prime element in R and let $a, b \in R$ s.t p = a.b $(1.p = a.b) \Rightarrow p \setminus a.b, p$ is prime element, then either $p \setminus a \text{ or } p \setminus b$. if $p \setminus a \Rightarrow a = r.p$, $r \in R \Rightarrow a.b = (r.p).b \Rightarrow p = r.b.p \Rightarrow 1 = r.b$ $\Rightarrow b$ has an inverse.

Similarly if $p \setminus b \Rightarrow p$ is irreducible element.

Note

The converse is not true?

Theorem:

Let R be a P I.D and let $p \in R$, then p is prime element iff p is irreducible element.

$\underline{Proof}:\Rightarrow)$

From the last theorem

(⇒

Let $p \in R$ be an irreducible element and suppose that $p \setminus a.b \Rightarrow p = a.b$; $c \in R$... (*).

R is P I. D, then $\langle a, p \rangle$ is principle

 $\therefore \exists d \in R \text{ s. } t \langle a, p \rangle = \langle d \rangle. \Rightarrow p = k.d$, $k \in R$ but p is irreducible element $\Rightarrow k$ has an inverse or d has an inverse.

If k has an inverse $\Rightarrow d = k^{-1}p \Rightarrow d \in \langle d \rangle \Rightarrow \langle d \rangle \subseteq \langle p \rangle$ but $a \in \langle d \rangle \Rightarrow a \in \langle p \rangle \Rightarrow a = r.p$; $r \in R \Rightarrow p \setminus a$.

If
$$d$$
 has an inverse $\Rightarrow 1 = dd^{-1} \in \langle d \rangle \Rightarrow \langle d \rangle = R$ but $\langle d \rangle = \langle a, p \rangle \Rightarrow \langle a, p \rangle = R$.

$$1 \in R = \langle a, p \rangle \Rightarrow 1 = at_1 + pt_2 \; ; \; t_1, t_2 \in R$$

$$b = bat_1 + bpt_2$$

$$b = bct_1 + pbt_2$$

$$b = p(ct_1 + bt_2)$$

$$\Rightarrow p \setminus b$$
.

16 ,
$$contf(x) = g.c.d(4, -32, -16) = 4$$

Corollary:

In *Z* there is no difference between irreducible element and prime element.

Proof:(H.W)

Remark:

Let R be a P I.D. If $\{I_n\}$; $n \in Z^+$ is any infinite sequence of ideals of R s.t $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq I_{n+1} \subseteq \cdots$, then there exist $m \in Z^+$ s.t $I_n = I_m$ for all n > m.

Proof:

Let $\bigcup_{k=1}^{\infty} I_k = I$, and $I_1 \subseteq I_2 \subseteq \cdots$ is a chain.

 $\bigcup_{k=1}^{\infty} I_k$ is an ideal?

R is P I.D, then $\exists a \in R$ s.t $I = \langle a \rangle \Rightarrow a \in \bigcup_{k=1}^{\infty} I_k \Rightarrow \exists m \in Z^+$ s.t $a \in I_m$ for all $n > m \Rightarrow I = \langle a \rangle \subseteq I_m \subseteq I_n \subseteq \bigcup_{k=1}^{\infty} I_k = I$. $\therefore I_m = \bigcup_{k=1}^{\infty} I_k$. Thus $I_n = I_m$.

Definition:

The principle ideal is called maximal principle ideal if it's maximal in the set of proper principle ideals of R.

Theorem:

Let R be an integral domain for non-zero element $p \in R$, the following holds:

- 1. *P* is irreducible element iff(p) is maximal principle ideal.
- 2. *P* is prime element $iff \langle p \rangle \neq R$ is prime ideal.

$\underline{\textit{Proof}}$:1) \Rightarrow)

Let *P* be irreducible element, and let $\langle p \rangle \subseteq \langle a \rangle$, $a \in R$.

$$p \in \langle p \rangle \Rightarrow p \in \langle a \rangle$$
, $p = a.c$, $c \in R$... (*)

But P is irreducible element \Rightarrow either a or c has an inverse. If c has an inverse $\Rightarrow c^{-1}p = a$ $[by(*)] \Rightarrow a \in \langle p \rangle \Rightarrow \langle a \rangle \subseteq \langle p \rangle C!$, hence a has an inverse $\Rightarrow a.a^{-1} = 1 \in \langle a \rangle \Rightarrow \langle a \rangle = R$. Thus $\langle p \rangle$ is maximal principle ideal.

 \Leftarrow

Let $\langle p \rangle$ be a maximal principle ideal.

Let p = a.b, suppose that a,b has no inverse $p \in \langle a \rangle \Longrightarrow \langle p \rangle \subset \langle a \rangle$ if $a \in \langle p \rangle \Longrightarrow a = p.c$, $c \in R$.

 $a.b = p.c.b \Rightarrow p = p.c.b \quad [R \text{ is } I.D] \Rightarrow c.b = 1 \Rightarrow b \text{ has an inverse } C! : \langle p \rangle \subseteq \langle a \rangle.$

Next if $\langle a \rangle = R \implies a$ has inverse

 $\therefore \langle a \rangle \neq R$ C! [since a has no inverse] $\Rightarrow \langle p \rangle \subseteq \langle a \rangle \subset R$

Since $\langle p \rangle$ is maximal principle ideal $\therefore a \text{ or } b$ has an inverse.

 \therefore *P* is irreducible element.

Let *P* be prime element, $\langle p \rangle \neq R$ [since *p* has no inverse]

Let $a.b \in \langle p \rangle \Rightarrow a.b = k.p$, $k \in R \Rightarrow p \setminus a.b$ but P is prime element \Rightarrow either $p \setminus a$ or $p \setminus b$

If
$$p \setminus a \Rightarrow a = pk_1$$
, $k_1 \in R \Rightarrow a \in \langle p \rangle$

Or
$$p \setminus b \Rightarrow b = pk_2$$
, $k_2 \in R \Rightarrow b \in \langle p \rangle$

 \therefore $\langle p \rangle$ is prime ideal.

 \Leftarrow

Suppose that $\langle p \rangle$ is prime ideal $\langle p \rangle \neq R \implies p$ has no inverse.

Let $p \setminus a.b \Rightarrow a.b = m.p$, $m \in R \Rightarrow a.b \in \langle p \rangle$ but P is prime element \Rightarrow either $a \in \langle p \rangle \Rightarrow a = k_1 p$, $k_1 \in R$

Or
$$b \in \langle p \rangle \Rightarrow b = k_2 p$$
, $k_2 \in R$.

 \Rightarrow Either $p \setminus a$ or $p \setminus b$

Lemma:(*)

Let R be a P I.D, $0 \neq a \in R$. a has no inverse, then there exists a prime element p s.t $p \setminus a$.

Proof:

- \therefore a has no inverse $\Rightarrow \langle a \rangle \neq R \Rightarrow \langle a \rangle$ is proper ideal of $R . \Rightarrow \exists$ a maximal ideal $M s.t \langle a \rangle \subset M$.
- \therefore R is P I.D $\Rightarrow \exists p \in R$ s.t $M = \langle P \rangle$ \therefore $\langle a \rangle \subset \langle P \rangle$, then $\langle P \rangle$ is maximal principle ideal.

But every maximal ideal is prime ideal, where p is prime element [by last Thm.(2).

$$a \in \langle a \rangle \subset \langle P \rangle \Rightarrow a \in \langle P \rangle \Rightarrow a = m. p , m \in R \Rightarrow p \setminus a.$$

Definition:

An integral domain *R* is unique factorization domain (UFD) if the following are satisfied:

- (1) $\forall a \in R \ s.t \ a \neq 0$ and has no inverse, then $a = p_1.p_2...p_n$ where p_i are irreducible elements $\forall i$.
- (2) If $a = p_1 cdot p_2 cdot m p_n = q_1 cdot q_2 cdot m q_m$ where p_i , q_i are irreducible element $\forall i$, then n = m and there is a permutation π on $\{1,2,\ldots,n\}$ s.t p_i , q_i are associated elements.

Example:

Z is UFD.

$$24 = (2).(2).(3).(2) = (-2).(-3).(2).(2).$$

Notice that 2, -2 are associated and 3, -3 are associated.

Theorem:

Every PID is UFD.

Proof:

Let R be a P I.D, and let $0 \neq a \in R$ be an element whichhas no invers. Then $a = p_1.p_2...p_n$ by theorem () p_i is irreducible elements $\forall i$. Now suppose that $a = p_1.p_2...p_n = q_1.q_2...q_m$

Now we must show that n = m.

Suppose that n < m.

