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Definition: 

A ring is an ordered triple       , where R is a nonempty set and     are two 

binary operation on R such that: 

1)      is an abelian group. 

2)     .is a semigroup and 

3) The operation   is distributive over the operation . 

 

Example: 

If       denote the sets of integers, rational, and real numbers, then the 

systems 

                           

Are all examples of rings; here   and   are taken to be ordinary addition and 

multiplication. 

 

Definition: 

 Let   be a commutative ring. An element       is called zero divisor if       

and there exists            with         . 

Example: 

      ̅  ̅  ̅  ̅  ̅  ̅  

Solution: ̅  ̅   ̅      ̅  ̅    ̅     ̅  ̅  ̅                         . 

 

Example: 
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      ̅  ̅  ̅  ̅  ̅ Has no zero divisors. 

Definition: 

A commutative ring with identity is called an integral domain if it has no zero 

divisors. 

Example: 

                                  Where   is prime are integral domains. 

Definition: 

 A ring         is said to be field if             forms a commutative ring (with 

identity 1). 

Or  

The field is commutative ring with identity in which each nonzero 

element has inverse under multiplication. 

 

Definition: 

Let         be a ring, and        , then         is called a subring if         

is a ring itself. 

Example: 

        subring of (       

Rrmark: 

Let         be a ring    S    , then         is subring if: 

(1)                      . 

(2)                    . 
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Definition: 

A subring  of the ring   is said to be two sidedideal of   if and only if      

and       imply       and      . 

Definition: 

Let   be a nonempty subset of ring  , then   is ideal of   if  

(1)                  . 

(2)                           . 

Remark: 

Every ideal is subring. 

Proof: Let   be an ideal, to show that   is subring  

(1)      

(2) Let                               

  is subring 

But the converse is not true for example: 

        is a ring,             is subring  

      
 

 
            

 

 
 
 

 
     

  is not ideal 

Remark
()

: 

Let   be an ideal of a ring with 1. If     , then      . 

Proof:     , let            but I is ideal  

                        . 
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Thus       

 

Remark: 

Let   be an ideal of a ring with 1 and   contains an invertible element,then     . 

Proof:     but a is invertible then       such that                

     , by remark (*) 

 

Definition: 

A ring   is called principle ideal ring if every ideal in   is principle ideal. 

Theorem: 

       is P. I. R. 

Proof: (H.W) 

Definition: 

 A proper ideal   of a ring R is called maximal ideal if where ever   is an ideal 

of   with   , then       . 

Example: 

In   the ideals are: 

            0  3    0  2  4   

 0  3  is the maximal in Z6. 

 0  2  4  is the maximal in Z6. 

Theorem: 
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Let   be commutative ring with 1 and   be a proper ideal of  ,  is amaximal 

ideal if and only if
 

 
 is a fiald. 

Proof: (H.W) 

 

Definition: 

A proper ideal   of a ring   is called a prime ideal if for all      in  with 

       either           . 

 

Example: 

1)  is an ideal in  , but not a prime ideal in  . 

2)   is a prime ideal in  .but not maximal. 

3)   is not a prime ideal in     

Theorem: 

Let   be commutative ring with 1 and   be a proper ideal of  ,  is a prime ideal 

if and only if
 

p
 is an integral domain. 

Proof: (H.W) 

.Definition: 

A commutative ring with identity is called local ring if it has unique maximal 

ideal. 

Example: 

     ̅  ̅  ̅  ̅  is a local ring. 
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Remark: 

Every field is a local ring  

Proof: (H.W) 

Remark: 

In the local ring the idempotent element is only 0 or 1. 

Proof: let     and     be an idempotent element. Since   is an idempotent, 

then     , then       , then         , since     and       are 

zero divisors, thus       has no inverse, hence       must belong to the 

unique maximal ideal say   , then        , then          , hence 

   . Thus either     or    . 

.Definition: 

  Let  be an ideal of a ring   . Then the nil radical of    denoted by √  is the set: 

√                      

Remark(1): 

1. √   . 

2. √ is an ideal of  . 

Proof: (H.W) 

Remark(2): 

1. √    √   √  √ . 

2. √√  √ . 

3. √     √  √ . 

Proof:1).Let    √   ,then                , then      and     , 

hence     √  and     √ . Thus       √  √ . 
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Let   √  √ , then     √ and     √ , hence     and     . 

    =        ,then    √  . 

    =         ,then    √   . Thus√    √  √  

2).we have √√   √  from Remark (1), we want to show that √  √√ Let   

√√               √ , and then                 , hence     , which 

implies that   √ . Thus √  √√  and √√   √  

3).Let      √   √ , then       ;     √  and     √ , then        

      and              . 

                                                 

     . 

Thus                             √   . 

Definition: 

    A proper ideal  of a ring   is called semiprimeif     √ . 

Example:In  √     , so 〈 〉 is semiprime ideal in  . 

√〈 〉  √〈  〉  〈 〉, so 〈 〉 is not semiprime ideal in   

√        . 

Theorem: 

Every prime ideal is semiprime. 

Proof:Let   be a prime ideal,  √  we have to show only that √   . 

Let   √               , then         but   be a prime ideal so either 

    or      . 

If      , then         , which implies that       we continue in this way 

until we have     . 
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Remark: 

The converse is not true. 

For example: √〈 〉  〈 〉 is semiprime but it is not prime since   〈 〉,   〈 〉 

but       〈 〉 

Theorem: 

A proper ideal  of a ring   is semiprime if and only if 
 

 
 has no nonzero nilpotent 

element. 

Proof: )Let   be a semiprime ideal and let     be a nilpotent element in  
 

 
   a 

positive integer such that        , hence              √   

 .[ since   is semiprime ]. Thus             

)we want to prove   is semiprime   √  we have to show only that √   . 

Let    √  , then             , then             is a nilpotent 

element in  
 

 
, hence           .Thus√              √    . 

Definition: 

    A proper ideal  of a ring    is called primary if whenever       and     

implies that     for some     . 

Example:In  . Let                                   , so    is 

primary ideal. 

Remark: 

Every prime ideal is primary. 

Q: Is the converse true? 

   is primary ideal but not prime since                             
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Theorem: 

Let   be a commutative ring with 1 and   be a proper ideal of  ,  is a primary 

ideal if and only if every zero divisor of 
 

 
 is nilpotent  

Proof:) Let     be a zero divisor in  
 

 
 , so        and       

     
 

 
such that (   )(   )   , then              but     and   is 

primary, then                       thus (   )    and     is a 

nilpotent element. 

) Let       and    , then                  (   )(   )   , 

but      

If           , we are done.[ I is primary] 

If       , then       is a zero divisor, hence by assumption    is a 

nilpotent element in
 

 
         (   )                . 

Theorem: 

Let            be a ring epimorphism. 

1. If   isa maximal (prime ,primary , semiprime )ideal in   with        

   , then  ( ) is maximal (prime , primary , semiprime) ideal in   . 

2. If     is a maximal (prime , primary , semiprime) ideal in   , then 

    (   ) is maximal (prime , primary , semiprime) ideal in  . 