Notice that $p_1 \setminus a \Rightarrow p_1 \setminus (q_1, q_2 \dots q_m)$, but p_1 is prime element $\Rightarrow p_1 \setminus q_j$ for some j, after arranging.

 p_1 and q_1 are prime element in R and

 $p_1 \setminus q_1 \Longrightarrow q_1 = u \ p_1$ where u is an invertible element in R.

$$p_1.p_2...p_n = u.p_1.q_2...q_m \Rightarrow p_2...p_n = u.q_2...q_m$$

We continue with these steps to (n-1) times

$$\Rightarrow 1 = (u_1, u_2, \dots, u_n), q_{n+1}, \dots, q_m \Rightarrow q_{n+1}, \dots, q_m$$
 has an inverse in R .

$$\therefore n = m$$

$$q_1, q_2 \dots q_m = p_1, p_2 \dots p_n \Rightarrow q_j = 1 \cdot p_i$$

 q_i , q_i are associated for every i.

Theorem:

Let *R* be a UFD if *p* is an irreducible element, then *p* is prime element.

Proof:

Let *p* be an irreducible element and suppose that

$$p \setminus a \cdot b \Rightarrow a \cdot b = c \cdot p \cdots (1)$$

1) If *b* has inverse

$$\Rightarrow a \cdot b \cdot b^{-1} = c \cdot b^{-1} \cdot p \Rightarrow a = (c \cdot b^{-1}) \cdot p \Rightarrow p \setminus a.$$

2) If a has inverse

$$\Rightarrow a^{-1} \cdot a \cdot b = a^{-1} \cdot c \cdot p \implies b = (a^{-1} \cdot c) \cdot p \implies p \setminus b. \therefore p \text{ is prime}$$

3) If c has inverse

$$\Rightarrow a \cdot b \cdot c^{-1} = c \cdot c^{-1} \cdot p \Rightarrow (a \cdot b) \cdot c^{-1} = p \Rightarrow a \cdot b \setminus p \quad C!$$
(since $p \setminus a \cdot b$)

4) If a, b, c have no inverse

$$R \text{ is UFD} \Rightarrow a = p_1.p_2...p_n, b = q_1.q_2...q_m, c = k_1.k_2...k_r.$$

Where p_i , q_j , k_l are irreducible elements

$$i = 1, 2, ..., n$$
, $j = 1, 2, ..., m$, $l = 1, 2, ..., r$.

Subdued in (1).

$$(p_1, p_2 \dots p_n). (q_1, q_2 \dots q_m) = (k_1, k_2 \dots k_r). p$$
.

P is associated with $p_i(i.e)p_i = w.p$, w has an inverse.

Or P is associated with $q_i(i.e)q_i = u.p$, u has an inverse.

$$\begin{array}{ll} : & b = q_1.\,q_2\,\ldots\,q_j.\,q_{j+1}\,\ldots\,q_m. \\ \\ & = q_1.\,q_2\,\ldots(u.\,p).\,q_{j+1}\,\ldots\,q_m = p.\,(q_1.\,q_2\,\ldots\,w.\,q_{j+1}\,\ldots\,q_m)\,. \\ \\ & \Rightarrow p \setminus b \end{array}$$

Dr. Alaa Abbass	lecure Five
$\Rightarrow p$ is prime number.	
	41

Rings of polynomials Definition:

Let R be a ring, then the function $f: Z^+ \cup \{0\} \to R$ is called infinite sequence in R and we shall denoted to f(n) by r_n , $\forall n \in Z^+ \cup \{0\}$.

 r_n is called the nth term (or general term)for thesequence $\langle r_n \rangle$.

$$f(n) = (r_0, r_1, \cdots, r_n, \cdots)$$

Definition:

Let R be a ring, every infinite sequence in R (all term equal zero except a finite of terms) is called a polynomial ring in R i.e) \exists a positive integer n such that $r_m = 0 \ \forall \ m \ge n$.

Examples:

- (1) (0,0,...,0,...)
- (2) (5,4,-1,0,3,0,0,...)
- (3) (0,0,0,-1,2,4,0,0,...)

Are polynomial ringsin R.

Remark:

We will denoted to all polynomial ringsin R by R[x]

$$R[x] = \{(a_1, a_2, a_3, ..., a_n, 0, 0, ...): a_i \in R\}$$

Remark.

Let $\alpha = (a_1, a_2, a_3, ..., a_n, 0, ...)$ and $\beta = (b_1, b_2, b_3, ..., b_n, 0, ...)$ $\alpha, \beta \in R[x]$, then $\alpha = \beta$ iff $a_i = b_i$ $\forall i = 1, 2, ..., n$. Define + on R[x] as follows:

$$\alpha + \beta = (a_1, a_2, a_3, ..., a_n, 0, ...) + (b_1, b_2, b_3, ..., b_n, 0, ...).$$

= $(a_1 + b_1, a_2 + b_2, ..., a_n + b_n, 0, ...).$

Remark:

(R[x], +) is abelian group.

Proof:

- 1. (0,0,...,0,...) is the identity.
- 2. $\forall \alpha \in R[x], \exists -\alpha \in R[x],$ where $-\alpha = (-a_0, -a_1, ..., -a_n, 0, ...)$ s.t $\alpha + (-\alpha) = 0$.
- 3. Associative: let α , β , $\gamma \in R[x]$, $\alpha = (a_0, a_1, ..., a_n, 0, ...)$, $\beta = (b_0, b_1, ..., b_n, 0, ...)$, $\gamma = (c_0, c_1, ..., c_n, 0, ...)$, $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$.
- 4. Let α , $\beta \in R[x]$, then $\alpha + \beta = (a_0, a_1, ..., a_n, 0, ...) + <math>(b_0, b_1, ..., b_n, 0, ...) = (a_0 + b_0, a_1 + b_1, ..., a_n + b_n, 0, ...) = <math>(b_0 + a_0, b_1 + a_1, ..., b_n + a_n, 0, ...)$. (since $a_i, b_i \in R$ and R is commutative), then $\alpha + \beta = \beta + \alpha$.

Remark.

 $(R[x], +, \cdot)$ is a ring.

Proof:(H.W)

Define (·) on R[x] by: If α , $\beta \in R[x]$, where $\alpha = (a_0, a_1, ..., a_n, 0, ...)$, $\beta = (b_0, b_1, ..., b_n, 0, ...)$. Then

$$\alpha \cdot \beta = (a_0, a_1, ..., a_n, 0, ...) \cdot (b_0, b_1, ..., b_n, 0, ...) = (c_0, c_1, ..., c_n, 0, ...) \in R[x], \text{ where } c_n = \sum_{i+j=n} a_i \cdot b_j.$$

 $c_1 = a_0 b_1 + b_0 a_1 \quad \cdots \quad c_n = a_0 \cdot b_n + a_1 \cdot b_{n-1} + a_2 \cdot b_{n-2} + \cdots + a_n \cdot b_0$ Theorem:

R can be imbedded in R[x].

Proof:

If $S = \{(r, 0, 0, ...) : r \in R\}$ subset of R[x]

Define $\emptyset: R \to R[x]$ by $\emptyset(r) = (r, 0, 0, ...) \ \forall r \in R$.

1. Ø is homomorphism:

2. \emptyset is (1-1):

If
$$\emptyset(r_1) = \emptyset(r_2) \Rightarrow (r_1, 0, 0, ...) = (r_2, 0, 0, ...)$$
 if $f(r_1) = r_2$.

3. Ø is onto:

Let
$$\alpha = (a_0, a_1, ..., a_n, 0, ...) \in R[x]$$

$$a_0 \in R \Rightarrow \emptyset(a_0) = (a_0, 0, 0, ...)$$

$$a_1 \in R \Rightarrow \emptyset(a_1) = (a_1, 0, 0, ...)$$

$$\vdots$$

$$a_n \in R \Rightarrow \emptyset(a_n) = (a_n, 0, 0, ...)$$

$$\therefore a_i \in R \Rightarrow \emptyset(a_i) = (a_i, 0, 0, ...)$$

Remark.

Let
$$R$$
 be a ring put $x = (0,1,0,...)$, $x^2 = (0,0,1,0,...)$, $x^3 = (0,0,0,1,0,...)$, ..., $x^n = (0,0,...,1,0,...)$.
Let $(a_0,a_1,...,a_n,0,...) \in R[x]$.
 $(a_0,a_1,...,a_n,0,...) = (a_0,0,...) + (0,a_1,0,...) + (0,0,...,a_n,0,...)$
 $= (a_0,0,...) + (0,a_1,0,...) \cdot (0,1,0,...)x + (0,0,a_2,0,...)$
 $\cdot (0,0,1,0,...)x^2 + \cdots + (0,0,...,a_n,0,...)(0,0,...,1,0,...)x^n$
 $= a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$

Definition:

Let R be a ring and let $\alpha \in R[x]$ be a nonzero polynomial ring we say that the degree of $\alpha = n$ [demoted by $deg(\alpha) = n$] if $a_n \neq 0$ and $a_k = 0 \forall k > n$.

Examples:

$$\alpha(x) = 5 - x + x^3 - x^5 \in R[x]$$
$$= (5, -1, 0, 1, 0, -1, 0, 0, \dots)$$

 $\deg(\alpha) = 5$, $a_5 = -1 \neq 0$ and $a_k = 0 \ \forall \ k < 5$.