Proof: 

1).Let            be an epimorphism and let   be a maximal ideal in R 

contain       we will prove that  ( ) is maximal ideal in   . 

Clearly  ( ) is an ideal in    
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 ( )      [If    ( )     , then     (  )      ( )     . But 

 ( )       ( )   ( )   (   )                 

    (   )            contradiction since   be a maximal, 

   ]  

Let  ( )      ,    is an ideal in  , then                   ( ). 

But                          ( )          .  

Thenby theorem (let   be aproper ideal of a ring  . If   is maximal ideal in R 

iff               )                                  , 

then  ( )   (    ), then  ( )   ( )   ( ) ( ) [  is homomorphism] 

, then       ( )   ( )    

 ( )    ( )     and     ( )    , hence        , which implies that 

    . Thus  ( ) is maximal in   . 

 

2). Let    be a maximal ideal in   , then clearly    (  )  is an ideal in R. 

   (  )    . 

[If    (  )    ,then   ( )           ( )                - . Let 

   (  )      , then  

                     (  )          ( )           〈    ( )〉    . 

       ( )                           …( ) 

Since   is onto, then          and           ( )      ( )         ( )  

  . Then ( ) will be :  ( )   ( ) ( )     ( ), then  ( )   (  )     ( ) 

[   is homomorphism] and  (    )     ( ), then  (       )   , hence 

                   (  )          ( )                (  )   , 
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so          , then (    )  (       )   , which implies that       

and      . Thus    (  ) is maximal in    

 

3) Let   be a prime ideal in R, clearly  ( ) is an ideal in    

 ( )      since if    ( )      and   is onto, then              ( )      . But 

 ( )       ( )   ( )   (   )                 , but    , 

then   (   )    and       . 

Now, let    ( ) ( )   ( )         , since   is homo., then   (   )   ( ), 

then      . 

but   is prime ideal, so either     ,which implies that   ( )   ( ) or     , 

which implies that   ( )   ( ). Thus  ( ) is a prime ideal in     

 

4). Let    be a prime ideal in  , we have to show    ( ) is prime ideal in R. 1. 

Clearly    ( )  is an ideal in R since   be an ideal       . 

2.   ( )     , if    ( )              ( ), then      ( )       

   ( )              since   is proper ideal in    

3.Let           ( )            ( ), then  (   )   , since   is 

homomorphism, then  ( ) ( )           ( )   , but   is a prime, so ( )  

         ( ). Thus    ( ) is prime. 

 

5).If   is primary in R, we have to show that  ( ) is primary in.   . 

Let  ( )  ( )    ( ) and suppose that  ( )   ( ), we prove that ( ( ))  

 ( ), for some     . 
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 (   )   ( ) [  is homo.], hence              since  ( )   ( ) and   is 

primary, then      for some     . Thus  (  )   ( )  ( ( ))   ( ) 

and  ( ) is primary in.   . 

 

6) Suppose that   is primary ideal in    , we prove that    ( ) is primary ideal  

in  . 

   ( )   ,if    ( )      ,     ( )     ( )            . 

Let        ( ) and      ( ) 

 (   )   and   ( )   then  ( )  ( )   , hence          ( ( ))  

 , then  (  )   , then       ( ). Thus    ( ) is primary in  . 

 

7) Suppose   is semiprime ideal in  .   √ , we prove that  ( ) is 

semiprime ideal in   . 

First, ( )        ,     ( )       ( ),    
  such that ( )  

 ( ), then  (   )   ,then (   )        , then      C!. 

We must show that  ( )  √ ( ), but we know that  ( )  √ ( ), 

so we only have to show √ ( )   ( ). Let   √ ( ), then     

       ( ), then     ( )      . 

Since   is onto, then         ( )   , then    ( ( ))  

 (  )   ( ),then (    )        , then  (    )    but 

   ,hence    , then,   √          [since   is 

semiprime and √   ], then  ( )   ( )    ( ), 

hence√ ( )   ( ). Thus  ( )  √ ( ) and  ( ) is semiprime 

ideal in    
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8) (H.W) 

 

Definition: 

The Jacobson radical of a ring  , denoted by  ( ) is the set: 

 ( )   *                        + 

 

Example: (1) In Z, (2Z)  (3Z)  (7Z)  …  {0},  (Z)=0 

(2) In Z6, { ̅,  ̅,  ̅}  { ̅,  ̅}  {0},  (Z6)=0. 

(3) Z4, M { ̅,  ̅, }. 

 (Z4) { ̅,  ̅, }. 

 

Remark: 

1.  ( )   . 

2.  ( ) is an ideal in  . 

Proof: Let      ( ), then      *                    +, then    

                  , then           , since   is an ideal in  ,      , 

hence     ( ). Similarly    ( ). 

 

Theorem: 

Let   be an ideal in a ring  . Then      ( ) if and only if the coset      has 

invertible element in  . 
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Proof:) Let       ( ) and assume that         such that       has no 

inverse a maximal ideal   such that           ,          ( )   

 ,      ,                     

Hence     C!. Thus        has inverse. 

 

) suppose that each member of        has inverse, but      ( )          

is maximal ideal, then       . 

Now, if      ,    ( ), then                              . Since     is 

maximal, then       , since                           

                , but             , then          , then    has 

inverse. Thus            C! [Since M R]. 

 

Corollary: 

     ( )          has inverse        . 

Proof:Take       by above lemma, we have            ( ) if and only 

if      has inverse. Thus        has inverse. 

 

Lemma: 

The uniqueness idempotent element in  ( ) is 0. 

Proof: Let     ( )  such that     , then       , then  (   )   , 

 (  (  ) )       ( ). By the last corollary and since      ( ), then 

    (  )    has inverse, so     such that (  (  ) )     by ( ). 

    ,(  (  ) ) -      , so      . Thus    . 



Dr. Alaa Abbass                                                                                                                  lecure Two    

17 
 

 

Definition: 

The ideal   is called nil ideal if each element in   is nilpotent. 

 

Example: 

In the ring Z8 

The ideals are    * ̅  ̅+,    * ̅  ̅  ̅  ̅+ are nil ideals. 

   is a nil ideal since  ̅   ̅. 

   is a nil ideal since  ̅   ̅,  ̅   ̅,  ̅   ̅ 

Lemma: 

Every nil ideal contained in  ( ). 

Proof:Let   be a nil ideal and we prove that      ( ). Let     , since   is nil 

ideal, then                 , let     . Now: 

 

(    )(                 (  )   (  )   )          . 

[Since      , then        ] 

By the last corollary     ( ), then      , which implies that        ( ). 

Lemma: 

 .
 

 ( )
/   . 

Proof:Let   ( )   , we prove that         i.e)        has inverse in   . Let 

       .
 

 ( )
/, then (   )  (   )(   )has inverse in 

 

 ( )
, so         
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 .
 

 ( )
/ such that ,(   )  (   )(   )-(   )     , then (     

 )(   )      , then  (    )       , then  (    )     , hence 

    ( (    )   )has inverse. In special case take       , we have 

  ( )( (    )   )has inverse in   , i.e)  (    )has inverse in  . Thus 

     s.t    (    )   , hence (    )has inverse, so that      ( )    

and     ( )   ( ). 
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Definition: 

The prime radical of a ring  , denoted by      is the set: 

      {                       } 

Example: 

(1) In Z:  (Z)= (P)={0},  (Z)=0, where P is prime. 

(2) Find  (Z8),  (Z6),  (Z12).(H.W). 

(3) If   is an integral domain, then        

 

Remark: 

1.       . 

2.      is an ideal in  . 

3.           

 

Theorem(*): 

Let   be a proper ideal in a ring , then  

√    {                                 } 

Proof: 

1)Let  √ , then           , let   {              }, then      , 

define   {                                    },     (since     , 

let {  }    be a chain of element from F i.e        ,   is a proper ideal 

contain       , we will prove that         , Let                   

              , since {  }    is a chain of  , then either           

or          , then        or       , then        or       , 

hence            . 
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Now, let     and          , then              , then      .since 

        is an ideal in F. 

2)          since if          , then          , hence            

      [since                              ], since         . Thus   

       . 

3)                              . Thus         . By Zorn’s 

Lemma   has a maximal element  . 

Claim:   is prime   in  . 

Suppose that   is not prime, let        and         . 

  〈   〉 

  〈   〉 

Since P is maximal in F, then 〈   〉  〈   〉 must intersect   . 

i.e 〈   〉     , 〈   〉     . 

Then                     〈   〉      〈   〉, then            

〈   〉 〈   〉  〈     〉   . 

Thus        C! (since      ), then   is prime ideal and     , hence 

                  , then    for any prime ideal contain I.  

   {                            }, then      .                         . 

Thus            [since   is prime ideal] i.e           ,         

  ,…) and           ,    . 

If we put    { } we have: 

Corollary: 

√〈 〉   {                        }       
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Since all prime ideals in   contain 0 we don’t write     .  

1)       The set of all nilpotent element of  . 

2) √〈 〉  {         }The set of all nilpotent element. 

Theorem: 

An ideal  of a ring  is semiprime ideal iff   is an intersection of prime ideal of 

 . 

Example:√〈 〉  〈 〉 

Remark: 

 (
 

    
)   . 

Proof:Let            (
 

    
), then by ( )        s.t (        )

 
      , 

then              , then         , then by ( )                   , 

hence      . Thus                          . 

Theorem: 

Let            be an epimorphism such that             . Then: 

1.  (     )           . 

2.    (     )      . 

Proof: 

1). Let           be an epimorphism. 

To prove that  (     )         we must prove that  (     )           and 

        (     ). 

Let    (     )                 . To prove            we have to show 

that                                  . 
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Since  is onto,                                   

                                           . 

Since        , then       has inverse in         . 

In special case.       has inverse, i.e.                ).a=1  

                                                         

                                                    . 

Hence            [theorem]. Thus   (     )               . 

Now, to prove         (     ). 

Let        , since   is onto,                     , it is enough to show that 

                           . 

Since                                            . 

                                                  . 

Since   is onto,                                                     . 

                                               (        )  

      (          )                               . Hence 

                 has an inverse       . In special case      . 

             has an inverse in              has an inverse in  . 

i.e.                           , i.e.,       has an inverse        in 

             ,hence         (     )        . 

Thus from    ,     (     )         

 

2) Now we want to show that    (     )      . 
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Let       (     )              (     ), then        (     ), then 

                                                     , 

             [since           ]. 

Hence    (     )            . 

Now, let                  (     )                     

        (     ). 

 Hence          (     )       . 

From    ,        (     )      . 

Theorem: 

Let            be an epimorphism such that             . Then: 

1.  (     )           . 

2.    (     )      . 

Proof: 

1). Let            be an epimorphism. 

To prove that  (     )         we must prove that  (     )        and 

        (     ). 

     {                         }  √〈 〉. 

Let     (     )                                    .  

              (     )
 

                     . 

Hence   (     )        . 
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Let                   , since   is onto                   . 

      (     )
 

      , since   is homo.                

                                               . 

          (     )         (     ). Thus  (     )        . 

 

2) Now we want to show that    (     )      . 

Let       (     )              (     ), then        (     ), then 

                                                 

                    ,                [since           ]. 

Hence    (     )            . 

Now, let                  (     )                     

        (     ). 

 Hence          (     )       . 

From    ,        (     )      . 

 

Division Algorithm For Integral Domain: 

Definition: 

Let   be a ring and let                  we say that “  divided  ”      if 

   a number     s.t       . 

Remark: 

If   divided   we mean that   is a factor   or   multipolar  . 
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Remark: 

    if and only if 〈 〉  〈 〉. 

Proof:  Suppose                   〈 〉    〈 〉 〈 〉  〈 〉. 

  Suppose 〈 〉  〈 〉since    〈 〉    〈 〉               . 

Thus   ⁄ . 

Theorem: 

Let   be a ring, then  

1)                          . 

2)     iff     has inverse. 

3) If                 . 

4) If     , then               . 

5)            if          , then                      . 

Proof(1): 

Since               and since             . 

            . 

Proof(2): 

   Since             where      which mean that     is an inverse of   .  

     has inverse                          

Proof(3): 

Since                                                          . 

                       . Thus      . 

Proof(4): 
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Since                                              . 

Proof(5): 

Since                                                       . 

                         . 

                                            . 

Thus          . 

Definition: 

Let   be a ring and let       , we say that     are associated element 

if     , where   is invertible element in  . 

Eexample: 

In        . 

         . 

     has an inverse in Z. 

Remark(1): 

Define a relation     on R as follows:               are associated 

elements, is an equivalent relation. 

Proof: 

i.         . 

ii. If       then      . 

             is invertible element in  .                . 

iii. If      and       then      . 

                  is invertible element in  . 

                 is invertible element in  . 

                            . Thus   is an equivalent relation. 
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Remark(2): 

Consider the Gaussian numbers denoted by     . 

     {                 }    

1. (               is a ring but not field.? 

2.      is an integral domain? 

 

Here the only invertible elements are     ,     . Suppose            

has a multiplicative inverse      . Then  

                , so                 , then  

                              

                                         

 (     
)                                                . 

Or                                     . Thus the invertible 

elements are     ,     . 

The only associated elements of        are: 

                           . 

Theorem: 

Let     be a non-zero element ofa ring  . Then the following statements 

are equivalent: 

1)        are associates. 

2) Both     and    . 

3) 〈 〉  〈 〉. 

Proof: 
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        Suppose that       are associated elements    an invertible 

element                                     . 

             〈 〉  〈 〉. 

                    〈 〉  〈 〉. 

 〈 〉  〈 〉. 

        〈 〉  〈 〉 〈 〉  〈 〉            and 〈 〉  〈 〉           

                                     and                

                  . 

                             are invertible element.        are 

associated elements 
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Definition: 

Let               be a non-zero element ofa ring R. An element      is a 

greatest common divisor of                if satisfy the following: 

1)                           . 

2)  If                       implies that      . 

                        . 

Eexample: 

                  . 