Remark.

If $\alpha(x)=0\in Z[x]$, $\deg(\alpha)=0$,then α is called constant polynomial.

Remark.

If R is I.D and $\alpha, \beta \in R[x]$ s.t $\deg(\alpha(x)) = n$, $\deg(\beta(x)) = m$. Then $\deg(\alpha(x) \cdot \beta(x)) = n \cdot m = \deg(\alpha(x)) + \deg(\beta(x))$.

Definition:

Let R be a ring and R[x] be a polynomial ring on R. Let $\alpha(x) \in R[x]$ s.t $\alpha(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$, $a_n \neq 0$ we call that a_n is a leading coefficient of $\alpha(x)$, and the integer n is the degree α . If $a_n = 1$, then $\alpha(x)$ is called monic polynomial

Remark:(1)

If *R* is a commutative ring, then R[x] is commutative.

Proof:

Let $f, g \in R[x]$.s.t

$$\begin{split} f(x) &= a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \ , \qquad a_n \neq 0 \\ g(x) &= b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m \ , \qquad b_m \neq 0 \\ f(x) \cdot g(x) \\ &= a_0 b_0 + (a_0 b_1 + b_0 a_1) x + (a_0 b_2 + a_1 b_1 + a_2 b_1) x^2 + \dots \\ &+ \qquad a_n b_m x^{n+m} \end{split}$$

Since R is a commutative ring, then $a_i b_j = b_j a_i \ \forall i, j$.

$$=b_0a_0+\cdots+b_ma_nx^{n+m}=g(x)\cdot f(x)$$

<u>O:</u>

Is the converse true?

Sol

Yes, since if $a, b \in R \Longrightarrow a, b \in R[x]$. Put f(x) = a, g(x) = b.

$$\Rightarrow f(x) \cdot g(x) = a \cdot b$$

Since R[x] is a commutative ring, then $f \cdot g = g \cdot f \implies a \cdot b = b \cdot a$.

 \therefore *R* is a commutative ring.

Remark: (2)

If R has an identity, then R[x] has an identity.

Proof:

Since *R* has an identity 1, then Put f(x) = 1

$$\therefore \forall g(x) \in R[x] : f(x) \cdot g(x) = g(x) \Rightarrow 1 \cdot g(x) = g(x)$$

<u>Q:</u>

Is the converse true?

<u>Sol</u>

Suppose that R[x] has an identity say f(x).

Now, let $a \in R$.

Since f(x) is the identity of R[x].

$$\Rightarrow f(x) \cdot g(x) = g(x) \forall g(x) \in R[x]$$

In special case put g(x) = a.

$$\Rightarrow f(x) \cdot a = a \Rightarrow f(x) = (1,0,0,\dots) = 1$$
.

Lemma:

If R is I.D, then R[x] is I.D.

Proof:

From the last two remarks. If R is a commutative ring with 1, then R[x] is commutative with 1.

Let f(x), $g(x) \in R[x]$.s.t

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
, $a_n \neq 0$

$$g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m$$
, $b_m \neq 0$

Since $a_n \neq 0$, $b_m \neq 0$ and R is I.D, then $a_n \cdot b_m \neq 0$

$$\Rightarrow f(x) \cdot g(x) \neq 0 \text{ (Since } a_n \cdot b_m \neq 0 \text{)}$$

 $\Rightarrow R[x]$ is I. D.

Remark:(3)

Let R be a commutative ring with one and let α , β be a non zero polynomial in R[x], then

$$\deg(\alpha(x) + \beta(x)) \le \max(\deg \alpha(x), \deg \beta(x)) \text{ or } \alpha(x) + \beta(x) = 0.$$

Example:

$$\alpha(x) = 2 + 3x$$
 , $\beta(x) = 4 + 3x$ in $Z_6[x]$

$$\alpha(x) + \beta(x) = 6 + 6x = 0$$

$$\alpha(x) = 1 + 2x^2$$
 , $\beta(x) = x$ in $Z_6[x]$

$$\alpha(x) + \beta(x) = 1 + x + 2x^2$$

$$\deg(\alpha(x) + \beta(x)) = 2 = \deg \alpha(x)$$

Remark: (4)

$$\deg(\alpha(x) \cdot \beta(x)) \le (\deg \alpha(x) + \deg \beta(x)) \text{ or } \alpha(x) \cdot \beta(x) = 0.$$

Example:

$$\alpha(x) = 2x , \quad \beta(x) = 3x \quad \text{in } Z_6[x]$$

$$\alpha(x) \cdot \beta(x) = 6x^2 = 0$$

$$\alpha(x) = x , \quad \beta(x) = 1 + x^2 \quad \text{in } Z_6[x]$$

$$\alpha(x) \cdot \beta(x) = x + x^3$$

$$\deg(\alpha(x)) + \deg(\beta(x)) = 1 + 2 = 0$$

Remark:(5)

If R is I.D and α , $\beta \in R[x]$ s.t $\deg(\alpha(x)) = n$, $\deg(\beta(x)) = m$, then $\deg(\alpha(x) \cdot \beta(x)) = n + m = \deg(\alpha(x)) + \deg(\beta(x))$.

<u>Q:</u>

If R is a field is R[x] a field?

Sol

(H.W).

Definition:

Let R be a ring, then the function $f: Z^+ \cup \{0\} \to R$ is called infinite sequence in R and we shall denoted to f(n) by r_n , $\forall n \in Z^+ \cup \{0\}$.

 r_n is called the nth term (or general term)for thesequence $\langle r_n \rangle$.

$$f(n) = (r_0, r_1, \cdots, r_n, \cdots)$$

Definition:

Let R be a ring, every infinite sequence in R (all term equal zero except a finite of terms) is called a polynomial ring in R i.e) \exists a positive integer n such that $r_m = 0 \ \forall \ m \ge n$.

Examples:

- (1) (0,0,...,0,...)
- (2) (5,4,-1,0,3,0,0,...)
- (3) (0,0,0,-1,2,4,0,0,...)

Are polynomial ringsin R.

Remark:

We will denoted to all polynomial ringsin R by R[x]

$$R[x] = \{(a_1, a_2, a_3, \dots, a_n, 0, 0, \dots) : a_i \in R\}$$

Remark.

Let $\alpha = (a_1, a_2, a_3, ..., a_n, 0, ...)$ and $\beta = (b_1, b_2, b_3, ..., b_n, 0, ...)$ $\alpha, \beta \in R[x]$, then $\alpha = \beta$ iff $a_i = b_i$ $\forall i = 1, 2, ..., n$. Define + on R[x] as follows:

$$\alpha + \beta = (a_1, a_2, a_3, ..., a_n, 0, ...) + (b_1, b_2, b_3, ..., b_n, 0, ...).$$

= $(a_1 + b_1, a_2 + b_2, ..., a_n + b_n, 0, ...).$

Remark.

(R[x], +) is abelian group.

Proof:

- 1. (0,0,...,0,...) is the identity.
- 2. $\forall \alpha \in R[x], \exists -\alpha \in R[x],$ where $-\alpha = (-a_0, -a_1, ..., -a_n, 0, ...)$ s.t $\alpha + (-\alpha) = 0$.
- 3. Associative: let α , β , $\gamma \in R[x]$, $\alpha = (a_0, a_1, ..., a_n, 0, ...)$, $\beta = (b_0, b_1, ..., b_n, 0, ...)$, $\gamma = (c_0, c_1, ..., c_n, 0, ...)$, $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$.
- 4. Let α , $\beta \in R[x]$, then $\alpha + \beta = (a_0, a_1, ..., a_n, 0, ...) + <math>(b_0, b_1, ..., b_n, 0, ...) = (a_0 + b_0, a_1 + b_1, ..., a_n + b_n, 0, ...) = <math>(b_0 + a_0, b_1 + a_1, ..., b_n + a_n, 0, ...)$. (since $a_i, b_i \in R$ and R is commutative), then $\alpha + \beta = \beta + \alpha$.

Remark.

 $(R[x], +, \cdot)$ is a ring.

Proof:(H.W)

Define (·) on R[x] by: If α , $\beta \in R[x]$, where $\alpha = (a_0, a_1, ..., a_n, 0, ...)$, $\beta = (b_0, b_1, ..., b_n, 0, ...)$. Then

$$\alpha \cdot \beta = (a_0, a_1, \dots, a_n, 0, \dots) \cdot (b_0, b_1, \dots, b_n, 0, \dots) = (c_0, c_1, \dots, c_n, 0, \dots) \in$$

R[x], where $c_n = \sum_{i+j=n} a_i \cdot b_j$.

$$c_1 = a_0 b_1 + b_0 a_1 \quad \cdots \quad c_n = a_0 \cdot b_n + a_1 \cdot b_{n-1} + a_2 \cdot b_{n-2} + \cdots + a_n \cdot b_0$$
 Theorem:

R can be imbedded in R[x].