Theorem: 

Let               be a non-zero element of a ring    , then                 

have       of the form                                     the ideal 

〈              〉 is principal. 

Proof:   

Suppose that                              〈              〉 

 〈 〉   〈              〉. 

Now, let      〈              〉. 

                                                                  

But                                                                    . 

Put    in    . 

                                                       

    . 

     〈 〉 〈              〉  〈 〉. Thus is principal. 
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   Now, suppose that 〈 〉  〈              〉. To show that    is a 

greatest common divisor of               . 

 

    〈 〉                                                         

  . Now, suppose that                                                  

        

                        

                             

                                   

                                

Corollary: 

Any finite set of non-zero elements                of        has       . 

In fact                                             for suitable 

choice                 . 

Definition: 

Let   be a ring and let                be a non-zero element of   . If 

  〈 〉  〈              〉, then                          and            

    are called relatively prime elements. 

Theorem: 

Let       be elements of a           , if        with     relatively prime, 

then   . 

Proof: 

Since      are relatively prime elements  
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Since                                      

                     . Thus      . 

Definition: 

Let   be a ring and let                be non-zero elements of   , then 

    .is a least common multiple of                if                    

  . If                   , then       

                        . 

Theorem: 

Let                be a non-zero element of  , then                have 

least common multiple iff the ideal  〈  〉 is principale 

Proof:   

Let                          , we must prove that    〈  〉  〈 〉. Let 

    〈 〉              

But     is                                                     

                                              

                                           〈  〉. 

,                〈  〉                   〈  〉. 

    〈   〉             〈  〉 〈 〉   〈  〉. 

Let         
  〈  〉     〈   〉                                     . 

                  but                           , 

                                         〈 〉. 

    
  〈  〉   〈 〉      〈 〉      

  〈  〉. 

  Let 〈 〉      
  〈  〉, we prove that                        . 
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   〈 〉         
  〈  〉    〈  〉                           . 

               . 

We suppose that                                   , we must prove that     . 

                                 〈  〉   . 

         
  〈  〉    〈 〉. 

                              . 

From             is                       . 

Corollary: 

If   is      , then every finite set of non-zero elements have       . 

Proof: 

Let                be non-zero elements, then     
  〈  〉is an ideal  

                 〈 〉      
  〈  〉 since   is      . Thus by the last theorem  

                       . 

 

Definition: 

Let   be a ring with 1. The element      is called prime element if 

   ,     has no inverse and       , then either      or     . 

Definition: 

Let   be a ring with 1,then the element      is called 

irreducibleelement if    ,     has no inverse and if     , then 

either     has an inverse or     has an inverse. 

Theorem: 



Dr. Alaa Abbass                                                                                                                  lecureFour   

33 
 

1) If    is prime element in    and   is associated with  , then   is 

prime element. 

2) If    is irreducible element in    and      are associated, then   is 

irreducible element. 

Proof: 

1) Since       are associated, then        where    has an inverse. 

a)       since if                        [since   is prime 

element]. 

b)   has no inverse since if   has an inverse. 

(  )
  

    (  )
  

        [(  )
  

  ]          is invertible C! 

[since   is primeelement]. 

c) If                                            

                but   is prime element, then either       or 

    if                  (    )      . Similarly, if 

       is primeelement. 

2) Since     are associated, then        where    has an 

inverse                  . 

a)       since if                        [since   is prime 

element]. 

b)    has no inverse since if    has 

inverse (  )
  

    (  )
  

         [(  )
  

  ]          has 

inverseC! [since     is prime element]. 

c) If                               since   is irreducible 

element, then either  has an inverseor       has an inverse. 

If       has an inverse                               

             

    has an inverse. Thus   is irreducible element. 

Theorem: 
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   Let   be an I.D, then every prime element in    is irreducible 

element. 

Proof: 

Let    be a prime element in    and let                       

                             , then either     or   . if 

                                                  

    has an inverse.  

Similarly if         is irreducible element. 

Note  

The converse is not true? 

Theorem: 

   Let   be a P I.D and let     , then     is prime element iff    is 

irreducible element. 

Proof:   

From the last theorem  

   

Let    be an irreducible element  andsuppose that          

                     

           , then 〈   〉is principle 

              〈   〉  〈 〉.                    but     is 

irreducible element     has an inverse or    has an inverse.  

If    has an inverse            〈 〉 〈 〉   〈 〉 but 

   〈 〉   〈 〉                     . 
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If   has an inverse         〈 〉 〈 〉     but 〈 〉  

〈   〉 〈   〉   . 

     〈   〉                               

             

            

             

    . 
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Corollary: 

In   there is no difference between irreducible element and prime 

element. 

Proof:(H.W) 

Remark: 

   Let   be a P I.D. If {  }          is any infinite sequence of ideals 

of                                              , then there exist 

                    for all     . 

Proof: 

Let     
                                   is a chain. 

      
    is an ideal? 

  is P I.D, then                 〈 〉          
            

                              〈 〉              
       . 

           
   . Thus       . 

Definition: 

   The principle ideal is called maximal principle ideal if it's maximal 

in the set of proper principle ideals of    . 

Theorem: 

   Let   be an integral domain for non-zero element    , the 

following holds: 

1.   is irreducible element       〈 〉 is maximal principle ideal. 

2.   is prime element       〈 〉     is prime ideal. 

Proof:      

Let   be irreducible element, and let 〈 〉    〈 〉              . 
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   〈 〉       〈 〉                                       

But   is irreducible element   either     or     has an inverse. If    has 

an inverse          [      ]   〈 〉 〈 〉   〈 〉    , hence    has 

an inverse               〈 〉 〈 〉      . Thus〈 〉 is maximal 

principle ideal. 

   

Let 〈 〉 bea maximal principle ideal. 

Let         , suppose that      has no inverse    〈 〉 〈 〉   〈 〉 if 

  〈 〉                 . 

                       [          ]            has an 

inverse      〈 〉    〈 〉. 

Next if 〈 〉                      

    〈 〉       [                       ] 〈 〉   〈 〉      

Since 〈 〉 is maximal principle ideal           has an inverse. 

      is irreducible element. 

      

Let   be prime element, 〈 〉       [          has no inverse] 

Let        〈 〉                          but    is prime element 

 either       or       

If                              〈 〉 

Or                            〈 〉 

    〈 〉 is prime ideal. 

   

Suppose that 〈 〉 is prime ideal      〈 〉          has no inverse. 
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Let                              〈 〉 but    is prime element 

 either    〈 〉                        

Or    〈 〉                  . 

 Either       or       

Lemma:(*) 

   Let   be a P I.D,             has no inverse, then there exists a 

prime element                 . 

Proof: 

     has no inverse 〈 〉       〈 〉 is proper ideal of    .       a 

maximal ideal               〈 〉     . 

   is P I.D                   〈 〉      〈 〉   〈 〉, then 〈 〉 is maximal 

principle ideal.  

But every maximal ideal is prime ideal, where    is prime element [by 

last Thm.    . 

    〈 〉   〈 〉     〈 〉                      . 

Definition: 

   An integral domain   is unique factorization domain (UFD) if the 

following are satisfied: 

(1)                  and has no inverse, then              

where   areirreducible elements     . 

(2) If                      where        are irreducible 

element     , then       and there is a permutation     on 

{       }                are associated elements. 

Example: 

  is UFD. 
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                                    . 

Notice that        are associated and        are associated. 

Theorem: 

Every PID is UFD. 

Proof: 

Let   be a P I.D, and let         be an element whichhas no invers. 

Then            by theorem ()   is irreducible elements    . Now 

suppose that                       

Now we must show that       . 

Suppose that        . 

Notice that                     , but    is prime element    

   for some    , after arranging. 

   and    are prime element in R and  

              where     is an invertible element in    . 

                                 . 

We continue with these steps to       times 

                                  has an inverse in  . 

           

                               

          are associated for every    . 

Theorem: 

Let   be a UFD if   is an irreducible element, then   is prime element. 

Proof: 
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Let   be an irreducible element and suppose that  

                         

1) If   has inverse  

                                           . 

 

2) If   has inverse  

                                         .     is 

prime  

3) If   has inverse  

                                               ! 

(since     ) 

4) If       have no inverse  

  is UFD                                                 .  

Where            are irreducible elements  

                                            . 

Subdued in (1). 

                                        . 

    is associated with                        has an inverse. 

Or     is associated with                         has an inverse. 

                       . 

                                                       . 

       

                         . 

                                                        . 
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     is prime number. 
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Rings of polynomials Definition: 

Let   be a ring, then the function      * +    is called infinite 

sequence in     and we shall denoted to   ( ) by             
  * +. 

    is called the nth term (or general term)for thesequence〈  〉. 

  ( )  (            ) 

Definition: 

Let   be a ring, every infinite sequence in     (all term equal zero 

except a finite of terms) is called a polynomial ring in       )    a 

positive integer     such that              . 

Examples: 

(1) (         ) 

(2) (                ) 

(3) (                  ) 

Are polynomial ringsin   . 

Remark: 

We will denoted to all polynomial ringsin     by   , - 

   , -  *(                   )       + 

Remark: 

Let     (                 ) and     (                 )     

  , -, then                              . Define   on   , - as 

follows: 

       (                 )   (                 ). 

        (                      ). 

Remark: 
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 ( , -    ) is abelian group. 

Proof: 

1. (         ) is the identity. 

2.         , -       , -, 

where   (                 )        (  )    . 

3. Associative: let            , -        (              )     

(              )        (              )    (   )      

(   ) . 

4. Let          , -, then     (              )  

 (              )  (                       )  

 (                       ). (since          and   is 

commutative), then         . 

Remark: 

 ( , -      ) is a ring. 

Proof:(H.W) 

Define ( )  on   , -by:If          , -, where 

      (              )     (              ). Then  

    (              )  (              )  (              )  

 , -, where    ∑             . 

                                                   

      Theorem: 

   can be imbedded in  , -. 

Proof: 

If     *(       )      + subset of  , - 

Define          , - by   ( )  (       )        . 

1.   is homomorphism: 
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 (     )  (           )  (        )  (        )

  (  )   (  ) 

 (     )  (           )  (        )  (        )   (  )   (  ) 

2.   is (   ): 

If    (  )   (  ) (        )  (        )             

3.   is onto: 

Let   (              )   , - 

         (  )   (        ) 

          (  )   (        ) 

    

           (  )   (        ) 

             (  )   (        ) 

Remark: 

Let   be a ring put     (       )     (         )      

(           )          (           ). 

Let (              )   , -. 

(              )  (      )  (        )  (            ) 

 (      )  (        )  (       )  (          )

 (         )       (            )(           ) 
  

           
       

  

Definition: 

Let   be a ring and let     , - be a nonzero polynomial ring we say 

that the degree of      [demoted by     ( )    ] if             

          . 

Examples: 
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  ( )             , - 

  (                   ) 

    ( )     ,                             . 

Remark: 

If   ( )       , -      ( )    ,then     is called constant 

polynomial. 

Remark: 

If   is I.D and       , -          ( ( ))        ( ( ))    . Then 

   ( ( )   ( ))         ( ( ))     ( ( )). 

Definition: 

Let   be a ring and  , - be a polynomial ring on  . Let   ( )  

 , -         ( )            
       

         we call that 

   is a leading coefficient of   ( ), and the integer     is thedegree . 

If     , then  ( ) is called monic polynomial 

Remark:(1) 

If   is a commutative ring, then  , -is commutative. 

Proof: 

Let      , -.s.t  

 ( )            
       

           

 ( )            
       

           

 ( )   ( )

      (         )  (              ) 
   

                              
    

Since    is a commutative ring, then                    . 
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        ( )   ( ) 

Q: 

Is the converse true? 

Sol 

Yes, since if              , -. Put   ( )           ( )     . 

  ( )   ( )         

Since  , - is a commutative ring, then                      . 

      is a commutative ring. 

Remark:(2) 

If    has an identity, then  , -has an identity. 

Proof: 

Since   has an identity 1, then Put   ( )      

     ( )   , -   ( )   ( )   ( )     ( )   ( ) 

Q: 

Is the converse true? 

Sol 

Suppose that  , -has an identity say  ( ). 

Now, let     . 

Since  ( ) is the identity of  , -. 

  ( )   ( )   ( )  ( )    , - 

In special case put   ( )    . 

  ( )            ( )  (       )     . 
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Lemma: 

If    is I.D, then  , -is I.D. 

Proof: 

From the last two remarks. If   is a commutative ring with 1, then 

 , -is commutative with 1. 

Let  ( )   ( )   , -.s.t  

 ( )            
       

           

  ( )            
       

         

Since             and    is I.D, then          

  ( )   ( )      (              ) 

  , -      . 

Remark:(3) 

Let   be a commutative ring with one and let      be a non zero 

polynomial in , -, then 

     ( ( )   ( ))       (    ( )      ( ))       ( )   ( )   . 

Example: 

 ( )               ( )                   , - 

 ( )   ( )            

 ( )                ( )                , - 

 ( )   ( )            

     ( ( )   ( ))        ( ) 

Remark:(4) 

     ( ( )   ( ))    (    ( )       ( ))       ( )   ( )   . 
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Example: 

 ( )             ( )                 , - 

 ( )   ( )           

 ( )            ( )                 , - 

 ( )   ( )         

     ( ( ))      ( ( ))         

Remark:(5) 

If    is I.D and         , - s.t     ( ( ))           ( ( ))    , then 

     ( ( )   ( ))          ( ( ))      ( ( )). 

Q: 

If    is a field is   , -a field? 

Sol 

(H.W). 
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Definition: 

Let   be a ring, then the function      * +    is called infinite 

sequence in     and we shall denoted to   ( ) by             
  * +. 

    is called the nth term (or general term)for thesequence〈  〉. 

  ( )  (            ) 

Definition: 

Let   be a ring, every infinite sequence in     (all term equal zero 

except a finite of terms) is called a polynomial ring in       )    a 

positive integer     such that              . 

Examples: 

(1) (         ) 

(2) (                ) 

(3) (                  ) 

Are polynomial ringsin   . 