Proof:

If $S = \{(r, 0, 0, ...) : r \in R\}$ subset of R[x]

Define $\emptyset: R \to R[x]$ by $\emptyset(r) = (r, 0, 0, ...) \ \forall r \in R$.

1. Ø is homomorphism:

2. \emptyset is (1-1):

If
$$\emptyset(r_1) = \emptyset(r_2) \Rightarrow (r_1, 0, 0, ...) = (r_2, 0, 0, ...)$$
 if $f(r_1) = r_2$.

3. Ø is onto:

Let
$$\alpha = (a_0, a_1, ..., a_n, 0, ...) \in R[x]$$

$$a_0 \in R \Rightarrow \emptyset(a_0) = (a_0, 0, 0, ...)$$

$$a_1 \in R \Rightarrow \emptyset(a_1) = (a_1, 0, 0, ...)$$

$$\vdots$$

$$a_n \in R \Rightarrow \emptyset(a_n) = (a_n, 0, 0, ...)$$

$$\therefore a_i \in R \Rightarrow \emptyset(a_i) = (a_i, 0, 0, ...)$$

Remark.

Let
$$R$$
 be a ring put $x = (0,1,0,...)$, $x^2 = (0,0,1,0,...)$, $x^3 = (0,0,0,1,0,...)$, ..., $x^n = (0,0,...,1,0,...)$.
Let $(a_0,a_1,...,a_n,0,...) \in R[x]$.
 $(a_0,a_1,...,a_n,0,...) = (a_0,0,...) + (0,a_1,0,...) + (0,0,...,a_n,0,...)$
 $= (a_0,0,...) + (0,a_1,0,...) \cdot (0,1,0,...)x + (0,0,a_2,0,...)$
 $\cdot (0,0,1,0,...)x^2 + \cdots + (0,0,...,a_n,0,...)(0,0,...,1,0,...)x^n$
 $= a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$

Definition:

Let R be a ring and let $\alpha \in R[x]$ be a nonzero polynomial ring we say that the degree of $\alpha = n$ [demoted by $deg(\alpha) = n$] if $a_n \neq 0$ and $a_k = 0 \forall k > n$.

Examples:

$$\alpha(x) = 5 - x + x^3 - x^5 \in R[x]$$
$$= (5, -1, 0, 1, 0, -1, 0, 0, \dots)$$

$$\deg(\alpha) = 5$$
, $a_5 = -1 \neq 0$ and $a_k = 0 \ \forall \ k < 5$.

Remark.

If $\alpha(x)=0\in Z[x]$, $\deg(\alpha)=0$,then α is called constant polynomial.

Remark.

If R is I.D and $\alpha, \beta \in R[x]$ s.t $\deg(\alpha(x)) = n$, $\deg(\beta(x)) = m$. Then $\deg(\alpha(x) \cdot \beta(x)) = n \cdot m = \deg(\alpha(x)) + \deg(\beta(x))$.

Definition:

Let R be a ring and R[x] be a polynomial ring on R. Let $\alpha(x) \in R[x]$ s.t $\alpha(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$, $a_n \neq 0$ we call that a_n is a leading coefficient of $\alpha(x)$, and the integer n is the degree α . If $a_n = 1$, then $\alpha(x)$ is called monic polynomial

Remark:(1)

If *R* is a commutative ring, then R[x] is commutative.

Proof:

Let $f, g \in R[x]$.s.t

$$\begin{split} f(x) &= a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \ , \qquad a_n \neq 0 \\ g(x) &= b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m \ , \qquad b_m \neq 0 \\ f(x) \cdot g(x) \\ &= a_0 b_0 + (a_0 b_1 + b_0 a_1) x + (a_0 b_2 + a_1 b_1 + a_2 b_1) x^2 + \dots \\ &+ \qquad a_n b_m x^{n+m} \end{split}$$

Since *R* is a commutative ring, then $a_i b_i = b_i a_i \ \forall i, j$.

$$=b_0a_0+\cdots+b_ma_nx^{n+m}=g(x)\cdot f(x)$$

Q:

Is the converse true?

<u>Sol</u>

Yes, since if $a, b \in R \Longrightarrow a, b \in R[x]$. Put f(x) = a, g(x) = b.

$$\Rightarrow f(x) \cdot g(x) = a \cdot b$$

Since R[x] is a commutative ring, then $f \cdot g = g \cdot f \implies a \cdot b = b \cdot a$.

 \therefore *R* is a commutative ring.

Remark: (2)

If R has an identity, then R[x] has an identity.

Proof:

Since *R* has an identity 1, then Put f(x) = 1

$$\therefore \forall g(x) \in R[x] : f(x) \cdot g(x) = g(x) \Rightarrow 1 \cdot g(x) = g(x)$$

<u>Q:</u>

Is the converse true?

<u>Sol</u>

Suppose that R[x] has an identity say f(x).

Now, let $a \in R$.

Since f(x) is the identity of R[x].

$$\Rightarrow f(x) \cdot g(x) = g(x) \forall g(x) \in R[x]$$

In special case put g(x) = a.

$$\Rightarrow f(x) \cdot a = a \Rightarrow f(x) = (1,0,0,\dots) = 1$$
.

Lemma:

If R is I.D, then R[x] is I.D.

Proof:

From the last two remarks. If R is a commutative ring with 1, then R[x] is commutative with 1.

Let f(x), $g(x) \in R[x]$.s.t

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
, $a_n \neq 0$

$$g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m$$
, $b_m \neq 0$

Since $a_n \neq 0$, $b_m \neq 0$ and R is I.D, then $a_n \cdot b_m \neq 0$

$$\Rightarrow f(x) \cdot g(x) \neq 0 \text{ (Since } a_n \cdot b_m \neq 0 \text{)}$$

 $\Rightarrow R[x]$ is I. D.

Remark:(3)

Let R be a commutative ring with one and let α , β be a non zero polynomial in R[x], then

$$\deg(\alpha(x) + \beta(x)) \le \max(\deg \alpha(x), \deg \beta(x)) \text{ or } \alpha(x) + \beta(x) = 0.$$

Example:

$$\alpha(x) = 2 + 3x$$
 , $\beta(x) = 4 + 3x$ in $Z_6[x]$

$$\alpha(x) + \beta(x) = 6 + 6x = 0$$

$$\alpha(x) = 1 + 2x^2$$
 , $\beta(x) = x$ in $Z_6[x]$

$$\alpha(x) + \beta(x) = 1 + x + 2x^2$$

$$\deg(\alpha(x) + \beta(x)) = 2 = \deg \alpha(x)$$

Remark: (4)

$$\deg(\alpha(x) \cdot \beta(x)) \le (\deg \alpha(x) + \deg \beta(x)) \text{ or } \alpha(x) \cdot \beta(x) = 0.$$

Example:

$$\alpha(x) = 2x , \quad \beta(x) = 3x \quad \text{in } Z_6[x]$$

$$\alpha(x) \cdot \beta(x) = 6x^2 = 0$$

$$\alpha(x) = x , \quad \beta(x) = 1 + x^2 \quad \text{in } Z_6[x]$$

$$\alpha(x) \cdot \beta(x) = x + x^3$$

$$\deg(\alpha(x)) + \deg(\beta(x)) = 1 + 2 = 0$$

Remark:(5)

If R is I.D and α , $\beta \in R[x]$ s.t $\deg(\alpha(x)) = n$, $\deg(\beta(x)) = m$, then $\deg(\alpha(x) \cdot \beta(x)) = n + m = \deg(\alpha(x)) + \deg(\beta(x))$.

<u>Q:</u>

If R is a field is R[x] a field?

Sol

(H.W).

Theorem: (Division Algorithm)

Let R be a commutative ring with 1 and f(x), $g(x) \neq 0$ be two polynomials in R[x] with leading coefficient of g(x) an invertible element. Then there exist unique polynomial q(x), $r(x) \in R[x]$ s.t

$$f(x) = q(x). g(x) + r(x)$$

Where either r(x) = 0 or deg(r(x)) < deg(g(x)).

Proof:

If
$$f(x) = 0$$
 we will take $q(x) = r(x) = 0$

$$r(x) = f(x) = 0 \cdot g(x) \neq 0$$

If deg(f(x)) < deg(g(x)) we will take q(X) = 0 and r(X) = f(x).

$$f(x) = g(x).o + f(x)$$
; $f(x) = r(x)$

Notice that deg(r(x)) = deg(f(x)) < deg(g(x))

Now suppose that $f(x) \neq 0$ and $\deg(f(x)) \leq \deg(f(x))$.

By induction on deg(f(X)).

1) Suppose that deg(f(x)) = 0

$$i.e) f(x) = c , c \neq 0 \in R$$

$$\therefore deg(f(x)) \ge deg(g(X)) \rightarrow deg(g(X)) = 0$$

$$i.e) g(X) = k , R \ni k \neq 0$$

 $c = c \cdot k^{-1} \cdot k + 0$ [since the coefficient of g is invertible].