Remark: 

We will denoted to all polynomial ringsin     by   , - 

   , -  *(                   )       + 

Remark: 

Let     (                 ) and     (                 )     

  , -, then                              . Define   on   , - as 

follows: 

       (                 )   (                 ). 

        (                      ). 

Remark: 
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 ( , -    ) is abelian group. 

Proof: 

1. (         ) is the identity. 

2.         , -       , -, 

where   (                 )        (  )    . 

3. Associative: let            , -        (              )     

(              )        (              )    (   )      

(   ) . 

4. Let          , -, then     (              )  

 (              )  (                       )  

 (                       ). (since          and   is 

commutative), then         . 

Remark: 

 ( , -      ) is a ring. 

Proof:(H.W) 

Define ( )  on   , -by:If          , -, where 

      (              )     (              ). Then  

    (              )  (              )  (              )  

 , -, where    ∑             . 

                                                   

      Theorem: 

   can be imbedded in  , -. 

Proof: 

If     *(       )      + subset of  , - 

Define          , - by   ( )  (       )        . 

1.   is homomorphism: 
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 (     )  (           )  (        )  (        )

  (  )   (  ) 

 (     )  (           )  (        )  (        )   (  )   (  ) 

2.   is (   ): 

If    (  )   (  ) (        )  (        )             

3.   is onto: 

Let   (              )   , - 

         (  )   (        ) 

          (  )   (        ) 

    

           (  )   (        ) 

             (  )   (        ) 

Remark: 

Let   be a ring put     (       )     (         )      

(           )          (           ). 

Let (              )   , -. 

(              )  (      )  (        )  (            ) 

 (      )  (        )  (       )  (          )

 (         )       (            )(           ) 
  

           
       

  

Definition: 

Let   be a ring and let     , - be a nonzero polynomial ring we say 

that the degree of      [demoted by     ( )    ] if             

          . 

Examples: 
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  ( )             , - 

  (                   ) 

    ( )     ,                             . 

Remark: 

If   ( )       , -      ( )    ,then     is called constant 

polynomial. 

Remark: 

If   is I.D and       , -          ( ( ))        ( ( ))    . Then 

   ( ( )   ( ))         ( ( ))     ( ( )). 

Definition: 

Let   be a ring and  , - be a polynomial ring on  . Let   ( )  

 , -         ( )            
       

         we call that 

   is a leading coefficient of   ( ), and the integer     is thedegree . 

If     , then  ( ) is called monic polynomial 

Remark:(1) 

If   is a commutative ring, then  , -is commutative. 

Proof: 

Let      , -.s.t  

 ( )            
       

           

 ( )            
       

           

 ( )   ( )

      (         )  (              ) 
   

                              
    

Since    is a commutative ring, then                    . 
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        ( )   ( ) 

Q: 

Is the converse true? 

Sol 

Yes, since if              , -. Put   ( )           ( )     . 

  ( )   ( )         

Since  , - is a commutative ring, then                      . 

      is a commutative ring. 

Remark:(2) 

If    has an identity, then  , -has an identity. 

Proof: 

Since   has an identity 1, then Put   ( )      

     ( )   , -   ( )   ( )   ( )     ( )   ( ) 

Q: 

Is the converse true? 

Sol 

Suppose that  , -has an identity say  ( ). 

Now, let     . 

Since  ( ) is the identity of  , -. 

  ( )   ( )   ( )  ( )    , - 

In special case put   ( )    . 

  ( )            ( )  (       )     . 
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Lemma: 

If    is I.D, then  , -is I.D. 

Proof: 

From the last two remarks. If   is a commutative ring with 1, then 

 , -is commutative with 1. 

Let  ( )   ( )   , -.s.t  

 ( )            
       

           

  ( )            
       

         

Since             and    is I.D, then          

  ( )   ( )      (              ) 

  , -      . 

Remark:(3) 

Let   be a commutative ring with one and let      be a non zero 

polynomial in , -, then 

     ( ( )   ( ))       (    ( )      ( ))       ( )   ( )   . 

Example: 

 ( )               ( )                   , - 

 ( )   ( )            

 ( )                ( )                , - 

 ( )   ( )            

     ( ( )   ( ))        ( ) 

Remark:(4) 

     ( ( )   ( ))    (    ( )       ( ))       ( )   ( )   . 
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Example: 

 ( )             ( )                 , - 

 ( )   ( )           

 ( )            ( )                 , - 

 ( )   ( )         

     ( ( ))      ( ( ))         

Remark:(5) 

If    is I.D and         , - s.t     ( ( ))           ( ( ))    , then 

     ( ( )   ( ))          ( ( ))      ( ( )). 

Q: 

If    is a field is   , -a field? 

Sol 

(H.W). 

 

Theorem:(Division Algorithm) 

Let    be a commutative ring with 1 and  ( )  ( )   be two 

polynomials in  , - with leading coefficient of  ( )an invertible 

element. Then there exist unique polynomial  ( )  ( )    , -        

 ( )   ( )  ( )   ( ) 

Where either    ( )     or      ( ( ))      ( ( )). 

Proof: 

If    ( )    we will take   ( )   ( )    

 ( )   ( )     ( )    
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If     ( ( ))     ( ( )) we will take  ( )    and  ( )   ( ). 

 ( )   ( )    ( )       ( )   ( ) 

Notice that    ( ( ))     ( ( ))       ( ( )) 

Now suppose that  ( )    and     ( ( ))      ( ( ))  

By induction on    ( ( )). 

1) Suppose that    ( ( ))     

   )  ( )                 

      ( ( ))     ( ( ))       ( ( ))      

   )    ( )                  

             [since the coefficient of   is invertible]. 

Suppose that the theorem is true for all polynomial. 

Which its degree less than degree   ( ) 

 ( )             
                

 ( )             
           . 

Put   ( )   ( )– (    
  )       ( )              ( ) 

    ( ( ))       ( ) 

   by induction         ( )   ( ) satisfy  

  ( )   ( )   ( )   ( )                ( ) 

And either  ( )     or     ( ( ))      ( )  

Sub.(2) in (1) we get :- 

  ( )   ( )   ( )   ( )  (      )   
     ( ) 

  ( )  (  ( )       
        )  ( )   ( ) 
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By (2)   ( )    or    (  ( ))     ( ( )). 

Uniqueness:-Suppose that there exist   ( )    ( )   , -        

 ( )    ( )  ( )    ( )   

     ( )             ( )      ( ) 

Put   ( )   ( )  ( )   ( )       ( )    or     ( )      ( ). 

   ( )  ( )   ( )      ( )  ( )    ( ) 

( ( )     ( ))  ( )    ( )   ( )      ( ) 

If            ( )    ( )            ( )    ( )             

     ( ( )     ( ))  ( )     ( ( )     ( ))     ( ( ))

    ( ( )    ( ))      ( ) 

Put    ( ( )    ( ))     *    ( ( ))     (  ( ))+ . 

   *    ( ( ))     (  ( ))+       ( ( ))     ( ( )     ( ))    

With    ( ( ))     ( ( )) and      (  ( ))      ( ( )). 

              ( )       ( )           ( )     ( )              

     ( )    ( )                ( )     ( )                   . 

                are unique. 

Example: 

Let   ( )                     ( )           find              . 

Sol:   ( )        ,      ( )         

   ( )    ( )  ( )    ( ) 

Definition: 
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Let R be a ring with 1, then a ring    is called extension for R if    

contain R as a subring (      ) 
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Theorem: 

Let R be commutativering with 1 s.t     imbedded in   and let 

       [ ] 

                  
         and let           , then    a 

ring homomorphism. 

      [ ]      define by    (    )        

                  
     

Proof: 

                    
                 

                    
                     

  (         )

   [                             

    
 ]  

                                 
  

              (    )     (    ) 

   (         )     [                              ] 

                                

           

      is aring homomorphism. 

Definition: 

Let     be a commutative ring with 1 and let     be an extension of R 

and let           , we denoted the set  

         [ ]                            [ ]  
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Exampls: 

1. In         . 

                                    

                     [                ] 

2. In          . 

      ̅   ̅   ̅                     ̅   ̅   ̅    ̅   

           ̅ false 

[            ̅       ̅              ̅  ̅       ̅] 

               ̅ 

Lemma: 

Let     be a commutative ring with 1                      
     

                       
                  has inverse, then 

                                        

Proof: 

Suppose that [         ]    
                            

Exampl: 

                                                        

    invertible. 

(Division Algorithm) 

1-    commutative ring with 1 2-      3-    invertible in  . Then 

          [ ]                                            . 

Exampls: 

1.        , polynomial in   [ ]. 
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1-    commutative ring with 1 2-      3-      invertible in  . 

Then                  [ ]                                       

                           

 

2        , polynomial in   [ ]. 

                                              

1-    commutative ring with 1 2-      3-       invertible in  . 

Then                  [ ]                                       

                           

Remark :: 

If         , then     is called aroot of     . 

Theorem:: (Remainder theorem) 

Let     be acommutative ring with 1, if         [ ]       then there 

exist unique polynomial         [ ]          

                      . 

Proof:: 

Let           , then by division algorthim (for      and      )   

unique                [ ]                               

And either         or                      

But                   (    )            . 

Sub       in (1) we get                    . 

Put                                        . 
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Example 

Let f(x) =                      

Corollary: 

Let     be a commutative ring with 1,         [ ]       , then 

      is divisible       iff    is aroot of      . 

Proof::   

          ⁄                    where         [ ]. 

                                             

  Let          by Remainder theorem            [ ]            

              . 

                   [since      ] 

             . 

Theorem: 

Let     be an I.D and          [ ]be a polynomial of degree    , then 

   has at most    distinct of roots in    . 

Proof: 

By induction on     (    ) if                             

    has no root. 

If      (    )                                      

If     is an invertible element in         the root of       is         

                          

If   has no inverse then                    
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Now suppose that the theorem is true for every polynomial with 

degree less than    . 

Let     (    )    . ( if    has no roots then the theorem is true). 

Let        if     is aroot of       then by last corr.               

                       [ ]  

     (    )     (         ) 

                                [since   is I.D] 

         (    )         (    )      

 By induction     has at most      of roots and since       has one 

root 

      has   distinct roots. 

Corollary: 

let   be an I.D and let             [ ] are two polynomial of degree 

  , if          roots of distinct elements      s.t  

                            , then                      

Proof:: 

Let                         (    )      

                  of element for    ) [theorem]  

                                     . 

                                       . 

     has more than     roots C!                  . 

                               . 

Corollary: 
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Let     be an I.D and         [ ] and let     be any infinite subset of    . 

If                     then     is the zero polynomial. 

Proof: 

Suppose that      is a polynomial of degree    , then by last theorem     

has at most     roots C! 

Since                 and     is infinite set                   . 

Theorem: 

Let     be a field, then   [ ]  is E.D  

Proof: 

   is afield        is I.D       [ ] is I.D. 

Now define       [ ]         

  (    )   
                   

    (    )              
 

(1)                        

(2)                    (         ) 

                   [since   is I.D] 

                        . 

                 . 

(3)let              [ ] by division algorthim ,                    

 [ ]                              and either          or 

                    

Case(1) if            (    )     (    )             . 

Case(2)                (    )              
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       (    )            . 

                       . 

                    ,  

    [ ]   is E.D. 

Corollary : 

Let     be afield, then   [ ] is P.I.D. 

Proof:: 

  is afield     [ ] is E.D.        [ ]is a P.I.D [ Every E.D. is P.I.D] 

Corollary: 

If    is afield, then  [ ] is U.F.D. 

Proof:: 

   is afield      [ ] is E.D.       [ ] is P.I.D.       [ ] is U.F.D. 

 

Theorem: 

Let     be I.D and let       be a polynomial which is not constant in 

  [ ], we say that       is irreducible if we cannot find two 

polynomial           [ ]                       and satisfies that 

            with positive degree not equal zero. 

Otherwise we say that g(x) is reducible polynomial. 

Example:: 

                 [ ]                       √     √   

and     √     [ ]           is irreducible. 

Remark(1): 
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(1)The reducible polynomial must it’s of degree greater or equal two. 

(2)All polynomial of first degree is irreducible. 

(3)The constant polynomial cannot be considered reducible or 

irreducible by definition. 

 

Q/ prove that 〈 〉 in Z[x] is prime not maximal ideal. 

Proof:: 

〈 〉                [ ]            

〈 〉   [ ]     

         [ ]            

                   

          [ ]. 

(2)Define     [ ]            (    )       

   is onto and homomorphism?  

  By F.I.T
 [ ]

    
      

       {      [ ]   (    )   } 

         [ ]                  

   
 [ ]

   
      but is I.D then by [theorem] 

    
 [ ]

   
 is I.D thus 〈 〉 is prime by [  is prime iff 

 

 
 is I.D.].. 

Now if we suppose that 〈 〉 is maximal. ideal then by theorem  

[   is maximal ideal iff
 

 
    a field ] 



Dr. Alaa Abbass                                                                                                                  Lecure Eight    

67 
 

       
 [ ]

   
 is afield        is a field C! since     is not afield . 

Q/:Is    [ ] P.I.D? 

Sol/No, since if  [ ] is P.I.D and   is I.D    by the last theorem     is a 

field C! 
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Corollary(2): 

If        [ ] with positive degree, then       can be written as a 

product of linear factors and others with constant degree. 

proof:: 

Let        [ ] by last corollary  

                         

, if                [ ]   the proof is finish  

Now, if 

                                                      ̅            

  ̅         . 

Now,(    )(    ̅)  [  (      )][          ] 

         (  
    

 )   [ ]       

Example: 

                [ ]                         

Lemma: 

Let   be afield, then the following are equivalent: 

(1)     is an irreducible polynomial in   [ ]. 

(2)The principle ideal        is a maximal or prime ideal in   [ ]. 

(3)The qoutient ring 
 [ ]

      
 is a field 

Proof:(H.W) 

Example: 
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Let                                            [ ]      . Is    

   Is maximal ideal? 