Suppose that the theorem is true for all polynomial.

Which its degree less than degree f(x)

$$f(x)=a_0+a_1x+\cdots a_nx^n \quad , \ a_n\neq 0$$

$$g(x)=b_0+b_1x+\cdots b_mx^m \quad , \ b_m\neq 0 \ .$$

Put
$$f_1(x) = f(x) - (a_n b_m^{-1}) x^{n-m} \cdot g(x)$$
 ... (1)
 $deg(f(x)) \ge deg f_1(x)$

 \therefore by induction $\exists q_1(x), r(x)$ satisfy

$$f_1(x) = g(x).g_1(x) + r(x)$$
 ... (2)

And either r(x) = 0 or deg(r(x)) < deg(g(x)).

Sub.(2) in (1) we get :-

$$g(x).q_1(x) + r(x) = f(x) - (a_n b_m^{-1}).x^{n-m}.g(x)$$

$$f(x) = (q_1(x) + a_n b_m^{-1} . x^{n-m}). g(x) + r(x)$$

By (2)
$$r(x) = 0$$
 or $deg(r(x)) < deg(g(x))$.

Uniqueness:-Suppose that there exist $q_1(x)$, $r_1(x) \in R[x]$ s.t

$$f(x) = q_1(x). g(x) + r_1(x) ,$$

$$degr_1(x) = 0 \text{ or } degr_1(x) < deg g(x)$$

Put f(x) = q(x). g(x) + r(x) and r(x) = 0 or $\deg r(x) < \deg g(x)$.

$$q(x). g(x) + r(x) = q_1(x). g(x) + r_1(x)$$

$$(q(x) - q_1(x)).g(x) = r_1(x) - r(x)$$
 ... (*)

If $q \neq q_1 \rightarrow q(x) \neq q_1(x) \quad \forall x \in R \rightarrow q(x) - q_1(x) \neq 0 \quad \forall x \in R$

$$\rightarrow deg(q(x) - q_1(x)).g(x) = deg(q(x) - q_1(x)) + deg(g(x))$$
$$= deg(r(x) - r_1(x)) by (*)$$

Put $\deg(r(x) - r_1(x)) \le \max\{\deg(r(x)), \deg(r_1(x))\}$.

 $\max\{\deg(r(x)), \deg(r_1(x))\} \ge \deg(g(x)) + \deg(q(x) - q_1(x)) C!$ With $\deg(r(x)) < \deg(g(x))$ and $\deg(r_1(x)) < \deg(g(x))$.

$$\therefore \ q \neq \ q_1 \rightarrow \ q(x) = \ q_1(x) \quad \forall x \rightarrow \ q(x) - \ q_1(x) \neq 0 \quad \forall \ x \in R$$

$$\therefore r(x) = r_1(x) = 0 \quad \forall x \rightarrow r(x) - r_1(x) \quad \forall x \in R \quad \therefore r = r_1.$$

 \therefore q and r are unique.

Example:

Let
$$f(x) = 3x^3 + 2x^2 + 1$$
, $g(x) = x^2 - 1$ find q , r .

Sol:
$$q(x) = 3x + 2$$
, $r(x) = 3x + 3$

$$f(x) = q(x).g(x) + r(x)$$

Definition:

lecure Seven Dr. Alaa Abbass Let R be a ring with 1, then a ring \acute{R} is called extension for R if \acute{R} contain R as a subring ($R \subset R$)

Theorem:

Let R be commutativering with 1 s.t R imbedded in R and let $f(x) \in R[x]$

 $f(x)=a_0+a_1x+\cdots+a_n\,x^n$, $a_n\neq 0$ and let $r\in cent\ R$, then $\exists\ a$ ring homomorphism.

$$\varphi_r\colon R[x]\to R$$
 define by $\varphi_r\bigl(f(x)\bigr)=f(r).$
$$f(r)=a_0+a_1r+\cdots+a_nr^n\ \in R$$

Proof:

 φ_r is aring homomorphism.

Definition:

Let R be a commutative ring with 1 and let R be an extension of R and let $r \in cent(R)$, we denoted the set

$$\varphi_r = \varphi_r(R[x]) = \{ f(r) : f(r) \in R \text{ s.t } f(x) \in R[x] \}$$

Exampls:

1. In $(Z, +, \cdot)$. $f(x) = 1 + 2x , , g(x) = 2 + 3x + 4x^{2}$ $\deg(f, g) = 2 + 1 = 3 \quad [since \ a_{n} . b_{m} \neq 0]$ 2. In $(Z_{n}, +, \cdot)$. $f(x) = \overline{1} + \overline{3}x + \overline{2}x^{2} , , g(x) = \overline{5} + \overline{6}x + \overline{4}x^{2} + \overline{6}x^{3}$ $\deg(f, g) = \overline{5} \text{ false}$ $[since \ a_{n} = \overline{2}, b_{m} = \overline{6}, a_{n} . b_{m} = \overline{2}. \overline{6} = 12 = \overline{0}]$ $\therefore \deg(f, g) = \overline{4}$

Lemma:

Let R be a commutative ring with 1 $f(x)=a_0+a_1x+\cdots+a_nx^n$, $g(x)=b_0+b_1x+\cdots+b_mx^m$ s.t b_m has inverse, then $\deg(f,g)=\deg(f)+\deg(g)$, $a_n\neq 0$, $b_m\neq 0$

Proof:

Suppose that $[a_n . b_m = 0] . b_m^{-1} \rightarrow a_n = 0$ $C! \rightarrow a_n . b_m \neq 0$

Exampl:

 $f(x) = 6x + 3x^2 + 5x^3 + 6x^6$, $g(x) = 6 + 5x^2 + 5x^{10}$ in R 5 invertible.

(Division Algorithm)

1- R commutative ring with $1 \ 2-f$, $g \ne 0 \ 3-b_m$ invertible in R. Then $\exists ! \ q,r \in R[x]$ s.t f = q.g + r and r = 0 or $\deg(r) < \deg(g)$.

Exampls:

1. R=Z , polynomial in Z[x]. $f(x)=x^6+3x^5+2x^4 \quad , \quad g(x)=6+5x+x^2$

1- Z commutative ring with 1 2-f, $g \neq 0$ 3- $b_m = 1$ invertible in Z. Then $\exists ! \ q(x), r(x) \in R[x]$ s.t f(x) = q(x).g(x) + r(x) and r(x) = 0 or $\deg(r(x)) < \deg(g(x))$

2 R = Z, polynomial in Z[x].

$$f(x) = x^6 + 3x^5 + 4x^3 - 3x + 2$$
 , $g(x) = x^2 + 3x - 4$

1- Z commutative ring with 1 2-f, $g \neq 0$ 3- $b_m = -4$ invertible in Z. Then $\exists ! \ q(x), r(x) \in R[x]$ s.t f(x) = q(x).g(x) + r(x) and r(x) = 0 or $\deg(r(x)) < \deg(g(x))$

Remark:

If f(r) = 0, then $r \in R$ is called aroot of f(x).

Theorem: (Remainder theorem)

Let R be a commutative ring with 1, if $f(x) \in R[x]$, $a \in R$ then there exist unique polynomial $q(x) \in R[x]$ s.t

$$f(x) = (x - a)q(x) + f(a).$$

Proof::

Let g(x) = x - a, then by division algorithm (for f(x) and x - a) \exists unique r(x), $g(x) \in R[x]$ s. t f(x) = (x - a)g(x) + r(x) ... (1)

And either r(x) = 0 or deg(r(x)) < deg(x - a)

But
$$deg(x-a) = 1 \rightarrow deg(r(x)) = 0 \rightarrow r(x) = c$$
.

Sub r(x) in (1) we get f(x) = (x - a)q(x) + c.

Put
$$x = a \rightarrow f(a) = (a - a)q(a) + c \rightarrow f(a) = c$$
.

$$\therefore f(x) = (x - a)q(x) + f(a)$$

Example

Let
$$f(x) = x^3 + 5x^2 + x + 1$$
, $g(x) = x - 1$?

Corollary:

Let R be a commutative ring with 1, $f(x) \in R[x]$, $a \in R$, then (x - a) is divisible f(x) iff a is aroot of f(x).

$\underline{Proof} \Rightarrow$

$$(x-a)/f(x) \to f(x) = (x-a)g(x) \text{ where } g(x) \in R[x].$$

$$f(a) = (a - a) \cdot g(x) = 0 \rightarrow a \text{ is a root of } f(x)$$

 \Leftarrow)Let f(a) = 0 by Remainder theorem $\exists ! \ q(x) \in R[x] \ s.t \ f(x) = (x - a)q(x) + f(a)$.

$$f(x) = (x - a) \cdot q(x) [\operatorname{since} f(a) = 0]$$

$$\therefore (x-a)/f(x).$$

Theorem:

Let R be an I.D and $0 \neq f(x) \in R[x]$ be a polynomial of degree n, then f has at most n distinct of roots in R.

Proof:

By induction on deg(f(x)) if $deg(f(x)) = 0 \rightarrow f(x) = c$, $0 \neq c \in R$ $\rightarrow f$ has no root.

If
$$deg(f(x)) = 1 \rightarrow f(x) = ax + b$$
 where $a, b \in R$

If a is an invertible element in $R \rightarrow$ the root of f(x) is $(-ba^{-1})$

$$f(-ba^{-1}) = a(-ba^{-1}) + b = 0$$

If a has no inverse then $\rightarrow f$ has no root

Now suppose that the theorem is true for every polynomial with degree less than $\,n\,$.

Let deg(f(x)) = n. (if f has no roots then the theorem is true).

Let $a \in R$, if a is aroot of f(x) then by last corr. $\rightarrow (x - a)/f(x) \rightarrow f(x) = (x - a)q(x)$; $q(x) \in R[x]$.

$$deg(f(x)) = deg((x - a)q(x))$$

= deg(x - a) + deg(q(x)) [since R is I.D]

$$n = 1 + deg(q(x)) \rightarrow deg(q(x)) = n - 1$$

∴By induction q has at most (n-1) of roots and since (x-a) has one root

f(x) has n distinct roots.

Corollary:

let R be an I.D and let f(x), $g(x) \in R[x]$ are two polynomial of degree n, if $\exists (n+1)$ roots of distinct elements $a_k \in R$ s.t

$$f(a_k) = g(a_k) \quad \forall k = 1, 2, ..., n + 1$$
, then $f(x) = g(x) \quad \forall x$

Proof::

Let
$$h(x) = f(x) - g(x)$$
, $deg(h(x)) \le n$

 $\therefore \exists$ at least n + 1 of element for h(x) [theorem]

$$s.t \quad h(a_k) = 0 , \quad k = 1, 2, ..., n + 1 .$$

$$0 = h(a_k) = f(a_k) - g(a_k)$$
, $k = 1,..., n + 1$.

harpoonup harp

$$\therefore f(x) - g(x) = 0 \rightarrow f(x) = g(x).$$

Corollary:

Let R be an I.D and $f(x) \in R[x]$ and let S be any infinite subset of R. If $f(a) = 0 \quad \forall a \in S$, then f is the zero polynomial.

Proof:

Suppose that f(x) is a polynomial of degree $\,n$, then by last theorem $\,f\,$ has at most $\,n\,$ roots $\,C!$

Since $f(a) = 0 \ \forall a \in S \text{ and } S \text{ is infinite set } \rightarrow f(x) = 0 \ \forall x.$

Theorem:

Let F be a field, then F[x] is E.D

Proof:

 $:: F \text{ is afield } \rightarrow F \text{ is I.D.} \rightarrow F[x] \text{ is I.D.}$

Now define $\delta: F[x] \to Z^+ \cup \{0\}$

$$\delta(f(X)) = \begin{cases} 0 & \text{if } f(x) = 0\\ 2^{\deg(f(x))} & \text{if } f(x) \neq 0 \end{cases}$$

(1)
$$\delta(f(x)) = 0 \text{ if } f(x) = 0$$

(2)
$$\delta(f(x), g(x)) = 2^{deg(f(x), g(x))}$$

=
$$2^{deg(f(x)+degg(x))}$$
[since R is I.D]

$$=2^{deg(f(x))}\cdot 2^{deg(g(x))}.$$

$$=\delta(f(x)).\delta(g(X)).$$

(3)let $f(x), g(x) \in F[x]$ by division algorithm, $\exists unique \ r(x), q(x) \in F[x]$ s.t f(x) = q(x). g(x) + r(x) and either r(x) = 0 or deg(r(x)) < deg(g(x))

Case(1) if
$$r(x) = 0 \rightarrow \delta(r(x)) = 0 < \delta(g(x)) = 2^{deg(g(x))}$$
.

Case(2)
$$r(x) \neq 0 \rightarrow \delta(r(x)) = 2^{deg(r(x))}$$

$$\deg(r(x)) < \deg(g(x)).$$

$$2^{\deg(r(x))} < 2^{\deg(g(x))}.$$

$$\delta(r(x)) < \delta(g(x)),$$

$$\vdots \quad F[x] \text{ is E.D.}$$

Corollary:

Let F be afield, then F[x] is P.I.D.

Proof:

F is afield $\rightarrow F[x]$ is E.D. $\rightarrow F[x]$ is a P.I.D [Every E.D. is P.I.D]

Corollary:

If F is afield, then F[x] is U.F.D.

Proof::

F is afield $\rightarrow F[x]$ is E.D. $\rightarrow F[x]$ is P.I.D. $\rightarrow F[x]$ is U.F.D.

Theorem:

Let R be I.D and let g(x) be a polynomial which is not constant in R[x], we say that g(x) is irreducible if we cannot find two polynomial $h(x), k(x) \in R[x]$ s.t g(x) = h(x).k(x) and satisfies that h(x), k(x) with positive degree not equal zero.

Otherwise we say that g(x) is reducible polynomial.

Example::

$$f(x) = 2x^2 - 4$$
 in $Z[x] \rightarrow f(x) = 2(x^2 - 2) = 2(x - \sqrt{2})(x + \sqrt{2})$ and $x - \sqrt{2} \notin Z[x] \rightarrow f(x)$ is irreducible.

Remark(1):

(1) The reducible polynomial must it's of degree greater or equal two.

- (2) All polynomial of first degree is irreducible.
- (3) The constant polynomial cannot be considered reducible or irreducible by definition.

Q/ prove that $\langle x \rangle$ in Z[x] is prime not maximal ideal.

Proof::

$$\langle x \rangle = \{xf(x) : f(x) \in Z[x]\}, \quad x \in Z$$

 $\langle x \rangle \neq Z[x]?$
 $\because ax + b \in Z[x], \quad b \neq 0$
but $ax + b \notin \langle x \rangle$

$$\therefore < x > \neq Z[x].$$

(2) Define
$$\varphi = Z[x] \to Z$$
 by: $\varphi(f(x)) = f(0)$

 φ is onto and homomorphism?

$$\therefore \text{ By F.I.T} \frac{Z[x]}{\ker \varphi} \cong Z$$

$$Ker \varphi = \{ f(x) \in Z[x] \colon \varphi(f(x)) = 0 \}$$

$$= \{ f(x) \in Z[x] \colon f(0) = 0 \} = \langle x \rangle$$

- $\therefore \frac{Z[x]}{\langle x \rangle} \cong Z \quad \text{but} Z \text{ is I.D then by [theorem]}$
- $\therefore \frac{Z[x]}{\langle x \rangle}$ is I.D thus $\langle x \rangle$ is prime by [*I* is prime iff $\frac{R}{I}$ is I.D.]..

Now if we suppose that $\langle x \rangle$ is maximal. ideal then by theorem [I is maximal ideal iff $\frac{R}{I}$ is a field]

 $\rightarrow \therefore \frac{Z[x]}{\langle x \rangle}$ is a field $\rightarrow Z$ is a field C! since Z is not a field.

Q/:Is Z[x] P.I.D?

Sol/No, since if Z[x] is P.I.D and Z is I.D \rightarrow by the last theorem Z is a field C!

Corollary(2):

If $f(x) \in R[x]$ with positive degree, then f(x) can be written as a product of linear factors and others with constant degree.

proof::

Let $f(x) \in R[x]$ by last corollary

$$f(x) = (x - c_1)(x - c_2) \dots (x - c_n)$$

, if $c_i \in R \rightarrow x - c_i \in R[x] \rightarrow$ the proof is finish

Now, if

$$c_j \in C \rightarrow c_j = a_j + ib_j$$
, $a_j, b_j \in R$, if c_j is a root, then $\overline{c_j}$ is a root $\overline{c_j} = a_j - ib_j$.

Now,
$$(x - c_j)(x - \overline{c_j}) = [x - (a_j + ib_j)][x - (a_j - ib_j)]$$

= $x^2 - 2a_jx + (a_j^2 + a_j^2) \in R[x]$ C!

Example:

$$f(x) = x^4 + x^2 + 1 \in R[x]$$
, has no root in R

Lemma:

Let *F* be afield, then the following are equivalent:

- (1) f(x) is an irreducible polynomial in F[x].
- (2) The principle ideal < f(x) > is a maximal or prime ideal in F[x].
- (3) The quotient ring $\frac{F[x]}{\langle f(x) \rangle}$ is a field

Proof:(H.W)

Example:

Let $f(x) = x^2 + 1$ is f(x) irreducible in R[x]? i. e). Is $< x^2 + 1$ >Is maximal ideal?

If it's maximal $\rightarrow f(x)$ is irreducible in R[x]

$$\frac{R[x]}{\langle x^2 + 1 \rangle} \cong C ?$$

$$\therefore$$
 C field $\rightarrow \frac{R[x]}{\langle x^2+1\rangle}$ is field iff $\langle x^2+1\rangle$ is maximal ideal.