If it’s maximal                           [ ] 

 [ ]

      
          

                
 [ ]

      
            iff <       is maximal ideal. 

             is irreducible. [by last Lemma] 

Theorem: 

If     is U.F.D, then   [ ] is U.F.D  

Proof:(H.W) 

Definition: 

Let     be U.F.D "the content" of non constant polynomial  

                 
   [ ].denoted by symbol            , is 

defined to be a greatest common divisor of its coefficient. 

                               . 

(*)If             , then we called      primitive polynomial. 

Example: 

                                                 

Example: 

                                        . 

       is primitive. 

Remarks: 
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(1)       [ ] is primitive iff there is no prime number     divided all 

coefficient    of      . 

(2)Let       be a polynomial not primitive, then there exists a primitive 

polynomial        [ ]                            . 

(3)If        [ ] with positive degree, then                    

       where       is primitive. 

 

Gaus Theorem: 

If            are primitive polynomials in  [ ], then            is also 

primitive polynomial in   [ ]. 

Proof: 

Let                  
   [ ]           and  

                    [ ]          . Let  

                

Suppose that      is not primitive. 

      a prime number       divide all the coefficient of              

and     not divide all    (since     is primitive). 

Suppose     is the smallest positive integer s.t       , and     not divide 

all    [since     is primitive], let     be the smallest positive integer s.t 

            . 

Now, let                       
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     ∑    
   

                                           

        

For choice of     and                           and          

          but p is prime number          or             with (1) and 

(2)        is primitive polynomial. 

Corollary: 

If each       and        [ ] are polynomial with positive 

degree.Then     (          )                      

Proof: 

In case     and    are both primitive polynomial. 

      (         )            (    )    and cont. (g(x))=1 

      (         )            (    )           . 

Now suppose that   and   are not primitive. 

Let               and                              

By remark (2)                primitive polynomial s.t      

                                       

                               

                            

      (         )           (           ) 

      [          and    are primitive ] 
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Theorem: 

Let      be an irreducibleprimitive polynomial in   [ ], then      is 

irreducible in  [ ]. 

Proof: 

Suppose that       is primitive in   [ ] otherwise, there exist a 

primitive polynomial          [ ]                                

suppose that       is reducible in   [ ] this means                

 [ ]                       and                            

Now         
  

  
 

  

  
    

  

  
   

        
  
  

 
  
  

    
  
  

   

where                                                       

Let                                               

      (    )                  

                                                          

Where                    are primitive  

                                       

           (    )                    

                                            

=            (           )        

                                                          

                                                 

                                [ ]    [      primitive by assumption] 
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       is reducible in     [ ]       

Thus        is irreducible in     [ ] 

 

Theorem:(Eisenstein) 

Let                    
 be a polynomial in   [ ]with positive 

degree if there exist a prime number     s.t                        , 

    and      , then        is irreducible in   [ ]. 

 

Kronecker  Theorem; 

Let     be afield and       b a enon-constant polynomial in   [ ] then 

there exists an extension field                            . 

Proof: 

     is afield                      [                          ] 

Let         [ ], then we can write      as a product  of irreducible 

polynomial : 

                          where        is irreducible      

        

       is maximal. 

    
 [ ]

       
 is afield. 

Put         
 [ ]

       
 

Define         
 [ ]

       
                               

(1)    is well define : 
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(2)     is well homomorphism? 

                                                 

           

                                                

           

(3)    is       

If              

                                                 

                   . 

        
 [ ]

       
          is extension for     

Let                              [ ] 

To prove          

                        

                        

If                                         
  

                               

                            
      

           

=               

=            

                        . 
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H.W/ 

Let               [ ]             , prove that
 [ ]

      
   . 

Sol/  Define        
 [ ]

      
                              

1)                    

                            

                        

                                 

                                              

1)   is homomorphism 

                                  

                                           

                  . 

                                    

Example:; 

               [ ] 

                    

Use Kronecker's Thmeorem ,                          

 

H.W// 

1)let              prove that        is irreducible in  

    [ ]              [ ]   [√  ]            (√  ) 

2)                    [ ]   is f irreducible and have a root in Q? 
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3)            ̅ is        irreducible in   ? 

4)Use Eneshtin theorem to show that if: 

a)                          [ ][             ] 

b)                     

5) Prove that if               is irreducible in    [ ] or not? 
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Remarks 

1) ( )                         (   ) is irreducible in    . 

2)  ( ) is irreducible            (   )is irreducible in     . 

3)The polynomial    ( )                (where     is prime) 

is irreducible in         

Proof:   

( )    (  ) (   ) 

Proof:   (3) 

   (   )    (   )  (   )    (   )    

   
(   )   

(   )   
 

(   )   

 
 

   
 

 
 (   )     

   
 

 
[         

 (   )

  
         ] 

   [           
 (   )

  
        ]. 

We choose     to satisfy the theorem      by Eisenstein theorem, then 

   (   ) is irreducible on       and by remark (1)   ( )is irreducible 

on        

Defintion: 

The field     is an extension to the field     if     is a subfield in    . 

Example: 

    is an extension field of    . 

  is an extension field of    . 
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  is an extension field of   . 

H.W// 

Let    ( )                 find an extension field     to    by 

using kronker theorem? 

Hint:    
    

      
            

H.W// 

Let    ( )           , is   ( ) irreducible on    ? 

Hint:  (   )    

Defintion: 

Let     be an extension field of   , let       we called     algebraic 

element if there exists anon zero polynomial    ( )                ( )  

  . 

Otherwise we say that     is transcendental element  

Example: 

    extension field to     

√     is√  algebraic element    ? 

Note that    ( )                   (√ )    

    √  is algebraic element. 

H.W// Is 

1)    √  √       algebraic on    ? 

2)     is algebraic on    ? 

3)    is algebraic on    ? 
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Sol: (1)     √             √         (    )      

                               . 

Defintion:: 

Let     is I.D    ( )       non-constant,      is irreducible          ( )   

 ( )                   ( )   ( )  ( )           ( ( ))       ( ( ))  

  

Example: 

   ( )               , 

     ( )   (    )   (  √ )(  √ ) 

√      

Note:    ( )              is irreducible  

   ( )   ( )  ( ) since     ( )     ( ( )   ( )) 

Example: 

   ( )                  ? 

Sol: Claim that     is irreducible  , if     not irreducible then 

   ( )   ( )   ( ) with             , then either     or     has a first 

order. 

   )    ( )                       ( )         and since 

   ( )   ( )   ( )  (   )   ( )          ( )  (   )   ( )    

        has a root in        but f has no root in       since  

   ( )       ( )       ( )       ( )         ( )          With 

   ( )   ( )   ( )           is irreducible. 

Theorem: 
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Let       be a field and    ( )             ( )     or  , then      is 

irreducible         ( )has no root in     . 

Example: 

  ( )                

    (    )   (  √  )(  √  )           has no root in         is 

irreducible  

Example: 

 ( )             . 

    ( )         ( )          ( )          ( )    

     is not irreducible  

Example(H.W) 

 ( )               . 

Example(H.W) 

 ( )             . 
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