 $f(x) = x^2 + 1$ is irreducible. [by last Lemma]

Theorem:

If R is U.F.D, then R[x] is U.F.D

Proof:(H.W)

Definition:

Let *R* be U.F.D "the content" of non constant polynomial

 $f(x) = a_0 + a_1 x + \dots + a_n x^n \in R[x]$.denoted by symbol *cont* f(x), is defined to be a greatest common divisor of its coefficient.

$$(i.e) cont f(x) = g.c.d.(a_0,...,a_n).$$

(*)If *cont* f(x) = 1, then we called f(x) primitive polynomial.

Example:

$$4x^3 - 32x^2 - 16$$
, $cont f(x) = g.c.d(4, -32, -16) = 4$

Example:

$$f(x) = 3x^5 - 5x^2 + 7x + 1$$
, $cont f(x) = 1$.

f(x) is primitive.

Remarks:

(1) $f(x) \in Z[x]$ is primitive iff there is no prime number p divided all coefficient a_i of f(x).

- (2)Let f(x) be a polynomial not primitive, then there exists a primitive polynomial $f_1(x) \in Z[x]$ s.t $f(x) = cont f(x) \cdot f_1(x)$.
- (3) If $f(x) \in Z[x]$ with positive degree, then $f(x) = cont(f(x)) \cdot f_1(x)$ where $f_1(x)$ is primitive.

Gaus Theorem:

If f(x), g(x) are primitive polynomials in Z[x], then $f(x) \cdot g(x)$ is also primitive polynomial in Z[x].

Proof:

Let
$$f(x)=a_0+a_1x+\cdots+a_nx^n\in R[x]$$
 , $a_n\neq 0$ and
$$g(x)=b_0+b_1x+\cdots+b_mx^m\in R[x]$$
 , $b_m\neq 0$. Let
$$h(x)=f(x)\cdot g(x)$$

Suppose that h(x) is not primitive.

 \therefore \exists p a prime number s. t p divide all the coefficient of h(x) ... (1) and p not divide all a_i (since f is primitive).

Suppose k is the smallest positive integer s.t $p \nmid a_k$, and p not divide all b_j [since g is primitive], let l be the smallest positive integer s.t $p \nmid a_l \dots (2)$.

Now, let
$$h(x)=c_0+c_1x+\cdots+a_{k+1}x^{k+1}+\cdots+a_{n+m}x^{n+m}$$

$$p\setminus c_i \quad \forall \ i \quad \rightarrow \quad p\setminus c_{k+l}$$

$$c_{k+l} = \sum_{i+j} a_i b_j$$

$$= a_o b_{k+l} + a_1 b_{k+l-1} + \dots + a_{k-1} b_{l+1} + a_k b_l + a_{k+1} b_{l-1} + \dots$$

$$+ a_{k+l} b_0$$

For choice of k and l $p \setminus a_{k+1} b_{l-1} + \dots + a_{k+1} b_0$ and $p \setminus c_{k+l} \rightarrow p \setminus a_k b_l$ but p is prime number $\therefore p \setminus a_k$ or $p \setminus b_l$ C! with (1) and (2) $\therefore h(x)$ is primitive polynomial.

Corollary:

If each f(x) and $g(x) \in Z[x]$ are polynomial with positive degree. Then cont(f(x), g(x)) = cont f(x). cont g(x)

Proof:

In case f and g are both primitive polynomial.

$$\therefore cont. (f(x). g(x)) = 1, \dots cont. (f(x)) = 1 \text{ and cont. } (g(x)) = 1$$

$$\therefore cont. (f(x). g(x)) = 1 = 1.1 = cont(f(x)). cont(g(x)).$$

Now suppose that f and g are not primitive.

Let
$$cont(f(x)) = a$$
 and $cont g(x) = b$, $0 \neq a, b \in Z$.

By remark (2) $\exists f_1(x)$, $g_1(x)$ primitive polynomial s.t $f(x) = cont. f(x) f_1(x)$ and $g(x) = cont. g(x) g_1(x)$

$$i.e) \ f(x) = af_1(x), g(x) = b.g_1(x)$$

$$f(x).g(x) = a.b.f_1(x) \cdot g_1(x)$$

$$cont(f(x).g(x)) = a.b cont(f_1(x).g_1(x))$$

= a.b.1[since f_1 and g_1 are primitive]

$$= a.b$$

$$= cont. f(x). cont. g(x)$$

Theorem:

Let f(x) be an irreducible primitive polynomial in Z[x], then f(x) is irreducible in Q[x].

Proof:

Suppose that f(x) is primitive in Z[x] otherwise, there exist a primitive polynomial $f(x) \in Z[x]$ s.t $f(x) = cont. f(x). f_1(x)$ suppose that f(x) is reducible in Q[x] this means $\exists h(x). g(x) \in Q[x]$ s.t f(x) = h(x). g(x) and $deg g(x) \ge 1$, $deg h(x) \ge 1$

Now
$$g(x) = \frac{a_0}{b_0} + \frac{a_1}{b_1}x + \dots + \frac{a_m}{b_m}x^m$$

$$h(x) = \frac{c_0}{d_0} + \frac{c_1}{d_1}x + \dots + \frac{c_l}{d_l}x^l$$

where a_0,\ldots,a_m , b_0,\ldots,b_m , c_0,\ldots,c_l , $d_0,\ldots,d_l\in Z$

Let
$$b = g.c.d(b_0, ..., b_m)$$
, $d = g.c.d(d_0, ..., d_l)$

$$b.d(f(x)) = b.g(x) \cdot d \cdot h(x)$$

$$g(x) = cont g(x). g_1(x)$$
 and $h(x) = cont h(x). h_1(x)$

Where $g_1(x)$ and $h_1(x)$ are primitive

$$\rightarrow g(x) = b_1 \cdot g_1(x)$$
 and $h(x) = d_1 \cdot h_1(x)$

$$\therefore bd : (f(x)) = b_1 \cdot d_1 \cdot g_1(x) \cdot h_1(x)$$

$$cont (b.d \cdot f(x)) = cont (b_1 \cdot d_1 \cdot g_1(x) \cdot h_1(x))$$

$$=b_1 \cdot d_1 \cdot cont \left(g_1(x). h_1(x)\right) = b_1 \cdot d_1$$

$$b \cdot d \cdot f(x) = b_1 \cdot d_1 \cdot g_1(x) \cdot h_1(x) = cont \left(b \cdot d \cdot f(x) \right) \cdot g_1(x) \cdot h_1(x)$$
$$= b \cdot d \cdot cont \left(f(x) \right) \cdot g_1(x) \cdot h_1(x)$$

$$= g_1(x) \cdot h_1(x) \in Z[x]$$
 , $[f(x)]$ primitive by assumption]

f(x) is reducible in Z[x] C!

Thus f(x) is irreducible in Q[x]

Theorem:(Eisenstein)

Let $f(x) = a_0 + a_1 x + \dots + a_n x^n$ be a polynomial in Z[x] with positive degree if there exist a prime number p s.t $p/a_i \ \forall \ 0 \le i < n-1$, $p \nmid a_n$ and $p^2 \nmid a_0$, then f(x) is irreducible in Q[x].

Kronecker Theorem;

Let F be afield and f(x) be a enon-constant polynomial in F[x] then there exists an extension field E, $\alpha \in E$ s.t $f(\alpha) = 0$.

Proof:

F is afield \rightarrow F is U.F.D [field \rightarrow E.D, E.D \rightarrow U.F.D]

Let $f(x) \in F[x]$, then we can write f(x) as a product of irreducible polynomial:

 $f(x) = p_1(x) \cdot p_2(x) \cdots p_n(x)$ where $p_i(x)$ is irreducible $\forall i = 1, ..., n$

 $< p_1(x) >$ is maximal.

 $\therefore \frac{F[x]}{\langle p_1(x)\rangle} \text{ is afield.}$

Put $E = \frac{F[x]}{\langle p_1(x) \rangle}$

Define $\emptyset = F \to \frac{F[x]}{\langle p_1(x) \rangle}$ by $\emptyset(a) = a + \langle p_1(x) \rangle \quad \forall a \in F$

(1) Ø is well define:

if
$$a = b \rightarrow a + \langle p_1(x) \rangle = b + \langle p_1(x) \rangle \rightarrow \emptyset(a) = \emptyset(b)$$

(2) Ø is well homomorphism?

$$\emptyset(a + b) = a + b + \langle p_1(x) \rangle = a + \langle p_1(x) \rangle + b + \langle p_1(x) \rangle$$

= $\emptyset(a) + \emptyset(b)$

$$\emptyset(a.b) = a.b + \langle p_1(x) \rangle = (a + \langle p_1(x) \rangle) \cdot (b + \langle p_1(x) \rangle)$$

= $\emptyset(a) \cdot \emptyset(b)$

(3) \emptyset is 1-1:

If
$$\emptyset(a) = \emptyset(b)$$

$$a + < p_1(x) > = b + < p_1(x) > \leftrightarrow a - b \in < p_1(x) >$$

$$\therefore a - b = 0 \rightarrow a = b.$$

$$F \subset E = \frac{F[x]}{\langle p_1(x) \rangle}$$
, $\therefore E$ is extension for F

Let
$$\alpha \in E$$
 , $\alpha = x + \langle p_1(x) \rangle$, $x \in F[X]$

To prove $f(\propto) = 0$?

$$f(\propto) = p_1(\propto) \cdot p_2(\propto) \cdots p_n(\propto)$$

if
$$p_1(\propto) = 0 \rightarrow f(\propto) = 0$$

If
$$deg p_1(\propto) \ge 1$$
 , $p_1(x) = a_0 + a_1x + \dots + a_nx^n$

$$I = p_1(\propto) = a_0 + a_1 \propto + \dots + a_n \propto^n$$
,

$$p_1(x+ < p_1(x) >) = a_0 + a_1x + a_2x^2 ... + a_nx^n + < p_1(x) >$$

$$=p_1(x)+< p_1(x)>$$

$$= < p_1(x) > = 0$$

$$\therefore p_1(\propto) = 0 \rightarrow f(\alpha) = 0.$$

H.W/

Let
$$f(x) = x^2 + 1 \in R[x]$$
, $\alpha = x + (x^2 + 1)$, prove that $\frac{R[x]}{\langle x^2 + 1 \rangle} \cong C$.

Sol/ Define
$$h: C \to \frac{R[x]}{< x^2 + 1>}$$
 by $h(a + ib) = a + bx + < x^2 + 1 >$

1)
$$h(a+ib) = h(c+id)$$

$$a + bx + \langle x^2 + 1 \rangle = c + dx + \langle x^2 + 1 \rangle$$

 $\rightarrow a + bx - c - dx \in \langle x^2 + 1 \rangle$
 $\rightarrow a + bx - c - dx = 0 \rightarrow a - c = 0 , b - d = 0$
 $\rightarrow a = c \& b = d \rightarrow a + ib = c + id , \therefore 1 - 1$

1) *h* is homomorphism

$$h(a+ib+c+id) = h(a+c+(b+d)i)$$

$$= a+c+(b+d)x+ < x^2+1 > = a+bx+ < x^2+1 > c+dx+c$$

$$= h(a+ib)+h(c+id).$$

$$h(a+ib).(c+id) = h(a+ib).h(c+id)$$

Example:;

$$f(x) = x^4 - 4 \in Q[x]$$
$$f(x) = (x^2 - 2)(x^2 + 2)$$

Use Kronecker's Thmeorem , $\propto = x + \langle p_1(x) \rangle = x + \langle (x^2 - 2) \rangle$

H.W//

1)let
$$f(x) = x^2 + 5$$
 prove that $\langle f(x) \rangle$ is irreducible in $Z[x]$ ($Hint: \emptyset: z[x] \rightarrow Z[\sqrt{-5}]$, $\emptyset(g(x)) = g(\sqrt{-5})$

2) $f(x) = x^4 + x^2 = 1 \in Q[x]$, is firreducible and have a root in Q?

Dr. Alaa Abbass

lecure Nine

- 3) $f(x) = x^3 + \overline{3}$ is f(x) irreducible in \mathbb{Z}_6 ?
- 4) Use Eneshtin theorem to show that if:

a)
$$f(x) = x^4 - 2x^3 + 6x^2 + 4x - 10 \in \mathbb{Z}[x][Hint: p = 2]$$

b)
$$f(x) = 1 + 5x + 10x^2 + 5x^3$$

5) Prove that if $f(x) = 1 + x + x^2$ is irreducible in Q[x] or not?

Remarks

- 1) f(x) is irreducible if f(x + 1) is irreducible in Q.
- 2) f(x) is irreducible, if f(x-1) is irreducible in Q.
- 3) The polynomial $f(x) = 1 + x + x^2 + \dots + x^{p-1}$ (where P is prime) is irreducible in Q[x]?

Proof:

$$(1)$$
& $(2)(H.W)$

Proof: (3)

$$f(x+1) = 1 + (x+1) + (x+1)^{2} + \dots + (x+1)^{p-1}$$

$$= \frac{(x+1)^{p} - 1}{(x+1) - 1} = \frac{(x+1)^{p} - 1}{x}$$

$$= \frac{1}{x} [(x+1)^{p} - 1]$$

$$= \frac{1}{x} \left[x^{p} + px^{p-1} + \frac{p(p-1)}{2!} x^{p-2} + \dots + px \right]$$

$$= \left[x^{p-1} = px^{p-2} + \frac{p(p-1)}{2!} x^{p-3} + \dots + p \right].$$

We choose p to satisfy the theorem , \therefore by Eisenstein theorem, then f(x+1) is irreducible on Q[x] and by remark (1) f(x) is irreducible on Q[x].

Defintion:

The field E is an extension to the field F if F is a subfield in E.

Example:

R is an extension field of Q.

C is an extension field of R.

C is an extension field of Q.

H.W//

Let $f(x) = x^4 - 5x^2 + 6 \in Q[x]$ find an extension field E to Q by using kronker theorem?

Hint:
$$E = \frac{Q[x]}{\langle x^2 - 2 \rangle}$$
, $\alpha = x + \langle x^2 - 2 \rangle$

H.W//

Let $f(x) = x^2 + 5x + 8$, is f(x) irreducible on Q?

 $\underline{\mathbf{Hint}}: f(x+1) = \cdots$

Defintion:

Let E be an extension field of F, let $\alpha \in E$ we called α algebraic element if there exists anon zero polynomial $f(x) \in F[x]$ $s.t. f(\alpha) = 0$.

Otherwise we say that ∝ is transcendental element

Example:

 \mathcal{R} extension field to Q

 $\sqrt{2} \in R$ is $\sqrt{2}$ algebraic element Q?

Note that $f(x) = x^2 - 2 \in Q[x] \& f(\sqrt{2}) = 0$

 $\therefore \sqrt{2}$ is algebraic element.

H.W// Is

- 1) $\propto = \sqrt{1 + \sqrt{3}} \in R$ algebraic on Q?
- 2) π is algebraic on Q?
- 3) e is algebraic on Q?

Sol:
$$(1) \propto^2 = 1 + \sqrt{3} \rightarrow \propto^2 - 1 = \sqrt{3} \rightarrow (\propto^2 - 1)^2 = 3$$

 $\propto^4 - 2 \propto^2 - 1 = 3 \rightarrow \propto^2 - 2 \propto^2 - 4 = 0$.

Defintion::

Let R is I.D $f(x) \in R[x]$ non-constant, f is irreducible $iff \not\equiv h(x)$, $k(x) \in R[x]$ s.t f(x) = h(x).k(x), $deg(h(x)) \ge 1$, $deg(k(x)) \ge 1$

Example:

$$f(x) = 2x^{2} - 4 \in Z[x],$$

$$f(x) = 2(x^{2} - 2) = 2(x - \sqrt{2})(x + \sqrt{2})$$

$$\sqrt{2} \notin Z$$

<u>Note</u>: $f(x) = ax + b \in R[x]$ is irreducible

$$f(x) = h(x) \cdot k(x)$$
 since deg $f(x) < deg(h(x) \cdot k(x))$

Example:

$$f(x) = x^3 + 3x + 2 \in Z_5[x]$$
?

Sol: Claim that f is irreducible, if f not irreducible then

 $f(x) = h(x) \cdot k(x)$ with $\deg h, k > 0$, then either k or h has a first order.

$$i.e)$$
 $h(x)=x-a$, $a\in Z_5[x]$ $h(a)=a-a=0$ and since $f(x)=h(x)\cdot k(x)=(x-a)\cdot k(x)$, $\therefore f(a)=(a-a)\cdot k(a)=0$

 \therefore f has a root in $Z_5[x]$ but f has no root in $Z_5[x]$ since

$$f(a) = 2$$
 , $f(1) = 1$, $f(2) = 1$, $f(3) = 3$, $f(4) = 78$ *C*! With $f(x) = h(x) \cdot k(x)$ $\therefore f$ is irreducible.

Theorem:

Let F be a field and $f(x) \in F[x]$, $\deg f(x) = 2$ or 3, then f is irreducible iff f(x) has no root in F.

Example:

$$f(x) = 2x^2 + 4 \in R[x]$$

 $= 2(x^2 + 2) = 2(x - \sqrt{2}i)(x + \sqrt{2}i) \quad \therefore \quad f \quad \text{has no root in} \quad R \quad \therefore \quad f \quad \text{is}$ irreducible

Example:

$$f(x) = x^3 + 3 \in Z_6[x].$$

$$f(0) = 3$$
, $f(1) = 4$, $f(2) = 5$, $f(3) = 0$

∴ f is not irreducible

Example(H.W)

$$f(x) = x^3 + x + 1 \in Z_5[x].$$

Example(H.W)

$$f(x) = x^2 + 3 \in Z_7[x].$$